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Abstract

The opaque nature of many machine learn-
ing techniques prevents the widespread adop-
tion of powerful information processing tools
for high stakes scenarios. The emerging field
of Explainable Artificial Intelligence aims at
providing justifications for automatic decision-
making systems in order to ensure reliability
and trustworthiness in users. To achieve this
vision, we emphasize the importance of a nat-
ural language textual explanation modality as
a key component for a future intelligent inter-
active agent. We outline the challenges of ex-
plainability and review a set of publications
that work in this direction.

1 Introduction

In recent times the use of Machine Learning (ML)
has changed many fields across a wide range of
domains, revealing the potential for an information
processing revolution in our society (West, 2018).
Even though there already exist many commercial
applications that use ML for delivering products,
these are limited by the often opaque nature of the
underlying models (Goodman and Flaxman, 2017).

In fact, to produce highly predictive models that
reach high-performance metrics on given tasks,
commercial products often end up with models
whose behavior and rationale in making decisions
are not clearly understandable by humans.

This is a big issue in all those applications where
trust and accountability in the prediction have the
highest priority like healthcare, military, finance,
or autonomous vehicles.

This need for explainable models has made many
big institutions, including the European Union (Ha-
mon et al., 2020), and the US Defense Advanced
Research Projects Agency (DARPA) (Gunning and
Aha, 2019) push for funding research in eXplain-
able Artificial Intelligence (XAI), a relatively new

and very active research area with the aim of provid-
ing human insight into the behavior of information-
processing tools.

The three main XAI challenges are: (1) design-
ing explainable models; (2) implementing explana-
tion interfaces; and (3) measuring the effectiveness
of the generated explanations.

Of the many ways of presenting an explanation,
natural language is particularly attractive as it al-
lows people with diverse backgrounds and knowl-
edge to interpret it (Alonso et al., 2020), thus po-
tentially allowing the interested end-user to un-
derstand the model without requiring a detailed
background in mathematics and information en-
gineering. This is a mandatory step if we want
to make these tools available to the non-technical
wider population. The goal of this paper is to pro-
vide a general overview of tools and approaches
for providing linguistic explanations of ML models
to general users.

The rest of the paper is organized as follows.
In section 2 we present a brief overview of XAI
field and its challenges. In section 3 we explore
how XAI can integrate with Natural Language Gen-
eration (NLG). Finally, we summarize the main
conclusions in section 4.

2 Open Challenges in XAI

As mentioned in the introduction, XAI faces three
main challenges: models, interfaces and evalua-
tions. In this section, we provide a high-level
overview of each of them.

2.1 Designing Explainable Models
Different kinds of models provide different explana-
tions. As a first approximation we can distinguish
between classes of models depending on their in-
trinsic ability to be meaningfully inspected. We
can picture this taxonomy with a block diagram as
shown in Fig. 1.
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Figure 1: A block diagram representation of differ-
ent models. White boxes have a clear and decom-
posable internal representation and processing. Gray
boxes are still decomposable but understanding them
is less straightforward. For black boxes, processing is
assumed unknown and only the input-output behaviour
can be inspected.

2.1.1 White-box Models

White models, sometimes called “transparent”
models (Barredo Arrieta et al., 2020), are those
that behave in a way that humans can understand
conceptually and for which their processing can be
decomposed to some extent into meaningful and
understandable ways. The idea is that we can “see
through” them in a block diagram and inspect their
functioning. They are easier to be explained but
typically reach lower performances on complex
tasks. Examples of those include linear models, de-
cision trees, nearest neighbors, rule-based learners
and general additive models.

2.1.2 Gray-box Models

Gray boxes are models whose internal structure
can be inspected, but for which clear explanations
are more difficult to produce. This is because they
rely on formalisms, such as probability and plausi-
bility, which differ from perspectives humans find
more intuitive (e.g., Bayesian networks or fuzzy
systems). These models lack a crisp internal repre-
sentation which can be displayed in a categorical
fashion and instead use soft thresholds and/or con-
ditional probabilities. In this regard Eddy (1982)
and Elsaesser (1987) show how people have diffi-
culty with interpreting probabilistic reasoning, es-
pecially when it is described numerically.

2.1.3 Black-box Models

With “black box” we refer to those models whose
behavior is not directly understandable. Some pub-
lications deal with “opening the box”, digging into
the specific construction details of a class of models
by decomposing their whole processing structure
into smaller understandable parts and intermedi-
ate representations (Olah et al., 2018) or by trying
to infer the contribution of each feature to the fi-
nal outcome (thus effectively “grayifying” them)
(Montavon et al., 2018). Others instead “leave the
box closed”, ignoring the internals of the model,
and restrict their scrutiny to the relationships be-
tween inputs and outputs. The literature refers to
the latter approach as “post-hoc”, meaning that the
explanation process is decoupled from the infer-
ence process, and might not actually represent the
real computation happening, but is rather a human
readable justification of what is happening (Lip-
ton, 2018). Some examples of black boxes are tree
ensembles (e.g., random forests), support vector
machines, multi-layer neural networks, convolu-
tional neural networks, recurrent neural networks
and generative adversarial networks.

2.2 Implementing Explanation Interfaces

Given a model and a prediction the next problem
is to provide an interface that is able to produce
a meaningful explanation. The issue is to try to
understand what is the best explanation to provide
to the user. “What is an explanation?” is a question
that has puzzled philosophers, psychologists, and
social scientists long before the engineering com-
munity stepped into the scene. A great heritage
that we can distill from these previous works is that
explanations are narratives of causal relationships
between events. But it is also clear that while a cer-
tain event may have a very long causal history, an
explainee (i.e., one who receives the explanation)
might consider relevant only a small subset of this
history, depending on his/her personal cognitive
biases (Miller, 2019). This highlights the fact that
different people might judge more relevant differ-
ent explanations given their different interests or
background. Thus a good explanation is depen-
dent on who is going to receive it. But this also
points to the fact that explanation is a process, a
dialogue between explainer and explainee, rather
than a one-shot result.

Various XAI methods have been developed to
answer specific one-shot questions, including:
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• “Why was this class predicted instead of
that?”: counterfactual (Russell, 2019),

• “How did each feature contribute to this pre-
diction?”: feature importance (Lundberg and
Lee, 2017; Fisher et al., 2019)

• “Which data points in your training con-
tributed to the outcome?”: explanation by ex-
ample (Kanehira and Harada, 2019)

• “What happens if I slightly change this in-
put?”: local explanation (Goldstein et al.,
2015)

• “What is the minimal change in the input
required to produce this particular result?”:
counterfactual and local (Guidotti et al., 2018)

Unfortunately, as far as we know, little to no atten-
tion was given so far to an interactive system that
could adapt to the user needs and provide “the most
effective” explanation for a given situation.

We suggest that a natural language interface be-
tween the user and an explanation agent (also sup-
ported by visualization techniques) will be a nec-
essary key step toward the trustworthiness and ex-
plainability of decision-making systems for high
stakes scenarios.

We can imagine a dialogue between a user (U)
who applied for a loan and an AI that rejected it:
U: “Why did I get rejected?”
AI: “Our model predicted that you would be likely
to default with a probability of 80%”
U: “Where does that probability come from?”
AI: “For an average user the probability of default
is 60%, but the fact that you have less than $50000
and that you are unemployed increase the risk
significantly”
U: “What should I do to be granted the loan?”
AI: “If you would got a job and open another
account your probability of default would lower to
30% and you would be granted the loan”

2.3 Evaluating Explanation Systems

There is an ongoing discussion in the XAI com-
munity on how to evaluate explanation systems.
Human assessment is deemed the most relevant,
and care should be given in measuring the good-
ness of an explanation in terms of whether the user
understands the model better after the explanation
was given (Hoffman et al., 2018). The work of

Mohseni et al. (2020) proposes a layered evaluation
framework, where the ML algorithm, the explain-
ing interface and global system goals can be better
refined for the particular problem at hand and for
which specific metric should be constructed.

On the other hand, Herman (2017) points out
that excessive reliance on human evaluation could
bias the system to be more persuasive rather than
transparent due to the user preference of simplified
explanations. Quantitative automatic metrics have
been for example proposed for evaluating saliency
maps for image (Montavon et al., 2017) and text
(Arras et al., 2017) classifiers. As will be discussed
in section 3.2, Park et al. (2018) propose a dataset
labeled with humanly annotated explanations and
attentions maps.

All in all, further work is needed for standardiz-
ing a general evaluation procedure.

3 Explaining with Natural Language

An explanation can be laid out using different
modalities. The general trend in the literature is
to represent results in a graphical visual form, but
some researchers are using natural language and
measuring an increased benefit for the end-user.
NLG-based approaches fall into two broad cate-
gories: template-based and end-to-end generation.

3.1 Template-based Generation

By leveraging knowledge about the kind of expla-
nation produced about the system it is possible to
structure templates that present the output in tex-
tual form. The popular LIME method (Ribeiro
et al., 2016), which provides a linear approxima-
tion of the feature contribution to the output, can
be presented in natural language using paragraphs
(Forrest et al., 2018), for example with the Sim-
pleNLG toolbox (Gatt and Reiter, 2009). ExpliClas
(Alonso and Bugarin, 2019) is a web-service that
provides local and global explanations for black
boxes by leveraging post-hoc techniques (such as
gray model surrogates) in natural language using
the NLG pipeline proposed by Reiter and Dale
(2000). In the medical domain, a fracture-detecting
model has been extended to produce a textual ex-
planation that follows a limited vocabulary and
a fixed sentence length (Gale et al., 2018). The
authors measured a significant increase in the trust-
worthiness from a medical population for the tex-
tual modality over the visual. While output with
templates is easier to control, its static nature some-
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times produces sentences that are non-natural and
lack variation.

3.2 End-to-end Generation
With the use of a large corpus of humanly la-
beled data-to-text it is possible to generate sen-
tences without specifying a template a priori. The
computer-vision community leveraged the machine
translation encoder-decoder framework in order to
create systems that are able to semantically de-
scribe where and what was detected by an image-
classification model (Xu et al., 2015). In Zhang
et al. (2019) an image caption model was trained
on image-pathologist report pairs in order to pro-
duce an automatic textual report as an intermediate
step for an interpretable whole-slide cancer diagno-
sis system. In Hendricks et al. (2016) a model is
trained with both an image and a textual descrip-
tion of its content in order to produce an object
prediction and a textual justification. The introduc-
tion of visual question-answering (VQA-X) and
activity recognition (ACT-X) labeled with humanly
annotated textual justification and visual segmenta-
tion of the relevant parts of the image (Park et al.,
2018) allowed to train models that jointly explain
a prediction with both text and a visual indication
of the relevant portion of the input. This approach
is on the other hand expensive (data collection and
model training) and occasionally might provide
incoherent explanation while being vulnerable to
adversarial attacks (Camburu et al., 2020).

3.3 Evaluating Natural Language Generation
The work of van der Lee et al. (2019) highlights
an open debate in the NLG community for finding
the right way to measure the goodness of generated
texts. The main issues revolve around the following
questions:

1. Is it possible to rely on automatic metrics
only?

2. How should human evaluation be done?

Moreover, there is a significant divergence in how
different papers define concepts like “fluency” and
“adequacy”.

Textual explanations should first of all be read-
able (well written, natural, consistent, etc.), but
they also need to be effective and useful for the
end-user. While automatic metrics such as BLEU,
METEOR and ROUGE are quick, repeatable and
cheap techniques for roughly assessing language

quality, Belz and Reiter (2006), Reiter and Belz
(2009) and Reiter (2018) point out that these met-
rics might not adequately measure quality of con-
tent. In addition, Post (2018) shows how differ-
ent libraries have different default values for the
parameters used in computing automatic metrics,
thus making comparisons across different publica-
tions more difficult. More importantly, automatic
metrics have been observed to not correlate with
human evaluations (Novikova et al., 2017). That
said, while human evaluation remains the gold stan-
dard for the general assessment of overall system
quality, using it at every step of the development
process would be too expensive and slow (van der
Lee et al., 2019).

So, goodness of text generated is a prerequisite
but is not enough in the context of XAI. New evalu-
ation protocols and best practices in NLG for XAI
need to be defined and agreed upon by the scientific
community, as this will enable fair comparisons
between systems and foster technological improve-
ment.

4 Conclusions

XAI is an emerging field that aims to providing ex-
planations for decision tools that will enable them
to gain trust in their users and their wide adoption
by the market. In order to achieve this, textual ex-
planations are essential but to date few works have
directly addressed this possibility.

Current trends in explainability push toward
making intrinsically more interpretable models or
in making opaque models more understandable.
There is no agreed-upon definition of explanation
and further theoretical work should try to bridge the
gap between the large corpus of theoretical specula-
tion coming from social sciences and the empirical
work pursued in Artificial Intelligence.

This as yet ill-defined nature of the task leaves
much work to do in the standardization of processes
for measurement of explanation effectiveness. In
this regard, both objective and subjective measures
should be considered, especially if evaluation in-
volves human participants.

Moreover, since the explanation process is de-
pendent on who is receiving the explanation, we
envision an interactive agent that is able to dialogue
with the user. From this perspective, the NLG com-
munity can contribute significantly to this goal by
providing a linguistic layer to the many XAI meth-
ods being proposed so far.
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