Towards Generating Effective Explanations of Logical Formulas:
Challenges and Strategies

Alexandra Mayn and Kees van Deemter
Utrecht University
Department of Information and Computing Sciences
{a.mayn, c.j.vandeemter}@uu.nl

Abstract

While the problem of natural language gener-
ation from logical formulas has a long tradi-
tion, little attention has been paid to ensuring
that the generated explanations are optimally
helpful to the user. We discuss issues related
to deciding what such output should look like
and strategies for addressing those issues. We
stress the importance of informing generation
of NL explanations of logical formulas with
reader studies and findings on the comprehen-
sion of logic from pragmatics and cognitive
science. We illustrate the issues and poten-
tial ways of addressing them using a simple
demo system’s output generated from a propo-
sitional logic formula.

1 Introduction

The task of generating natural language text from
logical form has a long and diverse tradition (Wang
(1980), Appelt (1987), Shieber et al. (1990), to
name a few early examples). It has been ap-
proached from a variety of perspectives targeting
different use cases, including providing feedback
to students of logic (Flickinger (2016)), users of
logistic software (Kutlak and van Deemter (2015)),
and explaining the output of a reasoning engine
(Coppock and Baxter (2009)).

However, so far in this domain very little atten-
tion has been paid to generating output which is
optimally helpful to the user, presumably a non-
expert with little knowledge of formal logic, We
aim to build a system which, given a logical for-
mula, will produce an effective natural language
explanation. To that end, we discuss challenges
which might arise when building and scaling up
such a generation system and strategies for address-
ing these challenges with the user in mind. We aim
to conduct studies with potential users (students of
logic and/or users of software which operates using

39

logic) to determine what kinds of explanations the
system should generate.

The rest of this paper is organized as follows:
Section 2 summarizes related work. Section 3 dis-
cusses challenges and possibilities related to deter-
mining and ensuring effectiveness of the generated
output for the users. Section 4 illustrates our points
by means of a case study on producing explana-
tions of a propositional logic formula. Section 5
concludes.

2 Related work

There have been a number of works aimed at gener-
ating text from logical form, using either rule-based
(Shieber et al. (1990); Ranta (2011); De Roeck
and Lowden (1986)) or statistical (Basile (2015);
Zettlemoyer and Collins (2012); Lu and Ng (2011))
methods. However, only a few of them explic-
itly discuss the issues related to the comprehen-
sibility and effectiveness of the generated output.
De Roeck and Lowden (1986) opt for using inden-
tation as opposed to linear text to minimize ambi-
guity of the generated text, while Ranta (2011)’s
solution involves bulleted lists. Flickinger (2016)
addresses a related issue, that of generating multi-
ple paraphrases for a logical formula, with a view
to subsequently selecting the best one - as many
as almost 4500 paraphrases are generated for one
formula, but the issue of filtering out ambiguous
paraphrases and selecting the best one is left to fu-
ture work. Kutlak and van Deemter (2015) apply
transformations at the logic level with the aim of
making the formula more suitable for generation.
Studies with human participants to determine
what output of NLG systems is preferable have
been conducted in other domains. Eugenio et al.
(2005) study the effect of aggregation in the out-
put of an automated tutoring system on the learner
and find that what they call functional aggregation,

Proceedings of the 2nd Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI 2020), pages 39-43,

Dublin, Ireland, 18 December 2020. (©)2020 Association for Computational Linguistics



which produces summaries of text relating to the
same object or function, benefits the user more
than purely syntactic aggregation does. Khan et al.
(2012) conduct reading studies to investigate com-
prehension of referring expressions with a view to
improving an NLG system’s output. They investi-
gate the interaction between brevity and clarity, and
find that brevity is preferred when all alternatives
are unambiguous, and otherwise a longer but un-
ambiguous alternative is preferred, which goes to
show that there is an advantage to non-brief refer-
ring expressions in terms of comprehension. Khan
et al. (2012)’s NLG algorithms thus incorporate a
trade-off between clarity and brevity.

3 User-oriented explanations:
Challenges and strategies

There are a number of questions which need to
be answered when developing an explanation-
producing system aimed at making the explana-
tions maximally helpful to the user.

As Kutlak and van Deemter (2015) point out, it
is not always the case that the inputted logical for-
mula is in a form suitable for generation. Some for-
mulas are unnecessarily complex and would there-
fore tend to produce unnecessarily complex text
unless optimised first. To make matters trickier, for
expressive logics it is often not decidable whether
two logical formulas are equivalent to each other
(termed “the problem of logical form equivalence”
by Shieber (1993)), so heuristics need to be de-
veloped to decide what transformations to apply,
and how many, and to determine how suitable a
formula is for generation. Kutlak and van Deemter
(2015) assume as a rule of thumb that transforma-
tions which will make a formula shorter are likely
to also make it easier to comprehend. However,
there are some cases where making the formula
longer might be warranted, e.g. if that results in a
clearer NL explanation. We believe that it would
be beneficial to conduct empirical studies on com-
prehension and preference between text variants
generated based on several equivalent formulas in
order to develop such heuristics.

At the NL generation stage, there are important
decisions to be made as well. Which phrasings
should be used and which ones should be avoided?
One of the aspects which can make generation from
logic challenging is that the meaning of logical con-
nectives is not always the same as that of their natu-
ral language counterparts (Grice (1975), Moeschler

40

(2017)). For instance, Geis and Zwicky (1971)
argue that an NL conditional is often used as a log-
ical biconditional (for example, If you go to the
party, I'll go too is understood to imply that if you
do not go, neither will I), while Barker-Plummer
et al. (2008) show that students of logic particularly
struggle with the expression of the biconditional as
just in case because it has a very different meaning
in everyday natural language.

In terms of the form of the generated text, there
are a number of alternatives which have been used
- linear text, bulleted lists and indentation; these
presentation decisions will have an effect on the
comprehensibility of the generated output. Related,
what is the optimal amount of aggregation in this
context? Are there situations where it is preferable
not to aggregate? We argue that these questions
should be addressed through controlled user exper-
iments where reading comprehension and speed
for alternatives is compared along each of these
dimensions.

We also believe that such resources as the Grade
Grinder Corpus (Barker-Plummer et al., 2011),
which contains students’ attempts to convert natu-
ral language text to FOL, can also inform us about
which natural language wordings are effective and
which ones should be avoided by the generator.
Both number and nature of incorrect attempts by
the students can be used in gaining insights as to
what realizations of connectives tend to be misun-
derstood and what they are misunderstood as. For
instance (Barker-Plummer et al., 2008) find that
many errors are made when formalizing a sentence
in FOL requires reordering the antecedent and the
consequent.

As has been pointed out in related work (Ranta
(2011); Flickinger (2016)), ambiguity is a challeng-
ing aspect of this generation problem: if not con-
trolled for, bracketing or negation scope ambiguity
is likely to emerge. Ranta (2011) proposes using
a parser test to determine whether the generated
output can have multiple readings, and select an
unambiguous one that way. We believe that that
is an effective solution to the ambiguity problem.
However, we can imagine a case where, for a suffi-
ciently complex formula, the generator might only
produce explanations with multiple readings, or the
unambiguous variant is too clunky and difficult to
read. In that case, it would be beneficial to know
about the respective likelihood of the alternative
readings for the user. It could be, for instance, that



a reading is identified by the parser which a human
is unlikely to consider. With this likelihood infor-
mation, one could, for instance, select an output
which has the fewest possible readings, or only one
likely reading. We intend to explore whether such
an approximation of likelihood can be obtained
using probabilistic parsing (Jurafsky and Martin,
2009, Chapter 14).

4 Case Study: Generation from
Propositional Logic

We illustrate the above points by means of a con-
crete example. As a starting point, we built a simple
system, which takes a propositional logic formula
as input, parses it into a tree structure, optionally
applies transformations to the tree, and realizes the
output by reading off the tree, left to right. We
chose propositional logic as a base case because it
is one of the simplest logics in which many of the
important discussed in Section 3 emerge.

Consider the following formula, which involves
the block language from Tarski’s World, a software
component for teaching logic to students (Barwise
et al., 2000):

(1) =Cube(z) A
—(Smaller(z,y) Vv SameShape(z,y))

At the tree level, we apply a number of meaning-
preserving transformations. For any formula, there
is an infinite set of formulas equivalent to it, there-
fore heuristics need to be developed as to what
makes a formula a promising candidate for gen-
eration. For simplicity, we start with a set of 8
formulas equivalent to (1), obtained by distributing
negation, applying De Morgan’s laws, or reversing
the order of the conjuncts and disjuncts. We pass
each of these formulas to a simple generator, ob-
taining 8 wordings. For example, (1) is realized
as:

(a) X is not a cube and it is not the case
that x is smaller than y or x is the

same shape as y.

Which, if any, of the generated versions should
be the final output? At this stage, we run a syn-
tactic parser on the generated text to identify how
many and what kind of possible readings the gener-
ated text may have. We then determine how many
distinct parses each of the texts has by computing
which of the parses are equivalent to each other.
We find that some generated text variants come out

41

as unambiguous, while others have as many as 11
distinct parses.

We are not quite done yet. It is worth pointing
out that the ambiguities which the parser detects
might not perfectly predict what ambiguities might
arise for people. For example, (a) can be parsed
three ways, with if is not the case having either nar-
row or wide scope. However, one could argue that
the narrow scope reading is a lot less likely. That
could be determined using probabilistic parsing.

Conversely, there could emerge certain mirage
ambiguities, where a sentence which is gram-
matically unambiguous could still be understood
multiple ways by the reader, e.g. we can imag-
ine it is not the case that x is smaller than y
or the same shape as y being misunderstood
as ~Smaller(x,y) V SameShape(z,y) (narrow
scope of negation). Such cases seem more diffi-
cult to foresee. Reader studies could be helpful in
gaining insight; complexity heuristics could also
be introduced with the hope that less complex sen-
tences would be less likely to give rise to such
problems.

Besides ambiguity, there is another dimension
along which the effectiveness of the generated text
will vary: readability. Text length and naturalness
both affect readability. Interestingly, ambiguity
also interacts with readability: there is evidence
that ambiguous sentences are processed faster than
disambiguated ones, but only when the readers do
not anticipate the need to answer in-detail questions
about the read text (Swets et al., 2008). Methods
like aggregation may be employed to improve read-
ability. So, (1) could also be worded as:

(b)

X is not a cube, nor is it smaller than
or the same shape than y.

That phrasing is also no longer ambiguous,
which illustrates that aggregation can have an im-
pact on clarity as well as readability.

Of course, a yet more natural phrasing of (1) is
as follows:

(©

X is not a cube. it is at least as large
as y and has a different shape.

It would be challenging to generate (c) automat-
ically given an input formula like (1) since the
system would need to have information about what
not smaller means. Kutlak and van Deemter (2015)
allow the user to enter background axioms, which
partially addresses the problem: the user would



need to explicitly indicate the equivalence between
not smaller and at least as large, and between not
the same and different shape, in order for such out-
put to be generated.

In the above, we have experimented with an ap-
proach that computes many possible interpretations
of each candidate NL text. An interesting avenue
for further research is to investigate how such a
brute-force approach may be approximated by a
set of heuristics, which could then be used in an
approach similar to the revision process for NLG
(Inui et al., 1992) to avoid unnecessary computa-
tion: generating output which is estimated to be the
best (i.e., most clear and natural), checking these
constraints and repeating the process for the next
best output if one of the constraints is violated. An
open and challenging question is that of generality:
if we identify a set of heuristics for a certain class
of formulas, how well will they generalize to a dif-
ferent class of formulas or set of predicates? We
aim to explore that through controlled experiments.

5 Conclusion

In this paper, we addressed an aspect of the de-
sign of an NLG system for explaining the mean-
ing of logical formulas which has often been over-
looked: the needs of the user. We discussed ques-
tions which we aim to answer when building such
a system, such as logical simplifications, paraphras-
ing and ambiguity, and considered ways in which
they can be informed: reading studies with poten-
tial users, work with corpora, and insights from
cognitive science and pragmatics. We illustrated
these questions and potential solutions by means of
an example of generating text from a propositional
logic formula.

6 Acknowledgements

This project has received funding from the Eu-
ropean Union’s Horizon 2020 research and inno-
vation programme under the Marie Sktodowska-
Curie Grant Agreement No. 860621.

References

Douglas Appelt. 1987. Bidirectional grammars and the
design of natural language generation systems. In
Theoretical Issues in Natural Language Processing
3.

Dave Barker-Plummer, Richard Cox, and Robert Dale.
2011. Student translations of natural language into

42

logic: The grade grinder corpus release 1.0. In Pro-
ceedings of the 4th international conference on edu-
cational data mining, pages 51-60.

Dave Barker-Plummer, Richard Cox, Robert Dale, and
John Etchemendy. 2008. An empirical study of er-
rors in translating natural language into logic. In
Proceedings of the Annual Meeting of the Cognitive
Science Society, volume 30.

Jon Barwise, John Etchemendy, Gerard Allwein, Dave
Barker-Plummer, and Albert Liu. 2000. Language,
proof and logic. CSLI publications.

Valerio Basile. 2015. From logic to language: Natural
language generation from logical forms.

Elizabeth Coppock and David Baxter. 2009. A trans-
lation from logic to english with dynamic semantics.
In JSAI International Symposium on Artificial Intel-
ligence, pages 197-216. Springer.

Anne De Roeck and Barry GT Lowden. 1986. Generat-
ing english paraphrases from formal relational calcu-
lus expressions. In Coling 1986 Volume 1: The 11th
International Conference on Computational Linguis-
tics.

Barbara Di Eugenio, Davide Fossati, Dan Yu, Susan
Haller, and Michael Glass. 2005. Aggregation im-
proves learning: experiments in natural language
generation for intelligent tutoring systems. In Pro-
ceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, pages 50-57. Associ-
ation for Computational Linguistics.

Dan Flickinger. 2016. Generating english paraphrases
from logic. From Semantics to Dialectometry, pages
99-107.

Michael L Geis and Arnold M Zwicky. 1971. On in-
vited inferences. Linguistic inquiry, 2(4):561-566.

Herbert P Grice. 1975. Logic and conversation. In
Speech acts, pages 41-58. Brill.

Kentaro Inui, Takenobu Tokunaga, and Hozumi Tanaka.
1992. Text revision: A model and its implemen-
tation. In International Workshop on Natural Lan-
guage Generation, pages 215-230. Springer.

Daniel Jurafsky and James H. Martin. 2009. Speech
and Language Processing (2Nd Edition). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

Imtiaz H Khan, Kees van Deemter, and Graeme Ritchie.
2012. Managing ambiguity in reference generation:
the role of surface structure. Topics in Cognitive sci-
ence, 4(2):211-231.

Roman Kutlak and Kees van Deemter. 2015. Generat-
ing succinct english text from fol formulae. In Procs.
of First Scottish Workshop on Data-to-Text Genera-
tion.



Wei Lu and Hwee Tou Ng. 2011. A probabilistic forest-
to-string model for language generation from typed
lambda calculus expressions. In Proceedings of the
2011 Conference on Empirical Methods in Natural
Language Processing, pages 1611-1622.

Jacques Moeschler. 2017. What logic tells us about
natural languagel. The Routledge handbook of prag-
matics, page 241.

Aarne Ranta. 2011. Translating between language and
logic: what is easy and what is difficult. In Interna-
tional Conference on Automated Deduction, pages

5-25. Springer.

Stuart Shieber. 1993. The problem of logical-form
equivalence. Computational Linguistics.

Stuart Shieber, Gertjan Van Noord, Fernando CN
Pereira, and Robert C Moore. 1990. Semantic-head-
driven generation. Computational Linguistics.

Benjamin Swets, Timothy Desmet, Charles Clifton,
and Fernanda Ferreira. 2008. Underspecification
of syntactic ambiguities: Evidence from self-paced
reading. Memory & Cognition, 36(1):201-216.

Juen-tin Wang. 1980. On computational sentence gen-
eration from logical form. In COLING 1980 Volume
1: The 8th International Conference on Computa-
tional Linguistics.

Luke S Zettlemoyer and Michael Collins. 2012. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
arXiv preprint arXiv:1207.1420.

43



