
Proceedings of the First Workshop on Natural Language Interfaces, pages 27–36
July 10, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

27

Efficient Deployment of
Conversational Natural Language Interfaces over Databases

Anthony Colas∗, Trung Bui†, Franck Dernoncourt†, Moumita Sinha†, Doo Soon Kim†
University of Florida∗, Adobe Research†

acolas1@ufl.edu∗,
{bui, franck.dernoncourt, mousinha, dkim}@adobe.com†

Abstract

Many users communicate with chatbots and
AI assistants in order to help them with var-
ious tasks. A key component of the assis-
tant is the ability to understand and answer a
user’s natural language questions for question-
answering (QA). Because data can be usually
stored in a structured manner, an essential step
involves turning a natural language question
into its corresponding query language. How-
ever, in order to train most natural language-
to-query-language state-of-the-art models, a
large amount of training data is needed first.
In most domains, this data is not available and
collecting such datasets for various domains
can be tedious and time-consuming. In this
work, we propose a novel method for acceler-
ating the training dataset collection for devel-
oping the natural language-to-query-language
machine learning models. Our system allows
one to generate conversational multi-term data,
where multiple turns define a dialogue session,
enabling one to better utilize chatbot interfaces.
We train two current state-of-the-art NL-to-QL
models, on both an SQL and SPARQL-based
datasets in order to showcase the adaptability
and efficacy of our created data.

1 Introduction

Chatbots and AI task assistants are widely used
today to help users with their everyday needs. One
use for these assistants is asking them questions
on various areas of knowledge or how to accom-
plish different tasks (Braun et al., 2017; Cui et al.,
2017). Because data is usually stored in a struc-
tured database, in order to answer a user’s ques-
tions, it is essential that the system should first
understand the question, and convert it into a struc-
tured language query, such as SQL or SPARQL, to
fetch the correct answer.

While much research has focused on
translating natural languages into query lan-

Turn 1: Who are the employees that
work in the IT department and have
the last name Smith?

Turn 2: How many of them started
working after Jan 1, 2020?

Turn 3: What are their phone
numbers?

Turn	1:SELECT	name	
FROM	Employees
WHERE	last_name	=	'Smith'	
AND	dept_name	=	'IT';

Turn	2:SELECT	Count(name)	
FROM	Employees
WHERE	last_name		=	'Smith'
AND	dept_name	=	'IT'
AND	hire_date	>	'01-01-2020';

Turn	3:SELECT	phone_number	
FROM	Employees
WHERE	last_name		=	'Smith'
AND	dept_name	=	'IT'
AND	hire_data	>	'01-01-2020';

Natural Language Query Language (SQL)

Figure 1: Example illustrating a three-turn dialogue,
featuring the natural language (first column) and query
language (second column) representations.

guages (Ngonga Ngomo et al., 2013; Braun et al.,
2017; Dubey et al., 2016; Giordani and Moschitti,
2009; Finegan-Dollak et al., 2018; Giordani,
2008; Xu et al., 2017; Zhong et al., 2017), the
state-of-the-art systems typically involve a large
amount of training data. Therefore, in order to
fully utilize these models that translate a natural
language (NL) question into query language (QL),
one would need to collect large amounts of both
NL-QL pairs. Although there are works which
involve the collection of NL-QL pairs in different
domains (Hemphill et al., 1990; Zelle and Mooney,
1996; Zhong et al., 2017; Yu et al., 2018, 2019b),
data is still not available in most domains, and thus
this collection process can be both time-consuming
and expensive.

In this work, we address the problem of hav-
ing insufficient data collection methodologies by
proposing a novel approach that accelerates the
data collection process for use in NL-to-QL models.
Additionally, our approach focuses on generating
conversation data, where the context of a dialogue
turn is used to generate a subsequent pair. In this
way, we better simulate the data necessary for real
world chatbots and voice assistants, as exemplified
in Figure 1. Our contributions are as follows:



28

• We develop a novel approach that accelerates
the creation of NL-to-QL data pairs. Primar-
ily, our approach tackles the problem in the
conversational domain.

• We showcase our data collection system on
two different QLs, SQL and SPARQL, demon-
strating the flexibility of our system.

• Finally, we demonstrate the use of cur-
rent single-turn state-of-the-art approaches on
these two domains to prove the adaptability of
our system to current models.

Though our data collection implementation fo-
cuses on conversational data, the models we deploy
are single-turn. Our main focus here is to give
a demonstration of the generated data. Section 3
and Section 4 show the adaptability of our data
collection scheme to these kinds of models.

The rest of this paper is structured as follows:
Section 2 surveys prior work in both the NL-to-
QL and data collection space, Section 3 details our
novel conversational data collection approach, Sec-
tion 4 walks through examples in both the SQL and
SPARQL domain, Section 5 describes the current
models we have trained and tested on the generated
data, Section 6 gives the results on the data and
models, and Section 7 concludes our work.

2 Related Work

In the field of natural language interfaces for struc-
tured data there are bodies of work that 1) focus
on translating natural language to a specific query
language and that 2) relate to collecting semantic
parsing data for natural language interfaces.

2.1 NL-to-QL

NL-to-QL models have worked to transform nat-
ural language queries into their respective logi-
cal form (LF) representations (Dong and Lapata,
2016), SQL queries (Xu et al., 2017; Zhong et al.,
2017; Finegan-Dollak et al., 2018; Cai et al., 2018),
or SPARQL queries (Ngonga Ngomo et al., 2013;
Dubey et al., 2016). While work in the SPARQL
domain first normalize and match the queries, state-
of-the-art work in translating NL to SQL involves
neural architectures. Dong and Lapata (2016) uti-
lize and encoder-decoder framework to translate
NL questions into their LF representation. Xu et al.
(2017) propose a sketch-based model where a neu-
ral network predicts each slot of the sketch. The ar-

chitecture built by Zhong et al. (2017) uses policy-
based reinforcement learning in order to translate
NL to SQL. While Finegan-Dollak et al. (2018)’s
main takeaway is how different evaluations effect
the generalization problem in translating NL to
SQL, they approach the problem with a seq2seq
model. Because of the volume of data needed to
fully utilize these models, it can be difficult to adapt
to different domains.

In the multi-turn domain, Saha et al. (2018)
first approach the problem of complex sequen-
tial question-answering (CSQA) by first building a
large-scale QA dataset made to answer questions
found in Wikidata 1. However, their data collection
process was extremely laborious, as their process
required in-house annotators, crowdsourced work-
ers, and multiple iterations. Additionally, their ap-
proach was end-to-end, meaning the output was
an expected answer. Nevertheless, because their
approach incorporate the query representation, we
plan to further incorporate their approach into our
data collection process in future work.Yu et al.
(2019a) also develop the first general-purpose DB
querying dialogue system. However, their system
dialogues focus on clarifying a NL question for
user verification, before returning an answer. Our
work focuses on generating conversational data
about specific database entities and properties.

2.2 Data Collection for Semantic Parsing

NL question semantic parsers have been developed
for single-turn QA in order to translate simple NL
questions into their respective LFs (Wang et al.,
2015). In their approach, Wang et al. (2015) first
begin with a domain, building a seed lexicon of
that domain. Next, they find the LF and canon-
ical utterance templates corresponding based on
the lexicon. Wang et al. (2015) then paraphrase
their canonical utterances via crowd-sourcing. Iyer
et al. (2017) learn a semantic parser via an encoder-
decoder model by using NL/SQL templates. This
model is tuned through user feedback, where incor-
rect queries are annotated by crowd-workers. Para-
phrasing is accomplished through the Paraphrasing
Database (PPDB) (Ganitkevitch et al., 2013).

While the two previously mentioned works are
single-turn semantic parsers, Shah et al. (2018) de-
velop a multi-turn semantic parser. Their approach
begins with a task schema and API which is used
to create dialogue outlines for the provided domain.

1https://www.wikidata.org/wiki/Wikidata:Main Page



29

Domain Ontology

LF Dialog
Generator

NL-QL
Generator

Lexicon

Database

LF Dialog

NL-QL Pairs

NL/QL Templates

Paraphrase
Templates

Paraphrase

Figure 2: An overview of our conversational data col-
lection deployment system. Blue shapes denote the in-
put/output data at each stage, while green diamonds
denote the processes of the system. The “plus” sign
denotes the concatenation of both seed templates and
paraphrase templates.

These dialogue outlines involve a user and system
bot that simulate a scenario. The dialogues are then
paraphrased via crowd-sourcing. However, Shah
et al. (2018) use the logical-form representation
of the utterances rather than their query language
representation. In our work, we re-incorporate the
paraphrases into the dialogue generation phase.

3 Data Collection System

Our conversational data collection strategy is devel-
oped to efficiently collect NL/QL pairs for training
data in models which translate the NL into QL in a
multi-turn setting. Because domain data is required
when training a chatbot to query a database when
converting from NL to QL, our approach is gener-
alized so that one can easily collect data for their
respective domain.

3.1 Overview

Our approach in collecting data is made of the four
following steps: 1) First we generate the dialogue
represented as LFs, forming the abstract represen-

tations of NL questions, 2) Next, we convert the
LFs into an NL template and QL templates 3) We
then collect paraphrases of the natural language
templates, and 4) Finally, we use these paraphrases
to further develop our dialog generator. In gener-
ating our dialogue, the context of each previous
turn is taken in order to develop the current turn.
Figure 2 presents our data deployment system. We
divide and expand upon the steps further in the next
sections.

3.2 Definitions
We first define the following notations in our data
collection system:

• Un: an utterance in the dialogue.

• LFn: the LF n in the dialogue.

• NLn: the NL utterance corresponding to
LFn.

• QLn: the QL utterance corresponding to
LFn.

3.3 Input Module
The input to our data collection system consists of
a domain ontology, lexicon, and database. These
should be provided by the user and vary depend-
ing on the type of data one requires. The domain
ontology defines the <object, relation, property>
triples of a given dataset, where each object has a
set of properties connected through a relation, e.g.
<ACL 2020, has location, Seattle>. The lexicon
file defines each data field, along with its NL and
QL representation, important in the NL-QL Gen-
erator step. The database is the data in structured
form.

3.4 Logical Form Dialogue Generator
In order to appropriately simulate a conversation
between a user and chatbot, the synthetic dialogue
must first be generated. This is done by first outlin-
ing the dialog via LFs, where the system generates,
LF1−n. These outlines are an abstract but under-
standable representation of the dialogue taking into
account the type, entity, and relation of a question.
Thus, our parser builds a dialogue based on a do-
main ontology, lexicon, and domain database.

The LFs take the form of three predicates:
Retrieve-Objects, Inquire-Property, and Compute,
each taking on their own arguments. For the
Retrieve-Objects predicate, the LF fetches an in-
stance that satisfies a condition. As arguments,



30

Retrieve-Objects takes an entity type, tin from the
ontology, a boolean condition cin, and a property
value,pi

n, from the DB. For the Inquire-Property
predicate, given an anchor entity aein, target in-
stance, tiin, and an inference path ipi

n from the
entity to that instance, the LF finds the property in
that path of the anchor entity. The Compute pred-
icate denotes a computation compi

n over a set of
given objects, thus its arguments are comprised of
Retrieve-Objects arguments and an operation to be
performed. 2. For our work, we focus on using the
COUNT aggregate function. Future work can eas-
ily adapt more aggregate functions into our model
such as MAX or MIN depending on the values con-
tained in the database.

More formally, each LF can be described as fol-
lows:

LFn → {Retrieve−Objects(tin, c
i
n, p

i
n),

Inquire− Property(aein, ti
i
n, ip

i
n),

Compute(compin, t
i
n, c

i
n, p

i
n)} (1)

At the start of a dialogue, a random LF predi-
cate is selected, given the database schema, lexicon,
and domain ontology. The subsequent turns in the
dialogue are built conditionally on the previous
turn. Therefore, given a LFn−1, when generating
LFn the context of LFn−1 is further taken into
consideration including its arguments, type, and
answer. The subsequent predicate is also chosen
at random, however its values are conditional on
the arguments and answer(s) of the current predi-
cate. For example, if LFn−1 is an Retrieve-Objects
predicate and another Retrieve-Objects predicate
is chosen as LFn, this LF can further filter the an-
swer of LFn−1 by using an additional condition.
Table 1 summarizes the types of LFs, along with
an explanation and example of each both in LF and
NL, which we discuss in the next section.

3.5 NL-QL Generator

Once the LF generator is complete, the data collec-
tion system generates an NL utterance along with
its corresponding QL. To generate such pairs, the
NL-QL generator takes in each LF from the LF
Dialog as input. Based on the predicate type, an
NL-QL pair is selected and filled with correspond-
ing arguments of the predicate. Thus, the system
uses NL seed templates for the Retrieve-Objects,

2n refers to the dialogue turn, while i refers to the number
of dialogue generated.

Inquire-Property, and Compute predicates to cre-
ate the initial training data for the conversational
dialogue. For example, one NL template for turns
after NL1 can be ”How about <entity>?”

The aforementioned seed templates are hand-
crafted based on the type of data and are thus left
to the user to create. These data are hand-crafted to
increase the quality of the seed templates in terms
of coherency and utility, important features not only
for quality training data, but also when performing
the paraphrase task. Because we hand-crafted the
query language templates, we also guarantee that
the queries are executable for their corresponding
QLs, SQL or SPARQL in this work. For the QL,
we fill in slots for field names, aliases, and values,
utilizing the information in the domain ontology,
lexicon, and database schema. Note, ‘field’ refers
to column names in relational DBs (queried with
SQL) and type names in graph DBs (queried with
SPARQL). To reiterate, the NL-QL generator takes
each LFn, with its respective arguments, and seed
templates as input, and outputs a NLn−QLn pair,
where Un → (NLn, QLn). Section 4 goes through
detailed examples of various NL-QL pairs.

3.6 Paraphrase

The final step involves the paraphrasing of the seed
NL templates given in the NL-QL Generator step.
To paraphrase the seed NL templates, we first pro-
vide crowdworkers from Amazon Mechanical Turk
(AMT) 3 with the instantiated templates, the output
from the first iteration of the NL-QL generator. We
ask the workers to paraphrase the seed templates
while keeping the meaning/intent of the original
questions. After collecting these paraphrased ques-
tions, we further abstract them and link them to
their respective predicate representation. In this
way, the paraphrases can be utilized in further itera-
tions of the NL-QL Generator step and instantiated
when generating new dialogues for training data.
While abstracting the templates, we manually scan
them for quality control purposes. Furthermore, we
ran multiple trial runs in presenting the problem
to the AMT workers. Previous work (Wang et al.,
2015; Shah et al., 2018) also use similar crowd-
sourcing techniques in order to paraphrase their
templates. Via AMT, Wang et al. (2015) paraphrase
canonical utterance, natural language representa-
tions to single-turn LFs, while Shah et al. (2018)
paraphrase dialogue outlines as their final step.

3https://www.mturk.com/



31

Predicate Explanation Example LF

Retrieve-Objects Gets objects from DB Which employees have
building no. equal to 5?

Retrieve-Objects(employee(ALL),
(employee.building no,‘=’,5))

Inquire-Property Gets an object’s property What is the office of James? Inquire-Property(James, office)

Compute CompuAggregate function How many employees have
hire year equal to 2010?

Compute(COUNT, employee(ALL),
[(’hire year’, 2010)])

Table 1: LF predicate summary with an explanation and example of each, both in NL and LF.

Similarly to Shah et al. (2018), we input the
paraphrases back into our NL-QL generation step.
Figure 2 illustrates this through the “+” symbol,
signifying that the paraphrases are appended to the
seed templates when mapping to LF and creating
the final NL-QL pairs. This approach can take
multiple iterations, as the user sees fit to the NL
question generation task in their data domain.

4 Data Examples

In this section we will showcase examples in both
the SQL and SPARQL domain and traverse through
each stage of our Data Collection System. We first
begin with SQL, used to query relational databases,
and then demonstrate our system with a graph
querying language, SPARQL. By doing so, we
show the extendability of our approach to vari-
ous structured QLs. Moreover, we confirm the
importance of generating executable queries in a
conversational data collection system.

4.1 SQL

Through our data collection system for conversa-
tional QA, we are able to produce contextual depen-
dent NL-SQL pairs. For the SQL example, suppose
a user wants to produce data for an employee direc-
tory relational database. Figure 3 gives an example
of possible input files needed to produce this kind
of conversational data with our data collection sys-
tem, including a domain ontology with two entities
Employee and Department, a lexicon to map NL
and QL instances, and a database containing Em-
ployee and Department data.

Thus, given the input files in Figure 3, possible
LFn values with each predicate are:

(i) Retrieve-Object(employee(ALL),
(employee.dept name,‘=’, Marketing))

(ii) Inquire-Property(James,dept name)

(iii) Computation(COUNT,employee(ALL),
[(‘works in’, ‘IT’)])

Domain
Ontology

Instance NL QL

Employee "employee" Employee

Department "department" Department

name "name" name

phone_num "extension" phone

dept_name "department 
name" dept_name

works_in "works in" dept_id

Lexicon

works_in

Database

Employee

Property:
name
phone_num

Department

Property:
dept_name

Employee

id    name    phone    dept_id

0      John      ext.123  Marketing

1      Smith     ext.321        IT

Department

id                         dept_name

001                           Marketing

002                                 IT

Figure 3: Example ontology schema, lexicon, and
database. The two tables in the Database are used
throughout our SQL example.

In (i), the logical form represents a retrieval of em-
ployee objects who work in the Marketing depart-
ment. (ii) asks about the department name of James.
(iii) computes the total number of employees who
work in the IT department. During the generation
of LF 1, one of these LFs can be generated. Then
for LF 2 - LF n, the context is passed along to gen-
erate the LFs. The n denotes the number of turns
a dialogue can take. As an example, given LF 1
is (1) from the aforementioned LFs, LF 2 can be
Inquire-Property(Answer,phone num), where An-
swer denotes the objects returned by LF 1. Our
dialogue generation system allows one to tune the
number of turns and number of dialogues generated
from the given input.

For the NL-QL step, our input includes the dia-
logues represented as LFs along with NL-QL seed
templates described in Section 3.5. Possible tem-
plates are given in Table 2. Note, that we refer to
a column in a relational DB as a field. Taking our
previous Retrieve-Objects example, the filled seed
template would read: “Which employee have de-
partment equal to Marketing?” The Lexicon from
Figure 3 is utilized here, as the instance name is
mapped to its NL name. Similarly, its QL name
(table name) is mapped in the SQL query.

Finally, in the final step, as explained in 3.5,
the NL seed templates are paraphrased via crowd-
sourcing, e.g. “Which employee have depart-
ment equal to Marketing?” can be paraphrased into
“Who works in the marketing department?”.



32

Predicate Template

Retrieve-Object Which <entity>have <field name>
equal to <instance>?

Inquire-Property What is the <field name>
of <entity value>?

Computation How many <entity>have
<field name>equal to <instance>?

Table 2: Examples of seed templates with their re-
spective predicates. <entity>refers to an entity type.
<field name>corresponds to a column in a relational
DB or a relation in a graph DB. <instance>refers to
the value of that field in the DB. <entity value>is an
instance of an entity in the DB.

Figure 4: An example of a subgraph in the Photoshop
Knowledge Graph. The Layer object (red node), can
be seen connected to its objects (blue nodes) through
relations. Here we can see that the Layer entity is con-
nected to the various actions connected to “Photoshop
Layers”, such as “flatten”, “lock”, and “use”, where the
object nodes show how they can be performed.

4.2 SPARQL

SPARQL is used to query graph databases, where
entities are linked together through relations. These
graph databases usually take the form of triples
in the form: <subject,relation,object>. Because
both LF-Generator and NL-QL Generator remain
the same as in Section 4.1, here we examine the
main differences in the system data when utilizing
SPARQL instead of SQL. As a guide, we refer to
the example give in Figure 4.

Figure 4 gives an example of a subgraph found
in the Photoshop Knowledge Graph (KG). This
KG contains the various tools, dialogs, shortcuts,
and options found in Photoshop, connected to their
options and definitions through relations. The KG
is extracted from the Photoshop Wiki. Similarly
to the SQL example above, we input a domain on-

tology, lexicon, and database to the conversational
data collection system. However, in the case of a
graph database, the entities found in the ontology
are more clearly defined in a graph database. Ad-
ditionally, instead of a table structure, the database
is in the form of <subject,relation,object> triples,
where each entity belongs to a type defined in the
ontology.

While the the types of LFs generated in the LF-
Generator are equivalent, a property now refers
to the relation found in the triple, while a prop-
erty refers to the object of a KB triple. For ex-
ample, an entity such as the one found in fig-
ure 4 may have various properties, including
“has shortcut” and “has option”. When generat-
ing NL-QL pairs, the generator again takes from
the out of the LF-Generator, lexicon, and seed
templates, where the QL template is SPARQL-
based instead of SQL-based. Paraphrases are
collected in the same way. Thus, an example
Photoshop Retrieve-Object LF template question,
and paraphrase may look like: “LF: Retrieve-
Objects(tool(ALL), (tool.has shortcut, ‘=’, ‘H))”,
“Template: Which 〈 entities〉 have 〈 relation〉 equal
to 〈 object〉?”, and “Paraphrase: What’s the tool
with the H shortcut?”

5 Experiments

We will now examine our experiments with a rela-
tional and graph database setting. We first briefly
discuss the data used in constructing the conversta-
tional dataset and then describe the various models
utilized in translating the NL questions into their
respective structured queries.

5.1 Data

For our experiments involving SQL data, we con-
struct an NL-QL conversational dataset on data
based on a proprietary web analytics tool. In our re-
sults table, we refer to this dataset as Web-Analytics.
For the graph-database, we construct an NL-QL
conversational dataset based on the Photoshop KB,
as the one exemplified in Section 4.1. As previously
noted, this KB contains various entities found in
Photoshop, connected to their properties, through
predicates which define the properties. In total, the
KB contains 15,381 triples, with 3,410 triples that
correspond to how-to type queries.

After running our conversational data collection
system on both set of data, we collected 288 and
73 NL-QL pairs of templates for the Photoshop



33

Photoshop Web-Analytics
Templates 288 73

Table 3: Number of templates for each dataset, where
the Photoshop dataset is SPARQL-based and Web-
Analytics dataset is SQL-based.

and Web-Analytics datasets, respectively. Table 3
summarizes these statistics. Additionally, we con-
figured our system to give 3 turn dialogues.

5.2 Models
In our experiments we utilize single-turn NL-QL
models. Specifically, we utilize the baselines de-
fined by Finegan-Dollak et al. (2018).

The first baseline is a seq2seq model with
attention-based copying, originally proposed by
Jia and Liang (2016). This model takes an NL
utterance as input and outputs a structured query.
Included in the output is a COPY token, which sig-
nifies the copying of an input token. In the copying
mechanism model, the loss is calculated based on
the accumulation of both the probability of distribu-
tion of the tokens in the output and the probability
of copying from an input token. This copying prob-
ability is calculated as the categorical cross entropy
of the distributed attention scores across the input’s
tokens, where the token with the max attention
score is chosen as the output token.

The second baseline is a template-based model
developed by Finegan-Dollak et al. (2018). This
model takes in natural language questions, along
with query templates to train. Since our data collec-
tion system directly utilizes templates to generate
the data, this model is easily adaptable to our set-
ting. We simply use the templates we collect from
both the seed-templates and paraphrasing tasks, as
well as the slot values extracted from the source DB
when creating the dialogue data to train the model.
In the template-based model, there are two deci-
sions being made. First the model selects the best
template to choose from the input. This is done
by passing the final hidden states of a bi-LSTM
through a feed-forward neural network. Next, the
model selects the words in an input NL-question
which can fill the template slots. Again, the same
bi-LSTM is used to predict whether an input token
is used in the output query or not. Thus, given a
natural language question, the model jointly learns
the best template from the given input, as well as
the values that fill the template’s slots. Please note,
that while this model is best fitted for our dataset,

SELECT	?entity	?property	where	{	
?entity	rdf:type	ontology:ps_entity	.	
?entity	ontology:sharpen	?property	.	
?entity	rdfs:label	"ps_entity0"@en}

Figure 5: The template-based model developed by
Finegan-Dollak et al. (2018), where the blue boxes rep-
resent LSTM cells and the green box represents a feed-
forward neural network. ‘Photos’ is classified as a slot
value, while the template chosen (Tempalte 42), is de-
picted above the model. In the template, the entity slot
is highlighted in yellow and the properties which make
the template unique are in red.

it does not generalize well to data outside of the
trained domain due to the template selection task.
Figure 5, inspired by Finegan-Dollak et al. (2018),
shows an example of the template-based model
with our own input in the SPARQL domain.

Although our dataset collection system gener-
ates multi-turn data, because of the immaturity of
multi-turn NL-to-QL models, we leave the use of
multi-turn models for future work. We do how-
ever, mention the model developed by Saha et al.
(2018), which answers complex sequential natural
language questions over KBs, which can be further
integrated in future work.

5.3 Settings

We experimented with both the seq2seq and
template-based models on the SQL-based and
SPARQL-based datasets previously discussed. For
the Photoshop SPARQL dataset, we generated
2,100 single-turn data pairs utilizing our data col-
lection system, while generating 3,504 single-data
pairs for the web-analytics dataset. Experiments
all used a 90/10 train/validation set split.

6 Results

We evaluated the models on our generated datasets
for exact-match accuracy of the SQL/SPARQL out-
put queries. The results (shown in Table 4) indicate
that in both cases the seq2seq model outperforms
the template-based model. While the seq2seq gives
an accuracy of .726 and .738, the template-based



34

Dialogue Session Count (SPARQL) Dialogue Session Count (SQL)

Figure 6: The above graphs show that as the dialogue session count increases for both the Photoshop SPARQL
(left) and Web-Analytics SQL (right) dataset, the accuracy also increases. The y-axis of each graph marks the
accuracy, while the x-axis marks the number of dialogue sessions for each dataset.

Photoshop Web-Analytics
Seq2seq .726 .738
Template-based .305 .641

Table 4: Results on the accuracy of the NL-to-QL
task on the generated single-turn Photoshop and Web-
Analytics datasets.

model results in .305 and .641 accuracy. Further-
more, the template-based model performs better on
the Web-Analytics SQL-based dataset. This may
be because the number of templates contained in
the SQL dataset is almost four times greater than
the number of templates contained in the Photo-
shop SPARQL dataset, 73 compared to 288.

We also investigate how the accuracy of the mod-
els increase, as the number of samples generated by
our data collection system increase. Figure 6 shows
that for our best performing model (seq2seq), as
the number of dialogue sessions (or data points)
increases, the accuracy increases. While this is
expected, it also shows that through out dialog
creation system, one can improve their NL-to-QL
application’s performance by configuring the data
creation system with more dialogues and templates.

Though the models use synthetic data generated
by our system, our system allows one to accelerate
the data collection process and quickly deploy an
NL-to-QL system that gives reasonably accurate
results. This deployed system can then later collect
data collected from real application users, where
the application logs where a correct or incorrect
response may have been returned. Iyer et al. (2017)
explore this kind of work which learns from user
feedback, where users marked utterances as cor-

rect or incorrect, and the accuracy of the semantic
parser increased as a result.

7 Conclusion

In this work, we propose a conversational data col-
lection system which accelerates the deployment of
conversational natural language interface applica-
tions which utilize structured data. We describe the
three main processes of our system, including the
LF Dialog Generator, the NL-QL Generator, and
the Paraphrase component. By taking in a domain
ontology, lexicon, and structured database as in-
put, our system generates NL-QL multi-turn pairs
which can be used to train systems that translate NL
to QL. Each component of our system is examined
in both the SQL and SPARQL QL domain. We
then validate our data by training state-of-the-art
NL to QL models on single-turn utterances. Our
experiments show promising results in both the
SQL and SPARQL domains, while providing an ef-
ficient method to generate data for the development
of multi-turn models.

References
Daniel Braun, Adrian Hernandez Mendez, Florian

Matthes, and Manfred Langen. 2017. Evaluating
natural language understanding services for conver-
sational question answering systems. In Proceed-
ings of the 18th Annual SIGdial Meeting on Dis-
course and Dialogue, pages 174–185.

Ruichu Cai, Boyan Xu, Zhenjie Zhang, Xiaoyan Yang,
Zijian Li, and Zhihao Liang. 2018. An encoder-
decoder framework translating natural language to
database queries. In Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence,
pages 3977–3983.



35

Lei Cui, Shaohan Huang, Furu Wei, Chuanqi Tan,
Chaoqun Duan, and Ming Zhou. 2017. SuperAgent:
A customer service chatbot for e-commerce web-
sites. In Proceedings of ACL 2017, System Demon-
strations, pages 97–102, Vancouver, Canada. Asso-
ciation for Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43.

Mohnish Dubey, Sourish Dasgupta, Ankit Sharma,
Konrad Höffner, and Jens Lehmann. 2016. Asknow:
A framework for natural language query formaliza-
tion in sparql. In European Semantic Web Confer-
ence, pages 300–316. Springer.

Catherine Finegan-Dollak, Jonathan K Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-sql evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 351–360.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. Ppdb: The paraphrase
database. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 758–764.

Alessandra Giordani. 2008. Mapping natural language
into sql in a nlidb. In International Conference on
Application of Natural Language to Information Sys-
tems, pages 367–371. Springer.

Alessandra Giordani and Alessandro Moschitti. 2009.
Semantic mapping between natural language ques-
tions and sql queries via syntactic pairing. In In-
ternational Conference on Application of Natural
Language to Information Systems, pages 207–221.
Springer.

Charles T Hemphill, John J Godfrey, and George R
Doddington. 1990. The atis spoken language sys-
tems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27, 1990.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963–973.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22.

Axel-Cyrille Ngonga Ngomo, Lorenz Bühmann,
Christina Unger, Jens Lehmann, and Daniel Gerber.
2013. Sorry, i don’t speak sparql: translating sparql
queries into natural language. In Proceedings of the
22nd international conference on World Wide Web,
pages 977–988.

Amrita Saha, Vardaan Pahuja, Mitesh M Khapra,
Karthik Sankaranarayanan, and Sarath Chandar.
2018. Complex sequential question answering: To-
wards learning to converse over linked question an-
swer pairs with a knowledge graph. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Pararth Shah, Dilek Hakkani-Tür, Gokhan Tür, Ab-
hinav Rastogi, Ankur Bapna, Neha Nayak, and
Larry Heck. 2018. Building a conversational agent
overnight with dialogue self-play. arXiv preprint
arXiv:1801.04871.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1332–1342.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:
Generating structured queries from natural language
without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze Shi,
Zihan Li, et al. 2019a. Cosql: A conversational
text-to-sql challenge towards cross-domain natural
language interfaces to databases. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1962–1979.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene Li,
Bo Pang, Tao Chen, et al. 2019b. Sparc: Cross-
domain semantic parsing in context. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4511–4523.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the national con-
ference on artificial intelligence, pages 1050–1055.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries

https://www.aclweb.org/anthology/P17-4017
https://www.aclweb.org/anthology/P17-4017
https://www.aclweb.org/anthology/P17-4017


36

from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.


