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Abstract

Dialogue state tracking (DST) is at the heart
of task-oriented dialogue systems. However,
the scarcity of labeled data is an obstacle to
building accurate and robust state tracking sys-
tems that work across a variety of domains.
Existing approaches generally require some di-
alogue data with state information and their
ability to generalize to unknown domains is
limited. In this paper, we propose using ma-
chine reading comprehension (RC) in state
tracking from two perspectives: model archi-
tectures and datasets. We divide the slot types
in dialogue state into categorical or extractive
to borrow the advantages from both multiple-
choice and span-based reading comprehension
models. Our method achieves near the current
state-of-the-art in joint goal accuracy on Mul-
tiWwOZ 2.1 given full training data. More im-
portantly, by leveraging machine reading com-
prehension datasets, our method outperforms
the existing approaches by many a large mar-
gin in few-shot scenarios when the availability
of in-domain data is limited. Lastly, even with-
out any state tracking data, i.e., zero-shot sce-
nario, our proposed approach achieves greater
than 90% average slot accuracy in 12 out of 30
slots in MultiwOZ 2.1.

1 Introduction

Building a task-oriented dialogue system that can
comprehend users’ requests and complete tasks on
their behalf is a challenging but fascinating prob-
lem. Dialogue state tracking (DST) is at the heart
of task-oriented dialogue systems. It tracks the
state of a dialogue during the conversation between
a user and a system. The state is typically defined
as the (slot_name, slot_value) pair that represents,
given a slot, the value that the user provides or
system-provided value that the user accepts.

*Authors contributed equally.
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Despite the importance of DST in task-oriented
dialogues systems, few large datasets are available.
To address this issue, several methods have been
proposed for data collection and bootstrapping
the DST system. These approaches either utilize
Wizard-of-Oz setup via crowd sourcing (Wen et al.,
2017; Budzianowski et al., 2018) or Machines Talk-
ing To Machines (M2M) framework (Shah et al.,
2018). Currently the most comprehensive dataset
with state annotation is MultiwWOZ (Budzianowski
et al., 2018), which contains seven domains with
around 10, 000 dialogues. However, compared to
other NLP datasets, MultiWOZ is still relatively
small, especially for training data-intensive neural
models. In addition, it is also a non-trivial to get a
large amount of clean labeled data given the nature
of task-oriented dialogues (Eric et al., 2019).

Another thread of approaches have tried to uti-
lize data in a more efficient manner. These ap-
proaches (Wu et al., 2019; Zhou and Small, 2019)
usually train the models on several domains and
perform zero-shot or few-shot learning on unseen
domains. However, these methods require slot defi-
nitions to be similar between the training data and
the unseen test data. If such systems are given a
completely new slot type, the performance would
degrade significantly. Therefore, these approaches
still rely on considerable amount of DST data to
cover a broad range of slot categories.

We find machine reading comprehension task
(RC) (Rajpurkar et al., 2016; Chen, 2018) as a
source of inspiration to tackle these challenges.
The RC task aims to evaluate how well machine
models can understand human language, whose
goals are actually similar to DST. Ultimately, DST
focuses on the contextual understanding of users’
request and inferring the state from the conversa-
tion, whereas RC focuses on the general under-
standing of the text regardless of its format, which
can be either passages or conversations. In addition,
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recent advances have shown tremendous success
in RC tasks. Thus, if we could formulate the DST
task as a RC task, it could benefit DST in two
aspects: first, we could take advantage of the fast-
growing RC research advances; second, we could
make use of the abundant RC data to overcome the
data scarcity issue in DST task.

Building upon this motivation, we formulate the
DST task into an RC task by specially designing a
question for each slot in the dialogue state, similar
to Gao et al. (2019). Then, we divide the slots into
two types: categorical and extractive, based on the
number of slot values in the ontology. For instance,
in MultiWQOZ, slots such as parking take values of
{Yes, No, Don’t Care} and can thus be treated as
categorical. In contrast, slots such as hotel-name
may accept an unlimited number of possible values
and these are treated as extractive. Accordingly,
we propose two machine reading comprehension
models for dialogue state tracking. For categorical
slots, we use multiple-choice reading comprehen-
sion models where an answer has to be chosen from
a limited number of options. And for the extractive
dialogue state tracking, span-based reading com-
prehension are applied where the answer can be
found in the form of a span in the conversation.

To summarize our approach and contributions:

o We divide the dialogue state slots into cate-
gorical and extractive types and use RC tech-
niques for state tracking. Our approach can
leverage the recent advances in the field of
machine reading comprehension, including
both multiple-choice and span-based reading
comprehension models.

We propose a two-stage training strategy. We
first coarse-train the state tracking models on
reading comprehension datasets, then fine-
tune them on the target state tracking dataset.

We show the effectiveness of our method un-
der three scenarios: First, in full data setting,
we show our method achieves close to the
current state-of-the-art on MultiWoz 2.1 in
terms of joint goal accuracy. Second, in few-
shot setting, when only 1-10% of the training
data is available, we show our methods sig-
nificantly outperform the previous methods
for 5 test domains in MultiWoz 2.0. In par-
ticular, we achieve 45.91% joint goal accu-
racy with just 1% (around 20-30 dialogues)
of hotel domain data as compared to previ-
ous best result of 19.73% (Wu et al., 2019).
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Thirdly, in zero-shot setting where no state
tracking data is used for training, our models
still achieve considerable average slot accu-
racy. More concretely, we show that 13 out of
30 slots in MultiWwOZ 2.1 can achieve an aver-
age slot accuracy of greater than 90% without
any training.

We demonstrate the impact of canonicaliza-
tion on extractive dialogue state tracking. We
also categorize errors based on None and Not
None slot values. We found the majority errors
for our DST model come from distinguishing
None or Not None for slots.

2 Related Works

Traditionally, dialogue state tracking methods (Liu
and Lane, 2017; Mrksi¢ et al., 2016; Zhong et al.,
2018; Nouri and Hosseini-Asl, 2018; Lee et al.,
2019) assume a fully-known fixed ontology for all
slots where the output space of a slot is constrained
by the values in the ontology. However, such ap-
proaches cannot handle previously unseen values
and do not scale well for slots such as restaurant-
name that can take potentially unbounded set of val-
ues. To alleviate these issues, Rastogi et al. (2017);
Goel et al. (2018) generate and score slot-value
candidates from the ontology, dialogue context n-
grams, slot tagger outputs, or a combination of
them. However, these approaches suffer if a reli-
able slot tagger is not available or if the slot value
is longer than the candidate n-grams. Xu and Hu
(2018) proposed attention-based pointing mecha-
nism to find the start and end of the slot value to bet-
ter tackle the issue of unseen slot values. Gao et al.
(2019) proposed using a RC framework for state
tracking. They track slot values by answering the
question “what is the value of the slot?” through
attention-based pointing to the dialogue context.
Chao and Lane (2019); Rastogi et al. (2019) uti-
lize BERT to encode the dialogue context and then
point to slot-value span in the encoded context. Al-
though these approaches are more practical and
scalable, they suffer when the exact slot value does
not appear in the context as expected by the back-
end database or if the value is not pointable. More
recently, hybrid approaches have attempted to com-
bine the benefits of both using predefined ontology
(closed vocabulary) and dynamically generating
candidate set or pointing (open vocabulary) ap-
proaches. Goel et al. (2019) select between the
two approaches per slot based on dev set. Wu et al.



(2019) utilize pointer generator network to either
copy from the context or generate from vocabulary.

Perhaps, the most similar to our work is by
Zhang et al. (2019) and Zhou and Small (2019)
where they divide slot types into span-based (ex-
tractive) slots and pick-list (categorical) slots and
use QA framework to point or pick values for these
slots. A major limitation of these works is that they
utilize heuristics to determine which slots should
be categorical and which non-categorical. More-
over, in these settings most of the slots are treated
as categorical (21/30 and 25/30), even though some
of them have very large number of possible values,
e.g., restaurant-name. This is not scalable espe-
cially when the ontology is large, not comprehen-
sive, or when new domains/slots can occur at test
time as in DSTCS8 dataset (Rastogi et al., 2019).

There are recent efforts into building or adapting
dialog state tracking systems in low source data
scenarios Wu et al. (2019); Zhou and Small (2019).
The general idea in these approaches is to treat
all but one domain as in-domain data and test on
the remaining unseen domain either directly (zero
shot) or after fine-tuning on small percentage (1%-
10%) of the unseen domain data (few shot). A
major drawback of these approaches is that they re-
quire several labeled in-domain examples in order
perform well on the unseen domain. This limits
these approaches to in-domain slots and slot defini-
tions and they do not generalize very well to new
slots or completely unseen target domain. This
also requires large amount of labeled data in the
source domain, which may not be available in real-
world scenario. Our proposed approach, on the
other hand, utilizes domain-agnostic QA datasets
with zero or a small percentage of DST data and
significantly outperforms these approaches in low-
resource settings.

3 Methods

3.1 Dialogue State Tracking as Reading
Comprehension

Dialogue as Paragraph For a given dialogue at
turn ¢, let us denote the user utterance tokens and
the agent utterance tokens as uy and a; respectively.
We concatenate the user utterance tokens and the
agent utterance tokens at each turn to construct a
sequence of tokens as D; = {u;,a,...,u;}. Dy
can be viewed as the paragraph that we are going
to ask questions on at turn ¢.

81

Slot as Question We can formulate a natural lan-
guage question q;, for each slot s; in the dialogue
state. Such a question describes the meaning of
that slot in the dialogue state. Examples of (slot,
question) pairs can be seen in Table 2 and 3. We for-
mulate questions by considering characteristics of
domain and slot. In this way, DST becomes finding
answers a; to the question q; given the paragraph
D;. Note that Gao et al. (2019) formulate dialogue
state tracking problem in a similar way but their
question formulation “what is the value of a slot ?”
is more abstract, whereas our questions are more
concrete and meaningful to the dialogue.

3.2 Span-based RC To Extractive DST

Start End
4 4

[ J
| Question |

Figure 1: Model architecture for extractive state tracking.
“Encoder”is a pre-trained sentence encoder such as BERT.

For many slots in the dialogue state such as
names of attractions, restaurants, and departure
times, one can often find their values in the dia-
logue context with exact matches. Slots with a
wide range of values fits this description. Table 1
shows the exact match rate for each slot in Multi-
WOZ 2.1 dataset (Budzianowski et al., 2018; Eric
et al., 2019) where slots with large number of pos-
sible values tend to have higher exact match rate
(> 80%). We call tracking such slots as extractive
dialogue stack tracking (EDST).

This problem is similar to span-based RC where
the goal is to find a span in the passage that best
answers the question. Therefore, for EDST, we
adopt the simple BERT-based question answering
model used by Devlin et al. (2019), which has
shown strong performance on multiple datasets (Ra-
jpurkar et al., 2016, 2018; Reddy et al., 2019). In
this model as shown in Figure 1, the slot ques-
tion and the dialogue are represented as a single
sequence. The probability of a dialogue token ¢;
being the start of the slot value span is computed
Zi%?TJ’ where T); is the embedding of

each token ¢; and s is a learnable vector. A similar
formula is applied for finding the end of the span.

as p; —

Handling None Values At any given turn in the
conversation, there are typically, many slots that



Slot Name # Possible Values  Exact Match Rate Extractive Categorical
hotel.semi.type 3 61.1% X v
hotel.semi.internet 3 62.1% X v
hotel.semi.parking 4 63.1% X v
restaurant.semi.pricerange 4 97.8% v v
hotel.semi.pricerange 6 97.7% v v
hotel.semi.area 6 98.8% v v
attraction.semi.area 6 99.0% v v
restaurant.semi.area 6 99.2% v v
hotel.semi.stars 7 99.2% v v
hotel.book.people 8 98.2% v v
hotel.book.stay 8 98.9% v v
train.semi.day 8 99.3% v v
restaurant.book.day 8 98.7% v v
restaurant.book.people 8 99.1% v v
hotel.book.day 11 98.1% v v
train.book.people 12 94.7% v X
train.semi.destination 27 98.2% v X
attraction.semi.type 27 86.6% v X
train.semi.departure 31 97.6% v X
restaurant.book.time 67 97.2% v X
hotel.semi.name 78 88.7% v X
taxi.semi.arriveby 97 91.9% v X
restaurant.semi.food 103 96.4% v X
taxi.semi.leaveat 108 81.1% v X
train.semi.arriveby 156 91.5% v X
attraction.semi.name 158 84.3% v X
restaurant.semi.name 182 93.9% v X
train.semi.leaveat 201 87.4% v X
taxi.semi.destination 251 87.9% v X
taxi.semi.departure 253 84.6% v X

Table 1: Slot statistics for MultiWOZ 2.1. We classify the slots into extractive or categorical based on their exact match rate in
conversation as well as number of possible values. 3 slots are categorical only, 12 slots are both extractive and categorical, the

remaining 15 slots are extractive only.

Dialogue

U: I'm so hungry. Can you find me a place to eat in the
city centre?

A: I'm happy to help! There are a great deal of restaurants
there. What type of food did you have in mind?

U: I do not care, it just needs to be expensive.

A Fitzbillies restaurant serves British food would that be
okay?

U: Yes, may I have the address?

restaurant.semi.food: What type of food does the user
want to eat?

Answer: [ 52-53] (I do not care, it just needs to be expen-
sive)

restaurant.semi.name: What is the name of the restaurant
where the user wants to eat?

Answer: [ 53-55] (Fitzbillies restaurant)

end at the beginning token [CLS] for these slots.

Handling Don’t Care Values To handle don’t
care value in EDST, a span is also assigned to
don’t care in the dialogue. We find the dialogue
turn when the slot value first becomes don’t care
and set the start and end of don’t care span to be
the start and end of the user utterance of this turn.
See Table 2 for an example.

3.3 Multiple-Choice Reading Comprehension
to Categorical Dialogue State Tracking

Table 2: Sample dialogue from MultiWOZ dataset showing
framing of extractive DST to span-based RC. The span text
(or don’t care user utterance) is also shown in italics.

have not been mentioned or accepted yet by the
user. All these slots must be assigned a None value
in the dialogue state. We can view such cases as
no answer exists in reading comprehension formu-
lation. Similar to Devlin et al. (2019) for SQuAD
2.0 task, we assign the answer span with start and
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Figure 2: Model architecture for categorical dialog state
tracking. “Encoder”is a pre-trained sentence encoder such as
BERT. “Classifier” is a top-level fully connected layer.

The other type of slots in the dialogue state can-
not be filled through exact match in the dialogue



Dialogue

U: I am looking for a place to to stay that has cheap price
range it should be in a type of hotel

A: Okay , Do you have a specific area you want to stay in?

U: No, I just need to make sure it’s cheap. Oh, and I need
parking.

hotel.semi.area: What is the area that the user wants to
book a hotel in?

A.East B. West C.North D. South E. Centre
F. Don’t Care v G. Not Mentioned

hotel.semi.parking: Does the user want parking at the
hotel?

A.Yesv' B. No C.Don’tCare D.Not Mentioned

Table 3: Sample dialogue from MultiWOZ dataset showing
framing of categorical DST to multiple-choice RC.

context in a large number of cases. For example, a
user might express intent for hotel parking as “oh/
and make sure it has parking” but the slot hotel-
parking only accepts values from {Yes, No, Don’t
Care}. In this case, the state tracker needs to infer
whether or not the user wants parking based on the
user utterance and select the correct value from the
list. These kind of slots may not have exact-match
spans in the dialogue context but usually require a
limited number of values to choose from.
Tracking these type of slots is surprisingly sim-
ilar to multiple-choice reading comprehension
(MCRC) tasks. In comparison to span-based RC
tasks, the answers of MCRC datasets (Lai et al.,
2017; Sun et al., 2019) are often in the form of open,
natural language sentences and are not restricted to
spans in text. Following the traditional models of
MCRC (Devlin et al., 2019; Jin et al., 2019), we
concatenate the slot question, the dialogue context
and one of the answer choices into a long sequence.
We then feed this sequence into a sentence encoder
to obtain a logit vector. Given a question, we can
get m logit vectors assuming there are m answer
choices. We then transform these m logit vectors
into a probability vector through a fully connected
layer and a softmax layer, see Figure 2 for details.

Handling None and Don’t Care Values For
each question, we simply add two additional
choices “not mentioned” and “do not care” in the
answer options, representing None and don’t care,
as shown in Table 3. It is worth noting that certain
slots not only accept a limited number of values but
also their values can be found as an exact-match
span in the dialogue context. For these slots, both
extractive and categorical DST models can be ap-
plied as shown in Table 1.
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4 Experiments

4.1 Datasets

# of passages  # of examples

MRQA (span-based) 386,384 516,819
DREAM (multi-choice) 6,444 10,197
RACE (multi-choice) 27,933 97,687
MultiwOZ 8,420 298,978"

Table 4: Statistics of datasets used. (*: we only report the
number of positive examples (a non-empty value) in Multi-
WOZ for fair comparison.)

MultiwWOZ We use the largest available multi-
domain dialogue dataset with state annotation:
MultiWOZ 2.0 (Budzianowski et al., 2018) and
MultiWOZ 2.1 (Eric et al., 2019), an enhanced, less
noisier version of MultiwWOZ 2.0 dataset, which
contains 7 distinct domains across 10K dialogues.
We exclude hospital and police domain that have
very few dialogues. This results in 5 remaining do-
mains attraction, restaurant, taxi, train, hotel with
a total of 30 (domain, slot) pairs in the dialog state
following Wu et al. (2019); Zhang et al. (2019).

Reading Comprehension Datasets For span-
based RC dataset, we use the dataset from Ma-
chine Reading for Question Answering (MRQA)
2019 shared task (Fisch et al., 2019) that was fo-
cused on extractive question answering. MRQA
contains six distinct datasets across different do-
mains: SQuAD, NewsQA, TriviaQA, SearchQA,
HotpotQA, and NaturalQuestions. In this dataset,
any answer to a question is a segment of text or
span in a given document. For multiple-choice RC
dataset, we leverage the current largest multiple-
choice QA dataset, RACE (Lai et al., 2017) as well
as a dialogue-based multiple-choice QA dataset,
DREAM (Sun et al., 2019). Both of these datasets
are collected from English language exams that
are carefully designed by educational experts to
assess the comprehension level of English learners.
Table 4 summarizes the statistics of datasets. It
is worth noting that for MultiwOZ, although the
number of examples are significantly more than
multiple-choice QA datasets, the number of dis-
tinct questions are only 30 due to limited number
of slot types.

4.2 Canonicalization for Extractive Dialogue
State Tracking

For extractive dialogue state tracking, it is common
that the model will choose a span that is either a



super-set of the correct reference or has a similar
meaning as the correct value but with a different
wording. Following this observation, we adopt a
simple canonicalization procedure after our span-
based model prediction. If the predicted value does
not exist in the ontology of the slot, then we match
the prediction with the value in the ontology that
is closest to the predicted value in terms of edit
distance'. Note that this procedure is only applied
at model inference time. At training time for ex-
tractive dialogue state tracking, the ontology is not
required.

4.3 Two-stage Training

A two-stage training procedure is used to train the
extractive and categorical dialogue state tracking
models with both types of reading comprehension
datasets (DREAM, RACE, and MRQA) and the
dialogue state tracking dataset (MultiwOZ).

Reading Comprehension Training Stage For
categorical dialogue state tracking model, we
coarse-tune the model on DREAM and RACE. For
extractive dialogue state tracking model, we coarse-
tune the model on MRQA dataset as a first step.

Dialog State Tracking Training Stage After be-
ing trained on the reading comprehension datasets,
we expect our models to be capable of answering
(passage, question) pairs. In this phase, we further
fine-tune these models on the MultiWOZ dataset.

5 Results and Analyses
5.1 DST with Full Training Data

Joint Goal Accuracy

SpanPtr (Xu and Hu, 2018) 29.09%
FIST (Eric et al., 2019) 38.00%
HyST (Goel et al., 2019) 39.10%
DSTreader (Gao et al., 2019) 36.40%
TRADE (Wu et al., 2019) 45.96%
DS-DST (Zhang et al., 2019) 51.21%
DSTQA w/span (Zhou and Small, 2019) 49.67%
DSTQA w/o span (Zhou and Small, 2019) | 51.17%
STARC (this work) 49.48%

Table 5: Joint Goal Accuracy on MultiWwOZ 2.1 test set.

We use the full data in MultiWOZ 2.1 to test
our models. For the first 15 slots with lowest num-
ber of possible values (from hotel.semi.type to ho-

'we use the function get_closest_matches of difflib in
Python for this implementation.
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tel.book.day in Table 1, we use our proposed cate-
gorical dialogue state tracking model whereas for
the remaining 15 slots, we use the extractive dia-
logue state tracking model. We use the pre-trained
word embedding RoBERTa-Large (Liu et al., 2019)
in our experiment.

Table 5 summarizes the results. We can see that
our model, STARC (State Tracking As Reading
Comprehension), achieves close to the state-of-the-
art accuracy on MultiwOZ 2.1 in the full data set-
ting. It is worth noting that the best performing ap-
proach DS-DST (Zhang et al., 2019), cherry-picks
9 slots as span-based slots whereas the remaining
21 slots are treated as categorical. Further, the
second best result DSTQA w/o span (Zhou and
Small, 2019) does not use span-based model for
any slot. Unlike these state-of-the-art methods, our
method simply categorizes the slots based on the
number of values in the ontology. As a result, our
approach uses less number of (15 as compared to
21 in DS-DST) and more reasonable (only those
with few values in the ontology) categorical slots.
Thus, our approach is more practical to be applied
in a real-world scenario.

Ablation Dev Accuracy
STARC (this work) 53.95%
—RC Coarse Tuning 52.35%
— Canonicalization 51.07%
— RC Coarse Tuning — Canonicalization 50.84%
— Categorical Model 47.86%
— Categorical Model — Canonicalization 41.86%
DS-DST Threshold-10 49.08%
DS-DST Span Only 40.39%

Table 6: Ablation study with different aspects of our model
and other comparable approaches. The numbers reported are
joint goal accuracy on MultiWOZ 2.1 development set.

Ablation Study We also run ablation study to
understand which component of our model helps
with accuracy. Table 6 summarizes the results. For
fair comparison, we also report the numbers for DS-
DST Threshold-10 (Zhang et al., 2019) where they
also use the first 15 slots for categorical model and
the remaining for extractive model. We observe
that both two-stage training strategy using read-
ing comprehension data and canonicalization play
important role in higher accuracy. Without the cate-
gorical model (using extractive model for all slots),
STARC is still able to achieve joint goal accuracy
of 47.86%. More interestingly, if we remove the
categorical model as well as the canonicalization,
the performance drops drastically, but is still slight



better than purely extractive model of DS-DST.

Error Type Extractive | Categorical
ref not none, predicted none 43.7% 31.4%
ref none, predicted not none 25.6% 58.4%
ref not none, predicted not none 30.6% 10.0%

Table 7: Type of errors made by each model.

Handling None Value Through error analysis of
our models, we have learned that models’ perfor-
mance on None value has a significant impact on
the overall accuracy. Table 7 summarizes our find-
ings. We found that plurality errors for extractive
model comes from cases where ground-truth is not
None but model predicted None. For categorical
model, the opposite was true. The majority errors
were from model predicting not None value but the
ground-truth is actually None. We leave further
investigation on this issue as a future work.

5.2 Few shot from RC to DST

In few-shot setting, our model (both extractive
and categorical) is pre-trained on reading com-
prehension datasets and we randomly select lim-
ited amount of farget domain data for fine-tuning.
We do not use out-of-domain MultiWOZ data for
training for few-shot experiments unlike previous
works. We evaluate our model with 1%, 5% and
10% of training data in the target domain. Ta-
ble 8 shows the results of our model under this
setting for five domains in MultiWOZ 2.0%. We
also report the few-shot results for other two mod-
els: TRADE (Wu et al., 2019) and DSTQA (Zhou
and Small, 2019), where they perform the same
few-shot experiments but pre-trained with a hold-
out strategy, i.e., training on the other four domains
in MultiwOZ and fine-tune on the held-out do-
main. We can see that under all three different
data settings, our model outperforms the TRADE
and DSTQA models (expect the attraction domain
for DSTQA) by a large margin. Especially in 1%
data setting for hotel domain, which contains the
most number of slots (10) among all the five do-
mains, the joint goal accuracy dropped to 19.73%
for TRADE while our model can still achieve rela-
tively high joint goal accuracy of 45.91%. This sig-
nificant performance difference can be attributed to
pre-training our models on reading comprehension
datasets, which gives our model ability to compre-
hend passages or dialogues (which we have empiri-

2We are showing results on MultiWOZ 2.0 rather than 2.1
for the purpose of comparison to previous works.
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cally verified in next section). The formulation of
dialogue state tracking as a reading comprehension
task helps the model to transfer comprehension ca-
pability. We also tried to repeat these experiments
with vanilla pre-trained Roberta-Large model (with-
out pretraining on RC dataset), but we could not
even get these models to converge in such low-
resource data settings. This further highlights the
importance of RC pretraining for low resource dia-
logue state tracking.

5.3 Zero shot from RC to DST

In zero-shot experiments, we want to investigate
how would the reading comprehension models be-
have on MultiWOZ dataset without any training on
state tracking data. To do so, we train our models
on reading comprehension datasets and test on Mul-
tiWwOZ 2.1. Note that, in this setting, we only take
labels in MultiwOZ 2.1 that are not missing, ig-
noring the data that is “None” in the dialogue state.
For zero-shot experiments from multiple-choice
RC to DST, we take the first fifteen slots in Table 1
that are classified as categorical. For zero shot from
span-based RC to DST, we take twenty-seven slots
which are extractive expect the first three slots in
Table 1.

Figure 3 summarizes the results for hotel, restau-
rant, taxi and train domain in MultiwOZ 2.1. For
attraction domain, please refer to the supplemen-
tary section A. We can see that most of the slots
have an average accuracy of at least 50% or above
in both multiple-choice RC and span-based RC ap-
proaches, indicating the effectiveness of RC data.
For some slots such as hotel.stay, hotel.people,
hotel.day, restaurant.people, restaurant.day, and
train.day, we are able to achieve very high zero-
shot accuracy (greater than 90%). The zero-shot
setting in TRADE (Wu et al., 2019), where the
transfer is from the four source domains to the held-
out target domain, fails completely on certain slot
types like hotel.name. In contrast, our zero-shot
experiments from RC to DST are able to transfer
almost all the slots.

Table 9 illustrates the zero shot examples for
span-based RC model. We can see that although
the span-based RC model does not directly point
to the state value itself, it usually points to a span
that contains the ground truth state value and the
canonicalization procedure then turns the span into
the actual slot value. Such predicted spans can
be viewed as evidence for getting the ground-truth



Hotel Restaurant Attraction Train Taxi
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
TRADE | 19.73 | 37.45 | 4142 | 4242 | 5570 | 60.94 | 35.88 | 57.55 | 63.12 | 59.83 | 69.27 | 71.11 | 63.81 | 66.58 | 70.19
DSTQA N/A | 50.18 | 53.68 N/A | 58.95 | 64.51 N/A | 7047 | 71.60 N/A | 70.35 | 74.50 N/A | 70.90 | 74.19
STARC | 4591 | 52.59 | 57.37 | 51.65 | 60.49 | 64.66 | 40.39 | 65.34 | 66.27 | 65.67 | 74.11 | 75.08 | 72.58 | 75.35 | 79.61

Table 8: Joint goal accuracy for few-shot experiments. Best numbers reported by TRADE and DSTQA are also shown.
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Figure 3: Zero-shot average slot accuracy using multi-choice and span-based RC to DST in hotel, restaurant, taxi, and train
domain of MultiWwOZ 2.1. The number in parentheses indicates the number of possible values that a slot can take.

Example (Span-based RC model prediction is bolded) Ground Truth State Value

13

Dialogue: “....A: sure , what area are you thinking of staying, U: i do not have an area
preference but it needs to have free wifi and parking at a moderate price. ...” don’t care
Question: “which area is the hotel at?” (hotel.semi.area)

Dialogue: “U: i am looking for something fun to do on the east side of town . funky fun house
is my favorite place on the east side... east
Question: “which area is the restaurant at?” (restaurant.semi.area)

Dialogue: “U: I need 1 that leaves after 13:30 for bishops stortford how about the tr8017 ?
A: it leaves at 15:29 and arrives at 16:07 in bishops stortford ....” 15:29
Question: “what time will the train leave from the departure location?” (train.semi.leaveat)

Dialogue: “U: hello i want to see some authentic architectures in cambridge!...” .
>« . PN . . architecture
Question: “what is the type of the attraction?” (attraction.semi.type)

Dialogue: “...A: can i help you with anything else ? U: i would like to book a taxi from the
hong house to the hotel leaving by 10:15...” lan hong house
Question: “where does the taxi leave from?” (taxi.semi.departure)

Table 9: Zero-shot examples to MultiWwOZ 2.1 by span-based reading comprehension model trained on MRQA dataset. The
predicted span by the span-based RC model are bolded.

dialogue state, which makes dialogue state tracking 6 Conclusion

more explainable.
Task-oriented dialogue systems aim to help users
to achieve a variety of tasks. It is not unusual to
have hundreds of different domains in modern task-
oriented virtual assistants. How can we ensure the
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dialogue system is robust enough to scale to dif-
ferent tasks given limited amount of data? Some
approaches focus on domain expansion by training
on several source domains and then adapting to the
target domain. While such methods can be success-
ful in certain cases, it is hard for them to generalize
to other completely different out-of-domain tasks.
Machine reading comprehension provides us a
clear and general basis for understanding the con-
text given a wide variety of questions. By formulat-
ing the dialogue state tracking as reading compre-
hension, we can utilize the recent advances in read-
ing comprehension models. More importantly, we
can utilize reading comprehension datasets to mit-
igate some of the resource issues in task-oriented
dialogue systems. As a result, we achieve much
higher accuracy in dialogue state tracking across
different domains given limited amount of data
compared to the existing methods. As the variety
of tasks and functionalities in a dialogue system
continues to grow, general methods for tracking
dialogue state across all tasks will become increas-
ingly necessary. We hope that the developments
suggested here will help to address this need.
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A Zero shot experiments for Attraction
domain in MultiwOZ 2.1
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Figure 1: Zero shot average slot accuracy from RC to
DST in attraction domain of MultiWOZ 2.1. The num-
ber within the brackets associated with each slot name
in y-axis indicates the number of possible values that a
slot can take.

B Question Formation for Reading
Comprehension

The structural construct and the surface form of the
question can have an impact on the performance of
RC models. In this work, we handcrafted a ques-
tion for each slot that needs to be tracked. Each
question roughly asks What is the value of the slot
that the user in interested in?. The exact question
was tailored to each specific slot also taking do-
mains into account. We experimented with two
sets of handcrafted questions. The first set was
created in a procedural manner largely following
a template. The other was created in a more free-
form manner and was more natural. We did not
notice any significant model performance differ-
ence between the two sets. However, we did not
explore this dimension any further and leave it to
future work. An interesting future direction could
be to use a decoder to generate questions given slot
description as the input.
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