MultiWOZ 2.2 : A Dialogue Dataset with Additional Annotation
Corrections and State Tracking Baselines

Xiaoxue Zang!, Abhinav Rastogi', Srinivas Sunkara', Raghav Gupta',
Jianguo Zhang?, Jindong Chen'!
!Google Research, >University of Illinois at Chicago
1{xiaoxuez, abhirast, srinivasksun, raghavgupta}@google.com,
2j3zhan51Quic.edu, 'jdchen@google.com

Abstract

MultiwWOZ (Budzianowski et al., 2018) is
a well-known task-oriented dialogue dataset
containing over 10,000 annotated dialogues
spanning 8 domains. It is extensively used as
a benchmark for dialogue state tracking. How-
ever, recent works have reported presence of
substantial noise in the dialogue state annota-
tions. MultiwOZ 2.1 (Eric et al., 2019) iden-
tified and fixed many of these erroneous an-
notations and user utterances, resulting in an
improved version of this dataset. This work
introduces MultiWOZ 2.2, which is a yet an-
other improved version of this dataset. Firstly,
we identify and fix dialogue state annotation
errors across 17.3% of the utterances on top
of MultiwOZ 2.1. Secondly, we redefine the
ontology by disallowing vocabularies of slots
with a large number of possible values (e.g.,
restaurant name, time of booking). In addi-
tion, we introduce slot span annotations for
these slots to standardize them across recent
models, which previously used custom string
matching heuristics to generate them. We also
benchmark a few state of the art dialogue state
tracking models on the corrected dataset to fa-
cilitate comparison for future work. In the end,
we discuss best practices for dialogue data col-
lection that can help avoid annotation errors.

1 Introduction

Task-oriented dialogue systems have become very
popular in the recent years. Such systems assist the
users in accomplishing different tasks by helping
them interact with APIs using natural language. Di-
alogue systems consist of multiple modules which
work together to facilitate such interactions. Most
architectures have a natural language understand-
ing and dialogue state tracking module to generate
a structured representation of user’s preferences
from the dialogue history. This structured repre-
sentation is used to make API calls and as a signal

109

for other modules. Then, the dialogue policy mod-
ule determines the next actions to be taken by the
dialogue system. This is followed by the natural
language generation module, which converts the
generated actions to a natural language utterance,
which is surfaced to the user.

Recently, data-driven techniques have achieved
state-of-the-art performance for the different dia-
logue systems modules (Wen et al., 2017b; Ren
et al., 2018; Zhang et al., 2019; Chao and Lane,
2019). However, collecting high quality anno-
tated dialogue datasets remains a challenge for
the researchers because of the extensive annota-
tion required for training the modules mentioned
above. Many public datasets like DSTC2 (Hen-
derson et al., 2014), WOZ (Wen et al., 2017a),
SimulatedDialogue (Shah et al., 2018), Multi-
WOZ (Budzianowski et al., 2018), TaskMas-
ter (Byrne et al., 2019), SGD (Rastogi et al., 2019),
etc. have been very useful to facilitate research
in this area. Among these datasets, MultiwOZ
is the most widely used benchmark for dialogue
state tracking. It contains over 10,000 dialogues
spanning 8 domains, namely - Restaurant, Hotel,
Attraction, Taxi, Train, Hospital, Bus, and Police.

Since its inception, the MultiWOZ dataset has
undergone a few updates. Lee et al. (2019) intro-
duced user dialogue actions providing a structured
semantic representation for user utterances. Eric
et al. (2019) fixed 32% of dialogue state annota-
tions across 40% of the turns and introduced slot
descriptions, culminating in MultiWOZ 2.1, a new
version of the dataset. Despite the large scale of
corrections introduced in MultiWOZ 2.1, there are
still many unaddressed annotation errors (Zhang
et al., 2019). Furthermore, several approaches to
dialogue state tracking use span annotations iden-
tifying the locations in the user and system utter-
ances where slot values have been mentioned, to
make the system efficient and generalizable to new

Proceedings of the 2nd Workshop on Natural Language Processing for Conversational Al, pages 109-117
July 9, 2020. (©2020 Association for Computational Linguistics

slot values (Rastogi et al., 2017; Wu et al., 2019;
Zhang et al., 2019; Rastogi et al., 2019; Xu and
Hu, 2018; Zhou and Small, 2019; Gao et al., 2019).
Because of the absence of these span annotations
in MultiwQOZ, these approaches resort to generat-
ing them using custom string matching heuristics,
making their comparison difficult.

To address these limitations, we introduce Mul-
tiWOZ 2.2', an updated version of the MultiWOZ
dataset. Our contributions are threefold.

1. We identify the annotation errors, inconsisten-
cies, and ontology issues in MultiwOZ 2.1, and
publish its improved version.

2. We add slot span annotations for user and sys-
tem utterances to standardize them across future
models. We also annotate the active user intents
and requested slots for each user utterance.

3. We benchmark a few state-of-the-art dialogue
state tracking models on the corrected dataset to
facilitate comparison for future work.

The paper is organized as follows. First we
describe the different types of annotation errors
and inconsistencies we observed in MultiwOZ 2.1
(Section 2). Then, we outline the redefinition of
ontology (Section 3), followed by the description
of correction procedure (Section 4) and new anno-
tations we introduce (Section 5). Finally, in Section
6, we present the performance of a few recent dia-
logue state tracking models on MultiwOZ 2.2.

2 Annotation Errors

The MultiWOZ dataset was collected using a
Wizard-of-Oz setup (Kelley, 1984). In this setup,
two crowd-workers are paired together, one acting
as a user and the other as the dialogue agent. Each
dialogue is driven by a unique set of instructions
specifying the user goal, which are shared with the
crowd-worker playing the role of the user. After
every user turn, the crowd-worker playing the role
of the dialogue agent (wizard) annotates the up-
dated dialogue state. After updating the state, the
tool shows the set of entities matching the dialogue
state to the wizard, who then uses it to generate a
response which is sent to the user. Remaining an-
notations such as the system actions are collected
using a second annotation task.

!The dataset is available at https://github.com/
budzianowski/multiwoz.

110

The Wizard-of-Oz setup is widely considered to
produce natural conversations, as there is no turn
level intervention guiding the flow of the dialogue.
However, because of its heavy reliance on humans
for generating the correct annotations, the proce-
dure is prone to noisy annotations. We identified
two major classes of errors outlined below, which
were not corrected in MultiwOZ 2.1.

2.1 Hallucinated Values

Hallucinated values are present in dialogue state
without being specified in the dialogue history. We
observed four different types of such errors, which
are shown in Figure 1 and described below.

1. Early Markups: These values have been men-
tioned by the agent in a future utterance. Since
the user has not accepted them yet, they should
be excluded from the dialogue state.

2. Annotations from Database: These values are
not mentioned in the dialogue at all, even in
the future utterances. They appear to be incor-
rectly added by the wizard based on results of
the database call.

3. Typos: These values cannot be found in the di-
alogue history because of a typographical error.
These errors occur since slot values are entered
as free-form text in the annotation interface.

4. Implicit Time Processing: This specifically re-
lates to slots taking time as a value. Sometimes,
the value is obtained by adding or subtracting
some pre-determined duration from the time
specified in dialogue history (Figure 1). In other
cases, it is implicitly rounded off to closest quar-
ter (Dialogue 1 in Figure 2). This further bur-
dens models with learning temporal arithmetic.

We observed that the errors mentioned above are
quite frequent. In total we found that hallucinated
values appear in 3128 turns across 948 dialogues
in the MultiwWOZ 2.1 dataset.

2.2 Inconsistent State Updates

We also encountered annotations in MultiwOZ 2.1
that are semantically correct, but don’t follow con-
sistent annotation guidelines. Inconsistencies arise
in the dialogue state because of three main reasons:

1. Multiple Sources: A slot value may be in-
troduced in the dialogue state through various
sources. It may either be mentioned by the user,

https://github.com/budzianowski/multiwoz
https://github.com/budzianowski/multiwoz

Example Dialogue Segment

MultiwOZ 2.1

MultiWOZ 2.2

1. Early Markup

User: Help me find a moderate priced british
food place please.

Sys: restaurant one seven is a nice place. Do you
want to book?

r-food=british,
r-pricerange=moderate,
r-name=one seven

r-food=british,
r-pricerange=moderate

2. Annotation from Database

User: Can you give me the address to the
hospital in Cambridge?

Sys: The address is Hills Rd, Cambridge
Postcode: CB20QQ

hospital-department=acute
medical assessment unit

-no update-

3. Typo

Sys: Okay, I can help with that. What day and
time would you like to dine and how many
people should I have the reservation for?

User: On Thursday at 5:00. I also need a hotel in
the same area. No need to have free parking.

r-bookday=thursday,
r-booktime=15:00,
hotel-area=west

r-bookday=thursday,
r-booktime=5:00,
hotel-area=west

4. Implicit Time Processing

User: Can I get the postcode for that? I also need
to book a taxi to the Golden Wok.

r-name=Golden Wok,
r-bookday=friday,
r-booktime=11:00,
taxi-leave At=friday,
taxi-destination=Golden

r-name=Golden Wok,
r-bookday=friday,
r-booktime=11:00,
taxi-destination=Golden
Wok

Sys: The postcode is cb21tt. Are you looking for
a taxi from Old Schools to the Golden Wok?

User: Yes I do. I'd like to make sure I arrive at
the restaurant by the booked time. Can you
check?

.

r-name=Golden Wok,
r-bookday=friday,
r-booktime=11:00,
taxi-leave At=friday,
taxi-arriveby=10:45

Wok

r-name=Golden Wok,
r-bookday=friday,
r-booktime=11:00,
taxi-arriveby=11:00

Figure 1: Examples of hallucinated values in MultiWOZ 2.1 and the corrections in MultiWOZ 2.2. Please note
that we omit state annotations unrelated to the extracted utterances. “r” used in the slot name in the right two

columns is an abbreviation of restaurant.

offered by the system, carried over from another
slot in the dialogue state of a different domain,
or be a part of the ontology.

2. Value Paraphrasing: The same slot value can
be mentioned in many different ways, often
within the same dialogue e.g. the value “18:00”
for the slot time may be mentioned as “6 pm”,
“1800, “0600 pm”, “evening at 6” etc.

3. Inconsistent tracking strategy: Crowd-
workers have inconsistent opinions on which
slot values should be tracked in the same dia-
logue context. For example, some workers track
all slot values that the user agrees with while
others only track user-specified slot values.

Table 1 shows dialogue state update from three
different sources for similar slots from different
dialogues in MultiWOZ 2.1. In the first case, the

111

value “08:00” for slot train-arriveby comes from
the ontology, despite the presence of an equivalent
value “8:00” in the user utterance. On the other
hand, in the second example, the slot value in the
dialogue state comes from the user utterance de-
spite the ontology listing “17:45” as a value for the
slot train-leaveat. In the third example, the value of
train-leaveat is not derived from any of the sources
mentioned above, but is generated by incorporating
the semantics. The slot value can be mentioned in
multiple ways, but in order to evaluate a dialogue
system fairly, it’s necessary to either maintain a
consistent rule for deciding how the value is picked
among all the mentions or consider all the men-
tions as the correct answer. MultiwOZ 2.1 gives
one unique correct answer for each dialogue state
but lacks an explicit rule on how it is determined.
This inconsistency confuses the model during train-
ing and unfairly penalizes it during evaluation if it

Source User utterance Dialogue state update
Ontology I need to arrive by 8:00. train-arriveby=08:00
Dialogue Sometime after 5:45 PM would be .
. train-leaveat=5:45pm
history great.
None Iplan .on getting lunc%l ﬁ'rst, 50 train-leaveat=after lunch
sometime after then I’d like to leave.

Table 1: Example of slot values annotated using different strategies in “PMUL0897.json”, ‘MUL0681.json*”, and

“PMUL3200.json” in MultiwOZ 2.1.

outputs a slot value which is different but equiva-
lent to the one listed in ground truth.

Figure 2 shows another example where dialogue
states are updated differently in similar scenarios.
In both dialogues, the system offers an instance
that fulfills the user’s requirement, but the dialogue
states are updated differently after user shows an
intent to book the ticket. Specifically, in dialogue 1
the value for train-arriveby provided by the system
is tracked in the dialogue state while not in dialogue
2. Dialogue 1 also showcases the implicit time
processing issue discussed in Section 2.1, where
the time “12:08” has been rounded to “12:15” in
the dialogue state.

3 Ontology Issues

Although MultiWOZ 2.0 provides a predefined on-
tology which is claimed to enumerate all slots and
the possible values for every slot, it has been re-
ported to be incomplete. As a result, many re-
searchers have built their own ontology to achieve
a better performance (Wu et al., 2019; Goel et al.,
2019). To fix the problem of incompleteness, Mul-
tiWOZ 2.1 rebuilt the ontology by listing all values
present in dialogue states across the dataset, but it
still has some unaddressed issues.

First, for some slots, multiple values sharing
the same semantics are listed. Some examples
are “8pm” and “20:00”, “a and b guesthouse’
and “a and b guest house”, “cheap|moderate” and
“moderate|cheap” for the slots restaurant-book-
time, hotel-semi-name and hotel-semi-pricerange
respectively. We find that 51% of the values for
the slot hotel-name are not semantically unique,
and similar figures for the restaurant-name and
attraction-name slots. Such duplicate values make
evaluation hard since MultiWwOZ 2.1 only assumes
one correct value for each slot in the dialogue state.

Second, we observe multiple slot values in the
ontology that can’t be associated with any enti-
ties in the database. Values like “free” for slot

’

112

attraction-name; “cam”, “dif”’, and “no” for slot
restaurant-name are some examples. Such values
could be introduced in the ontology because of ty-
pographical errors in the utterances or annotation
errors. Our investigation shows that 21.0% of the
slot values in the ontology can’t be directly mapped
back to the values in the database through exact
string matching. We also observed a few logical ex-
pressions like “cheap|moderate”, “NOT(hamilton
lodge)” etc. in the ontology. We believe that these
expressions, although semantically correct, add
noise during training. The ontology should either
omit such expressions altogether or include all pos-
sible expressions to enable generalization to cases
not observed in the training data.

4 Correction Procedure

To avoid the issues described above, we advocate
the definition of ontology prior to data collection.
This not only serves as a guideline for annotators,
but also prevents annotation inconsistencies in the
dataset and corruption of the ontology from typo-
graphical and annotation errors. This section de-
scribes our definition of the new ontology, which
we call schema, followed by the corrections made
to the state and action annotations. Lastly, we also
show the statistics of our modifications.

4.1 Schema Definition

It is not realistic for the ontology to enumerate all
the possible values for some slots like restaurant-
name and restaurant-booktime, which can take a
very large set of values. With addition or removal
of entities in the database, the set of possible val-
ues also keeps changing continuously. Rastogi
et al. (2019) proposed a representation of ontol-
ogy, called schema, to facilitate building a scalable
dialogue system that is capable of handling such
slots. A schema divides the different slots into
two categories - non-categorical and categorical.
Slots with a large or dynamic set of possible values

Dialogue 2 (ID: MUL0355.json)

train-leaveAt = 10:30
train-day = Tuesday

Actually, | need to leave
Tuesday after 10:30.

[

[

sto

| am going to bishops

\

rtford, leaving on Friday. train-destination = bishops

Dialogue 1 (ID: MUL1569.json)
| have a train that
leaves Tuesday at

11:17 that will arrive at
12:08. Would you like
to make a reservation?

Yes, please make a
reservation for 6
people. I'll need the
reference number.

train-bookpeople = 6
train-arriveby = 12:15

stortford
train-day = friday

Train TR8585 leaves at
13:29 and arrives at
14:07. Would you like to
book this train?

Yes, for 2 people. Can |
have the reference
number?

train-bookpeople = 2

Figure 2: Example of dialogues states being updated differently in similar scenarios. In both dialogues, user
accepts a train offered by the system. In dialogue 1, train-arriveby is annotated in the dialogue state after user’s
agreement, but not in dialogue 2. Dialogue 1 also shows implicit time processing, where the value 12:08 in the
system utterance is rewritten to 12:15 in the subsequent dialogue state.

Domain Categorical slots Non-categorical slots
Restaurant | pricerange, area, bookday, bookpeople | food, name, booktime
Attraction | area, type name
Hotel pricerange, parking, internet, stars, area, name
type, bookpeople, bookday, bookstay
Taxi - destination, departure, arriveby, leaveat
Train destination, departure, day, bookpeople | arriveby, leaveat
Bus day departure, destination, leaveat
Hospital - department
Police - name

Table 2: Categorical and non-categorical slots defined for 8 domains in MultiwOZ 2.2.

are called non-categorical. Unlike ontology, the
schema doesn’t provide a pre-defined list of values
for such slots. Their value is extracted from the
dialogue history instead.

On the other hand, slots like hotel-pricerange
or hotel-type, which naturally take a small finite
set of values are called categorical. Similar to
the ontology, the schema lists all possible values
for such slots. Furthermore, during annotation, the
values of these slots in the dialogue state and user or
system actions must be selected from a pre-defined
candidate list defined in the schema. This helps
achieve sanity and consistency in annotations.

We define categorical and non-categorical slots
for each domain as shown in Table 2. The idea
of splitting the slots in MultiWOZ into categorical
and non-categorical is not new. Many models have
used the number of possible slot values as the clas-
sification criterion (Zhang et al., 2019). Similarly,

113

we classify slots with fewer than 50 different slot
values in the training set as categorical, and the
others as non-categorical.

Note that since the Bus and Police domains have
very few dialogues in the training set (5 and 145
respectively), the number of possible slot values in
this domain does not reflect the true attributes of the
slots. Thus, we classify them by referring to similar
slots in different domains instead of following the
threshold rule.

4.2 Categorical Slots

The list of all possible values for categorical slots
is built from the corresponding database provided
with MultiwOZ 2.1. In addition, we allow “dont-
care” as a special value, which is used when user
doesn’t have a preference. We also observe cases
where the mentioned value is outside the scope of
the database, such as the example below, where
MultiWOZ 2.1 specifies “$100” as the value for

hotel-pricerange in the dialogue state.

User: Well,I want it cheaper than AIRBNB,so how
about $100 a night?

System: Unfortunately, we do not have such spe-
cific price ranges, but our options are divided into
3 categories: cheap, moderate or expensive. Which
would you prefer?

Since “$100” is not a part of the schema, we use
“unknown” as the slot value in the dialogue state to
express that the requirement specified by the user
can not be fulfilled by the schema.

4.3 Non-categorical Slots

Values of non-categorical slots are extracted from
the dialogue history. Due to the typographical er-
rors and slot value paraphrasing, the exact value
can not be found in many cases. Some examples
are “el shaddia guest house” being written as “‘el
shaddai” or “18:00” being written as “6pm” in the
dialogue utterances. Since in practice, typographi-
cal errors are inevitable and the same value can be
mentioned in variable ways, we try to not modify
the utterance to keep the dialogue natural. We also
allow the presence of more than one value in the di-
alogue state. During evaluation, a prediction listing
either of the listed values is considered correct.

We use a customized string matching method
that takes into consideration the possible typos and
alternative expressions to locate all values semanti-
cally similar to the annotation. If there are multiple
matches, we select the most recently mentioned
value and annotate its span. We also add this value
to the dialogue state, while preserving the original
value. Figure 3 shows the differences between the
annotations in MultiwOZ 2.1 and MultiWOZ 2.2.
The former only assumes a single value for each
slot, even though the slot values can be mentioned
in multiple ways and predicting any one of these
variants should be considered correct. Thus, in
MultiWQZ 2.2, the dialogue state can contain a list
of values for a slot: predicting any value in this list
is considered correct.

In some cases, slot value is carried over from
other slots without being explicitly mentioned in
the dialogue. For instance, in the utterance “I need
to book a taxi from the museum to the restaurant”,
the slot value for taxi-destination is copied from
the value for restaurant-name populated earlier.
Instead of annotating the span for faxi-destination,
we note down the original slot that taxi-destination

Utterance

“l am looking for ALexeander b&b”

MuliWOZ 2.1 | pjalogue state
hotel-name: “alexander bed and breakfast”
MultiwOZ 2.2 ' Dialogue state

hotel-name: [“alexander bed and breakfast”,
“alexeander b&b”]
Span annotation
{ "slot": "hotel-name",
"start": 17,
"exclusive_end": 31,
"value": "ALexeander b&b"

}

Figure 3: Example of the difference between dialogue
state annotation in MultiwOZ 2.1 and MultiwOZ 2.2
and span annotations in MultiwOZ 2.2.

copies its value from. The span annotation for such
slots can be obtained by tracing back the copy chain.
We posit that this information can be beneficial for
state tracking models utilizing a copy mechanism.

4.4 User and System Actions

The user and system action annotations provide a
semantic representation of the respective utterances.
These annotations were not part of the original Mul-
tiWOZ 2.0 release. They were created by Lee et al.
(2019) and were subsequently added to MultiwOZ
2.1. However, around 5.82% of turns have miss-
ing action annotations. We use crowdsourcing to
obtain annotations for these 8,333 dialogue turns
(7,339 user and 994 system). The slot names used
in dialogue acts are slightly different from the ones
used in dialogue state annotations. We rename the
slots in the dialogue acts to remove this mismatch.
MultiWOZ 2.1 uses domain-specific prefixes to
associate actions with a certain domain. A few dia-
logue acts also have the “Booking” prefix, which is
used in a few domains including Restaurant, Hotel
and Train whenever a reservation is involved. In
these cases, it is difficult to identify the domain
corresponding to the action since the same prefix
is used across many domains. We eliminate the
domain and “Booking” prefixes from the dialogue
acts, so that a uniform representation of actions can
be used across all domains. To retain the associa-
tion with the domain, actions for the same domain
are grouped together into frames, following the
representation used by Rastogi et al. (2019).

4.5 Statistics

Table 3 contains statistics on the corrections in the
training, dev, and test sets. We observe that the
errors are relatively uniformly distributed across
the three splits. Combining all the aforementioned
procedures, we modify dialogue states in 17.3% of

114

Dataset % of state % of dialogues
train 17.3 27.9
dev 17.3 28.7
test 17.6 29.5

Table 3: The ratio of the modified dialogue states (same
as the number of user utterances) and modified dia-
logues in the training, dev, and test sets.

the user utterances across 28.2% of all dialogues.
Out of the total modified 12,375 utterance anno-
tations, a majority of the corrections fix the state
update inconsistencies described in Section 2.2 by
listing all the different ways in which a value has
been mentioned over the dialogue context in the
dialogue state. Of these state updates, 1497, or
just over 12% involved corrections for two or more
slots. Missing action annotations were added in
a total of 8,333 utterances, whereas pre-existing
actions in MultiWOZ 2.1 were verified and fixed
for around 10% of the utterances.

5 Additional annotations

Besides the span annotations, we also add active
user intents and requested slots for every user turn.
Predicting active user intents and requested slots
are two new sub-tasks that can be used to evaluate
model performance and facilitate dialogue state
tracking. Prediction of active intents or APIs is
also essential for efficiency in large-scale dialogue
systems which support hundreds of APIs.

* Active intents: It specifies all the intents ex-
pressed in the user utterance. Note that utterances
may have multiple active intents. For example,
in “can i get the college’s phone number. 1 am
also looking for a train to birmingham new street
and should depart from cambridge looking for a
train”, the user exhibits the intent both to know
more about an attraction and to search for a train.

Based on the action and state annotations, we de-
fine a single search intent for the Attraction, Bus,
Hotel, and Police domains and a single booking
intent for Taxi domain, whereas for the Restau-
rant, Hotel, and Train domains, both search and
booking intents are defined.

Requested slots: It specifies the slots that the
user requests information about from the system.
This field is generated based on the user actions
in each turn. These annotations find direct ap-
plicability in developing dialogue policy models,

115

since requesting additional information about en-
tities is very common in task-oriented dialogue.

6 Dialogue State Tracking Benchmarks

Recent data-driven dialogue state tracking models
that achieve state-of-the-art performance mainly
adopt two classes of methods: span-based and
candidate-based. Span-based methods extract val-
ues from dialogue history and are suitable for track-
ing states of non-categorical slots, while candidate-
based methods that perform classification on pre-
defined candidate lists to extract values are better-
suited for categorical slots. To test models’ per-
formance on both categorical and non-categorical
slots, we selected three dialogue state tracking mod-
els that use a mixture of both methods to bench-
mark the performance on the updated dataset: SGD-
baseline (Rastogi et al., 2019), TRADE (Wu et al.,
2019), and DS-DST (Zhang et al., 2019).

TRADE considers each slot as a mixture of cate-
gorical and non-categorical slot. It uses a pointer
generator architecture to either generate the slot
value from a pre-defined vocabulary or tokens
in the dialogue history. On the contrary, SGD-
baseline has separate tracking strategies for cate-
gorical and non-categorical slots. It first uses a
shared pretrained BERT (Devlin et al., 2018) to
encode a context embedding for each user turn, a
slot embedding for each slot, and a slot value em-
bedding for each slot value in the candidate list of
the categorical slots. Then, it utilizes linear net-
works to perform classification for the categorical
slot and to find start and end span indices for non-
categorical slots. DS-DST is a recently proposed
model achieving state-of-the-art performance on
MultiWOZ 2.1 using pre-trained BERT. The main
difference between DS-DST and SGD-baseline is
that the context embedding used in DS-DST is con-
ditioned on the domain-slot information while it is
not in SGD-baseline.

We use joint goal accuracy as our metric to eval-
uate the models’ performance. The joint goal ac-
curacy is defined as the average accuracy of pre-
dicting all the slot values for a turn correctly. The
performance of different models is shown in Ta-
ble 4. In general, we observe similar performance
on MultiwOZ 2.1 and MultiWOZ 2.2 across the
three models. Table 5 compares the joint goal accu-
racy over only the categorical slots (cat-joint-acc)
and only the non-categorical slots (noncat-joint-
acc) across all the models. It shows that TRADE

Multi- Multi- Multi-
Model WOZ WOZ WOZ
2.0 2.1 2.2
TRADE 0.486 0.460 0.454
SGD- - 0.434 0.420
baseline
DS-DST 0.522 0.512 0.517

Table 4: Joint goal accuracy of TRADE, SGD-baseline
and DS-DST models on MultiwOZ 2.0, MultiwOZ 2.1
and MultiWOZ 2.2 datasets.

Model Cat-joint- .N.oncat-
acc joint-acc
TRADE 0.628 0.666
SGD-baseline 0.570 0.661
DS-DST 0.706 0.701

Table 5: Performance of TRADE, SGD-baseline, and
DS-DST models on predicting categorical and non-
categorical slots. Cat-joint-acc and noncat-joint-acc
denote joint goal accuracy on categorical and non-
categorical slots respectively.

and SGD-baseline demonstrate considerably higher
performance on non-categorical slots than categor-
ical slots. We infer that it may be caused by the
corrections ensuring that the value in the dialogue
state is also present in the dialogue history for all
non-categorical slots.

7 Discussion

The Wizard-of-Oz paradigm is a very powerful
technique to collect natural dialogues. However,
the process of annotating these dialogues is prone
to noise. In this section, we discuss some of the best
practices to follow during task-oriented dialogue
data collection so as to minimize annotation errors.

It is important to define an ontology or schema
before data collection, listing the interface of all
the domains and APIs. The schema should identify
categorical slots, which have a fixed set of pos-
sible values, and the annotation interface should
enforce the correctness of these slots. In particu-
lar, the interface should only allow the annotator
to pick one of the values specified in the schema.
For non-categorical slots, the interface should only
allow values which have been mentioned in the dia-
logue history, and display an error otherwise. These
simple checks help avoid typographical errors and
value paraphrasing issues, discussed in Section 2.
The annotation task can be followed by simple val-
idation checks to identify erroneous annotations,

which can be fixed by a follow-up crowd-sourcing
task. For instance, listing the set of all possible val-
ues for every slot in the dataset helped us quickly
identify instances listing “thursday” as the value
for a time slot or “no” as the name of a hotel.

We also observed a few annotations utiliz-
ing logical expressions to represent the dia-
logue state. For instance, some dialogue state
annotations utilize string “cheap>moderate” to
mean that cheap is preferred over moderate, and
“cinemalentertainment|museum|theatre” to mean
that all values separated by “|”are acceptable. How-
ever, such values are disproportionately rare in the
dataset (< 1% of dialogues), thus making it difficult
for models to handle such cases. It brings into ques-
tion how to define a more expressive representation
which can support such complex annotations and
how we should design the model capable of han-
dling such cases. We hope that as the state tracking
technology advances, there will be more focus on
this direction. On the other hand, it is important
to ensure that such complex constraints are propor-
tionately represented in the dataset if the system is
intended to support them.

8 Conclusion

MultiwOZ 2.1 (Eric et al., 2019) is an improved
version of the MultiwOZ 2.0 dataset, which is ex-
tensively used as a benchmark for dialogue state
tracking. We identify annotation errors, inconsis-
tencies and ontology related issues which were
left unaddressed in MultiWOZ 2.1, and publish a
corrected version — MultiwOZ 2.2. We added a
new schema, standardized slot values, corrected
annotation errors and standardized span annota-
tions. Furthermore, we annotated active intents
and requested slots for each user turn, and added
missing user and system actions besides fixing ex-
isting ones. We benchmark a few state-of-the-art
models on the new dataset: experimental results
show that the models’ performance is similar be-
tween MultiwOZ 2.1 and MultiWOZ 2.2. We hope
the cleaned dataset helps make fairer comparisons
among models and facilitate research in this field.

References

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Ifiigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018. Multiwoz-a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of the

116

2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016-5026.

Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai
Sankar, Arvind Neelakantan, Ben Goodrich, Daniel
Duckworth, Semih Yavuz, Amit Dubey, Kyu-Young
Kim, and Andy Cedilnik. 2019. Taskmaster-1: To-
ward a realistic and diverse dialog dataset. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-1JCNLP), pages 4506—4517.

Guan-Lin Chao and Ian Lane. 2019. Bert-dst: Scal-
able end-to-end dialogue state tracking with bidi-
rectional encoder representations from transformer.
arXiv preprint arXiv:1907.03040.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyag Gao, and Dilek Hakkani-
Tur. 2019. Multiwoz 2.1: Multi-domain dialogue
state corrections and state tracking baselines. arXiv
preprint arXiv:1907.01669.

Shuyang Gao, Abhishek Sethi, Sanchit Agarwal, Tagy-
oung Chung, and Dilek Hakkani-Tur. 2019. Dia-
log state tracking: A neural reading comprehension
approach. Proceedings of the 20th Annual SIGdial
Meeting on Discourse and Dialogue.

Rahul Goel, Shachi Paul, and Dilek Hakkani-Tiir. 2019.
Hyst: A hybrid approach for flexible and accurate
dialogue state tracking. Interspeech 2019.

Matthew Henderson, Blaise Thomson, and Jason D
Williams. 2014. The second dialog state tracking
challenge. In Proceedings of the 15th annual meet-
ing of the special interest group on discourse and

dialogue, pages 263-272.

J. F. Kelley. 1984. An iterative design methodology
for user-friendly natural language office information
applications. ACM Trans. Inf. Syst., page 26-41.

Sungjin Lee, Qi Zhu, Ryuichi Takanobu, Zheng Zhang,
Yaoqin Zhang, Xiang Li, Jinchao Li, Baolin Peng,
Xiujun Li, Minlie Huang, et al. 2019. Convlab:
Multi-domain end-to-end dialog system platform.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 64—69.

Abhinav Rastogi, Dilek Hakkani-Tiir, and Larry Heck.
2017. Scalable multi-domain dialogue state track-
ing. In 2017 IEEE Automatic Speech Recogni-
tion and Understanding Workshop, pages 561-568.
IEEE.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2019. Towards
scalable multi-domain conversational agents: The

117

schema-guided dialogue dataset.
arXiv:1909.05855.

arXiv preprint

Liliang Ren, Kaige Xie, Lu Chen, and Kai Yu. 2018.
Towards universal dialogue state tracking. Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing.

Pararth Shah, Dilek Hakkani-Tiir, Gokhan Tiir, Ab-
hinav Rastogi, Ankur Bapna, Neha Nayak, and
Larry Heck. 2018. Building a conversational agent
overnight with dialogue self-play. arXiv preprint
arXiv:1801.04871.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksié,
Milica Gasic, Lina M Rojas Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017a. A network-
based end-to-end trainable task-oriented dialogue
system. In Proceedings of the 15th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 438—449.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksié,
Milica Gasic, Lina M. Rojas Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017b. A network-
based end-to-end trainable task-oriented dialogue
system. Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-
Asl, Caiming Xiong, Richard Socher, and Pascale
Fung. 2019. Transferable multi-domain state gener-
ator for task-oriented dialogue systems. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics.

Puyang Xu and Qi Hu. 2018. An end-to-end approach
for handling unknown slot values in dialogue state
tracking. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1448-1457.

Jian-Guo Zhang, Kazuma Hashimoto, Chien-Sheng
Wu, Yao Wan, Philip S Yu, Richard Socher, and
Caiming Xiong. 2019. Find or classify? dual strat-
egy for slot-value predictions on multi-domain dia-
log state tracking. arXiv preprint arXiv:1910.03544.

Li Zhou and Kevin Small. 2019. Multi-domain dia-
logue state tracking as dynamic knowledge graph

enhanced question answering. arXiv preprint
arXiv:1911.06192.

