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Abstract

We evaluate the performance of transformer
encoders with various decoders for informa-
tion organization through a new task: gener-
ation of section headings for Wikipedia arti-
cles. Our analysis shows that decoders con-
taining attention mechanisms over the encoder
output achieve high-scoring results by gener-
ating extractive text. In contrast, a decoder
without attention better facilitates semantic en-
coding and can be used to generate section
embeddings. We additionally introduce a new
loss function, which further encourages the de-
coder to generate high-quality embeddings.

1 Introduction

Automated information labeling and organization
has become a desirable way to process the copious
amounts of available text. We develop methods for
producing text headings and section-level embed-
dings through a new task: generation of section
titles for Wikipedia articles. This task is useful for
improving Wikipedia, an active area of research
due to the long tail of poor quality articles, includ-
ing articles lacking section subdivisions or consis-
tent headings (Lebret et al., 2016; Piccardi et al.,
2018; Liu et al., 2018). Additionally, the types of
labels used to denote sections can be useful for
organizing other unstructured collections of text.

We approach this task in two ways: first we
train a text generation model for producing section
titles, and second, we leverage our model archi-
tecture to extract section embeddings, which offer
a useful mechanism for comparing and clustering
sections with similar information (Banerjee et al.,
2007; Hu et al., 2009; Reimers et al., 2019). This
approach provides a flexible framework for creat-
ing paragraph-level embeddings, in which the type

∗Work done while the first author was an intern at Google
Research.

of information encoded in the embedding can be
controlled by changing the generation task.

Section title generation is similar to existing
tasks, such as generating titles for newspaper ar-
ticles (Rush et al., 2015; Nallapati et al., 2016).
However, Wikipedia section titles contain a unique
mix of short abstractive headings like “History” and
longer extractive headings like song titles, where
many of the words in the section title also appear
in the section text. The variations in the type of
headings makes this dataset useful for analyzing
how models perform on different subsets of the
data.

A common state-of-the-art model for many
existing text generation tasks uses an encoder-
decoder framework where the encoder is initialized
with BERT and the decoder is also a transformer
(Vaswani et al., 2017; Devlin et al., 2019; Zhang
et al., 2019; Rothe et al., 2019). The entire out-
put of the encoder is passed to the decoder, which
allows the decoder to attend over the entire input
sequence during each generation step.

In contrast, we explore using transformer en-
coders with RNN decoders and show that RNN de-
coders better generate short abstractive titles while
transformer decoders perform better on longer ex-
tractive titles. Embeddings extracted from the RNN
decoders also perform better in clustering evalua-
tions, which suggests that the attention-based mech-
anisms in the transformer facilitate copying input
text into the output, but the RNN architecture better
facilitates encoding semantic meaning.

We additionally introduce a new loss function
for the RNN decoder that encourages the start and
end states of the RNN to be similar. This loss func-
tion encourages the model to encode meaningful
information into a single state, which further im-
proves the quality of the generated section-level
embeddings.

We first describe our models (Section 2) and
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our data set (Section 3) and then present results,
evaluating our models on a held-out test corpus
(Section 5). Our main contributions include: (1) the
introduction of a new short-text generation task that
is useful for information labeling and organization;
(2) an analysis of text generation models for this
task; (3) the introduction of a novel loss function
that results in high-quality section embeddings.

2 Models

Our primary task is to generate section titles, and
our secondary task is to generate section-level em-
beddings. All models use an encoder-decoder archi-
tecture, where the encoder is initialized with BERT
(Devlin et al., 2019). We use 4 decoder variants,
including one trained with a novel loss function.

TRANS This model contains a (randomly initial-
ized) transformer decoder, with hyperparameters
identical to the BERT-base model. The hidden
states generated by the encoder for the entire in-
put sequence are passed to the decoder, thus al-
lowing the decoder to attend over the entire input
sequence during each decoding step. This model
serves as our primary baseline, as it is identical
to the BERT2RND model in Rothe et al. (2019).
We use the same hyperparameters as Rothe et al.
(2019), which were selected after extensive tuning.

RNN Instead of a transformer decoder, we use an
RNN, specifically a gated recurrent neural network
(GRU) (Cho et al., 2014), as the decoder. Unlike
the transformer decoder, which computes attention
over the full input sequence, we do not use any
attention mechanisms over the input to the decoder.
Instead, we only pass the last hidden layer for the
first token (“CLS” token), forcing the model to en-
code all meaningful information about the input
sequence into this single state. The RNN decoder,
which consists of a single decoder layer, is substan-
tially smaller than the transformer decoder used in
the TRANS model.

RNN+SC Our third model uses the same archi-
tecture as the RNN model, but we add an additional
component to the loss function that encourages
the start state and the end state of the decoder to
be similar, which we call a state constraint (SC).
The primary intuition behind this loss function is
that it encourages the decoder to stay “on topic”
while generating text, as it discourages the RNN
from wandering too far away from where it started.
It further encourages the start state to encode all
information needed to generate the entire output se-

quence, rather than allowing the start state to focus
on information in the beginning of the sequence
and the end state to encode information for the end
of the sequence.

The general form for the state of an RNN de-
coder (Cho et al., 2014) is

ht = f(ht−1, yt−1) (1)

Here, f is a GRU, t ∈ {1, . . . , T} is the target
token position, and h0 is initialized to the CLS
token of the BERT source encoder.

The formula for the state constraint function is
given in Equation 2:

d =
h0
||h0||2

− hT
||hT ||2

LSC = ||d||2 (2)

The normalization terms force the loss term to
focus on embedding direction rather than magni-
tude; they are necessary to account for the arbitrary
magnitude of model states. During training, we
multiply the state constraint loss, LSC , by a fixed
scalar (α) and add it to the standard cross-entropy
(CE) loss function. The final loss function is then
given by:

L = LCE + αLSC

RNN+ATTN Our final model also uses a trans-
former encoder and an RNN decoder. However,
unlike the previous model, we pass the entire last
layer of the encoder to the decoder and add an atten-
tion mechanism over this input sequence (Luong
et al., 2015). This model and the TRANS model
are attention-based decoders, while the RNN and
the RNN+SC models do not use attention over the
decoder input.

3 Data

Our primary data set consists of articles from En-
glish Language Wikipedia collected on June 25,
2019. We filter out articles that contain the word
“redirect” and omit any section whose title has
fewer than 2 characters. We extracted sections and
section titles from each article and randomly di-
vided the data into train, test, and development sets,
using an 80/10/10 split (11.43M/1.43M/1.44M arti-
cles).

Wikipedia articles are often hierarchical, con-
taining multiple subsections. However, we make
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no distinction between titles that are complete sec-
tions and titles that are subsections. This lack of
distinction makes the generation task harder, as our
models are not able to take advantage of hierarchi-
cal information and also allows our models and
results to better generalize to other data sets that do
not have this hierarchy.

More detailed statistics on the data set are shown
in Table 1. For reference, we also show statistics
for the commonly-used Gigaword Corpus (Rush
et al., 2015), which we also use to evaluate our
models in §5. The Gigaword corpus entails an ab-
stractive short summary generation task: given the
first sentence of a newspaper article, predict the ar-
ticle title. We use this task for comparison because
it uses a well-studied data set that is more similar
to the Wikipedia section heading generation task
than other text generation tasks, such as summa-
rization tasks, which typically involve much longer
outputs (Narayan et al., 2018). However, as shown
in Table 1, there are notable differences between
these data sets.

Wikipedia Gigaword
Total size 14.3M 4.4M
Train size 11.43M 4.2M
Test size 1.43M 1.9K
Dev size 1.44M 210K
Distinct titles 45.25% 80.45%
Unique titles 41.82% 70.28%
Most common title 3.35% 0.17%
Avg. words per title 2.65 8.64

Table 1: Overview of the Wikipedia section title data,
as compared with the Gigaword corpus. “Distinct ti-
tles” refers to the total number of titles with duplicates
removed. “Unique titles” refers to the number of titles
that occur exactly 1 time. In general, the Wikipedia
titles are shorter and more repetitive than Gigaword ti-
tles.

In the Wikipedia corpus, across 14.3M data
points, there are only 6.5M distinct headings
(45.25% of all titles). Approximately 6M headings
(41.82%) occur only 1 time in the data, meaning
the other 0.5M headings are reused multiple times
across 8.3M articles to constitute the remainder
of the corpus. The most common heading, “His-
tory”, occurs 480K times in the data set, making
up 3.35% of the total corpus. Other common head-
ings include “Career” (181K), “Biography” (151K),
“Early Life” (111K), “Background” (102K) and
“Plot” (96K).

In contrast, the titles in Gigaword are generally
longer and more distinctive than the Wikipedia sec-
tion titles, with 80.45% of all titles being unique.
However, in the absence of generic abstract head-
ings like “History”, the Gigaword corpus tends to
be more extractive, meaning there is high token-
overlap between articles and their titles. The
Wikipedia corpus is also much larger than Giga-
word, which facilitates analyses.

4 Experimental Setup

For all encoders, we use the BERT-base uncased
model. Thus, we lowercase all text and use word-
piece tokenization from the public BERT word-
piece vocabulary (Devlin et al., 2019). We use the
same preprocessing pipeline, including word-piece
tokenization, when computing target text length
and extractive scores.

For all models, we limit the encoder input size
to 128 tokens and the decoder output size to 32
tokens and use a batch size of 32. We generally
use a learning rate of 0.05 with square root decay,
40K warm-up steps, and the Adam optimizer; how-
ever, for the RNN models with the Gigaword data,
we use 100K warm-up steps, clip gradients to 20,
and optimize with Adagrad, which we found to
produce smoother training curves. For the state
constraint models, we start by setting the scalar
α = 0, and linearly increase α to 1, between 100k
and 200k training steps. We train the RNN models
for 2M steps using v100 GPUs, and we train the
transformer models for 500K steps using TPUs. In
practice, we find that the RNN performance stops
improving within 1M steps and the transformer
performance stops within 50K steps.

5 Results and Analysis

5.1 Section Heading Generation
Our main task is to generate a Wikipedia section
title given the section text. Table 2 reports results
using standard summarization metrics: Rouge-1,
Rouge-L, and exact match. Rouge-1 measures the
unigram overlap between the generated text and
the reference text; Rouge-L measures the longest
subsequence that occurs in both the generated text
and the reference; exact match measures if the
generated text exactly matches the reference. The
RNN+ATTN model performs the best overall. The
TRANS and the RNN+SC models perform approxi-
mately the same, and both outperform the regular
RNN model.
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Because the Wikipedia dataset contains diverse
types of headings, including short abstractive head-
ings and long extractive headings, we subdivide
our test data in order to better understand model
performance. In Table 3, we examine how well
these models generate outputs of different lengths
by dividing the test set according to the number of
tokens in the target headings.

All of the RNN decoders outperform the trans-
former decoder for short headings containing 1-
5 tokens, and the RNN+SC model performs the
best overall. Over these short headings, the atten-
tion mechanism provides little advantage. How-
ever, the two attention-based decoders, TRANS

and RNN+ATTN outperform the RNNs without
attention for mid-range-length headings containing
5-10 tokens, which is consistent with prior work
suggesting that attention improves the modeling
of long-term dependencies (Vaswani et al., 2017).
Nevertheless, on headings with > 10 tokens, the
Rouge-L scores for all decoders decline.

Rouge-1 Rouge-L Exact
TRANS 52.0 51.9 39.3
RNN 50.2 50.1 33.8
RNN+SC 52.6 52.4 36.5
RNN+ATTN 54.4 54.3 40.5

Table 2: Results on Wikipedia section heading genera-
tion over the full test set.

# Tokens 1-5 5-10 10-15 15+
Data Size 1M 300K 56K 9K
TRANS 52.5 53.8 36.3 20.8
RNN 54.0 39.6 35.1 25.3
RNN+SC 55.8 44.2 37.7 24.0
RNN+ATTN 54.4 55.7 47.8 32.9

Table 3: Rouge-L on Wikipedia section heading gener-
ation by length. The attention-based decoders outper-
form the decoders without attention on target texts con-
taining 5-10 tokens, but not on shorter target sequences.

Prior work has also examined the trend of ex-
tractiveness in text generation models, specifically
observing that models achieve high performance
when they can copy input tokens directly into the
output, rather than having to encode semantic in-
formation and produce new tokens (Nallapati et al.,
2016; Cheng and Lapata, 2016; See et al., 2017;
Nallapati et al., 2017; Narayan et al., 2018; Grusky
et al., 2018; Pasunuru and Bansal, 2018). Because

we ultimately extract embeddings from our mod-
els, understanding to what extent they copy tokens
or encode more abstract information offers insight
into how useful we can expect embeddings to be.
To examine this, we introduce a metric called ex-
tractive score, which measures what percentage of
the output text can be directly copied from the in-
put text: |Ttarget

⋂
Tinput|

|Ttarget| , where Ttarget and Tinput
represent the tokens in the target text and the input
text respectively.

Thus, for a section and title pair, an extractive
score of 0 indicates that there is no token overlap
between the title and the section text, while a score
of 1 indicates that every token in the title is also in
the section text. Because of the short length of our
section titles, we focus on unigrams, rather than
examining higher-order n-grams. When comput-
ing extractive scores, we use the same text prepro-
cessing pipeline as used in our models, including
wordpiece tokenization and lowercasing.

Extractive Score
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Figure 1: Rouge-L scores for each model over test data
of length 5-10 tokens (300K test samples), segmented
according to extractive score.

In Figure 1, we limit the test data to headings
with 5-10 tokens and divide it into segments ac-
cording to extractive score. The RNN and RNN+SC

models outperform the attention-based models on
data with low extractive scores (≤ 0.5). The higher
performance of the TRANS and the RNN+ATTN

models as compared to the RNN and RNN+SC mod-
els over this data segment (Table 3) is almost en-
tirely on headings where the extractive score is
≥ 0.9. The attention-based models are not better
at producing long titles in general, but rather their
ability to copy from the input text allows them to
generate long titles when they are extractive.

We can further examine this trend by computing
correlations between Rouge-L and extractive score.
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TRANS RNN RNN+SC RNN+ATTN

0.215 0.115 0.136 0.205

Table 4: Partial correlations between Rouge-L and ex-
tractive score, controlled for length. All values are sta-
tistically significant.

However, as Table 3 shows, all decoders perform
differently over texts of different lengths. Thus,
in order to isolate the effect of extractiveness, we
compute partial correlations (Rummel, 1976). The
idea behind a partial correlation is to identify the
relationship between two variables X and Y that is
not explained by a confound Z. We first compute
the residuals eX,i and eY,i, and then compute the
correlation between these residuals:

eX,i = xi − 〈w∗X , zi〉

eY,i = yi − 〈w∗Y , zi〉

Partial Correlation = ρeX,i,eY,i

where w∗X and w∗Y are the coefficients learned
by a linear regression between X and Z and be-
tween Y and Z. In our case, X = Rouge-L, Y =
extractive score, and Z = target length.

Table 4 reports results. For all models, the re-
sulting correlations are positive, indicating that
they generate extractive headings better than non-
extractive headings. However, the correlations for
the TRANS and RNN+ATTN models are highest.
Overall, these results suggest that decoders with
attention mechanisms achieve high performance on
this task because they better copy tokens from the
input into the output, rather than because they en-
code more semantics. Encoding semantic informa-
tion is essential for generating section embeddings,
which we extract and evaluate in Section 5.3.

Rouge-1 R.-L P. Corr
Song et al. (2019) 38.7 36.0 –
TRANS 37.1 34.6 0.647
RNN 35.6 32.6 0.619
RNN+SC 35.1 32.8 0.630
RNN+ATTN 36.3 33.8 0.667

Table 5: Results on Gigaword heading generation. The
correlations between extractive score and model perfor-
mance are stronger than for the Wikipedia corpus for
all models. All correlations are statistically significant.

5.2 Gigaword Results

In order to compare our models against published
benchmarks and to generalize our observations
about extractiveness, we conduct the same experi-
ments over the Gigaword corpus as the Wikipedia
corpus, using the established train, test, and dev
splits (Rush et al., 2015).

Table 5 reports the results of our models as well
as a state-of-the-art model for reference (Song
et al., 2019). Like TRANS, the MASS model
from Song et al. (2019) uses a transformer encoder-
decoder architecture but with generalizations that
allow for additional pre-training. From our models,
the transformer decoder performs the best overall.
However, the attention-based decoders TRANS and
RNN+ATTN also have the highest partial correla-
tions, suggesting much of their performance stems
from extractive titles. For all models the partial
correlations between Rouge-L and extractive score
are higher for the Gigaword corpus than for the
Wikipedia corpus. This correlation is visually ev-
ident in Figure 2, which we constructed the same
way as Figure 1.

Extractive Score

R
ou

ge
-L

0
20
40
60
80

0-0
.1

0.1
-0.

2

0.2
-0.

3

0.3
-0.

4

0.4
-0.

5

0.5
-0.

6

0.6
-0.

7

0.7
-0.

8

0.8
-0.

9
0.9

-1

BERT+Trans. BERT+RNN
BERT+RNN+SC BERT+RNN+Attn.

Figure 2: Rouge-L scores for each model over the Gi-
gaword test data of length 5-10 tokens, segmented ac-
cording to extractive score. Each data segment contains
at least 35 samples.

Figure 2 mirrors the trend in the Wikipedia data
(Figure 1). While the TRANS model performs well
across all extractiveness levels, the RNNs with and
without attention perform similarly for lower levels
of extractiveness. However, the RNN+ATTN begins
outperforming the RNNs without attention when
the extractive score is ≥ 0.5, and especially when
the extractive score is ≥ 0.9.
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Homogeneity Completeness V-measure ARI
Doc2Vec 0.334 0.443 0.381 0.065
TF-IDF 0.428 0.361 0.392 0.044
TRANS 0.633 0.529 0.576 0.065
RNN 0.668 0.558 0.608 0.079
RNN+SC 0.670 0.561 0.611 0.088
RNN+ATTN 0.626 0.521 0.569 0.067

Table 6: Results on Wikipedia section clustering. The RNN+SC model performs the best on all metrics.

5.3 Section-embedding Generation and
Clustering

While labeling sections can improve Wikipedia arti-
cles and identify the type of information contained
in general paragraphs, embedding representations
for paragraphs and documents can offer a more use-
ful way to structure corpora, by facilitating informa-
tion clustering and retrieval. Rather than creating
generic all-purpose embeddings (Le and Mikolov,
2014), our generative models facilitate creating em-
beddings that target specific information, in our
case, the title of the section.

We extract internal states from our models as
section embeddings, and we evaluate them through
a clustering task. Because many Wikipedia articles
use the same generic headings, like “History” and
“Plot”, we can use these headings as gold cluster
assignments by assuming that all sections with the
same title constitute a cluster.

For all models, we use the final hidden layer for
the first token in the input sequence (CLS token)
as the embedding. In the case of the RNN decoder,
this embedding is also the initial state of the RNN,
and thus is the single state that the model is forced
to encode the entire input sequence into.1

We cluster these embeddings using k-means clus-
tering, where we set the number of clusters to the
true number of clusters in the gold cluster assign-
ments. We discard any section titles that occur
fewer than 100 times, ensuring that the minimum
size of any cluster is 100, resulting in 467,286 data
points and 755 clusters. The large number of data
points makes this task particularly difficult.

Table 6 reports results using standard metrics for
evaluating a proposed cluster assignment against
gold data (Hubert and Arabie, 1985; Rosenberg and
Hirschberg, 2007). Homogeneity assesses to what
extent each cluster contains only members of the

1For TRANS and RNN+ATTN, preliminary experiments
showed that using this hidden state as the embedding achieved
strictly better performance than other pooling possibilities.

same class (e.g. does each cluster contain only sec-
tions with the same title?); completeness assesses
to what extent members of the same class are in the
same cluster (e.g. are sections with the same title
in the same cluster?); V-measure is the harmonic
mean between homogeneity and completeness; and
adjusted Rand index (ARI) counts how many pairs
of data points are assigned to the same or different
clusters in the predicted and gold clusterings. On
all metrics, the RNN+SC model performs the best.

To show how our embeddings, which are tai-
lored to this task, differ from off-the-shelf embed-
dings, we report results using embeddings con-
structed from two popular methods for generating
document embeddings: distributed representations
using Doc2Vec (Le and Mikolov, 2014; Lau and
Baldwin, 2016; Vu and Iyyer, 2019) and sparse em-
beddings using TF-IDF weighting (Banerjee et al.,
2007). We train a Doc2Vec model over the train-
ing set using a window size of 5 and embedding
size of 768, to match the embedding size of our
models, and then infer embeddings over the test set.
For the TF-IDF vectors, we give this method an
additional advantage by directly training the model
over the test set with an embedding size of 1000.
As expected, all of our models outperform these
off-the-shelf models.

Unlike off-the-shelf models, our customizable
models encourage the embeddings to encode infor-
mation specific to our prediction task. In this case,
we train them to encode section title information.
However, by training our models on a different
prediction task, such as predicting the name of a
newspaper outlet or a comment on a newspaper
article, we can encourage the model to generate
document embeddings that encode different infor-
mation. Thus, our model architecture offers a way
to generate high-quality document embeddings that
encode information specific to the task at hand.
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6 Related Work

While we introduce the task of Wikipedia section
heading generation, the task of article headline
generation using the Gigaword corpus has been
well-studied, primarily using an encoder-decoder
architecture with additional modules like attention
or copy mechanisms (Rush et al., 2015; Nallap-
ati et al., 2016). Zhang et al. (2019) further ex-
plore how to leverage the pretrained BERT model
for abstractive summarization, primarily using the
CNN/Daily Mail data set. Rothe et al. (2019) per-
form a comprehensive assessment of pretrained lan-
guage models for text generation tasks, including
the Gigaword task. Our TRANS model is identical
to their BERT2RND model and achieves compara-
ble results over the Gigaword corpus.

The high level of extraction in existing text gen-
eration tasks has motivated the use of mechanisms
that explicitly copy input text into the output (See
et al., 2017) or the introduction of new data sets
(Narayan et al., 2018; Grusky et al., 2018). Further-
more, models trained for extractive summarization
often outperform abstractive models on abstractive
data sets (Cheng and Lapata, 2016; Nallapati et al.,
2016, 2017). Our work extends these results by
showing that even abstractive models are implic-
itly learning extraction, as they perform better on
extractive text. Our metric for measuring extrac-
tiveness is similar to the ‘novel n-gram percentage’
proposed by See et al. (2017); however, we use the
same input pipeline for computing this metric as
for training our models, and we correlate extractive
score with performance, rather than just using it as
an extrinsic measure of abstraction (Pasunuru and
Bansal, 2018).

In our Wikipedia section heading generation
task, the prevalence of generic headings makes the
task more abstractive than datasets like Gigaword
(Rush et al., 2015), or even other short-text genera-
tion tasks, like email subject prediction (Zhang and
Tetreault, 2019), which makes it a useful dataset
for analyzing model performance. It is also extrin-
sically useful - most automated methods for im-
proving Wikipedia focus on creating new content,
such as through multi-document summarization
(Liu et al., 2018) or generating text from structured
data (Lebret et al., 2016). However, less than 1% of
all English Wikipedia articles are considered to be
of quality class good, suggesting there is a need for
improving existing articles. Piccardi et al. (2018)
show that many low quality articles consist of 0-1

sections and present a method for recommending
new sections for an author to add to the article. Our
approach offers a way to label existing paragraphs
as distinct sections.

Our approach also results in document embed-
dings, which we show can be used to cluster sec-
tions. Document embeddings are useful for a va-
riety of tasks including news clustering (Banerjee
et al., 2007; Hu et al., 2009), argument clustering
(Reimers et al., 2019), and as features for down-
stream tasks like text classification (Lau and Bald-
win, 2016; Liu and Lapata, 2018). While TF-IDF
vectors have historically been a popular construc-
tion method (Banerjee et al., 2007), more recent
methods have focused on distributive representa-
tions, particularly Doc2Vec, a generalization of the
Word2Vec algorithm (Le and Mikolov, 2014; Lau
and Baldwin, 2016; Vu and Iyyer, 2019).

Finally, the growing popularity of pretrained lan-
guage models like BERT has led to numerous in-
vestigations on what these models learn (Liu et al.,
2019; Goldberg, 2019; Jawahar et al., 2019). Most
investigations involve using targeted probing tasks.
While our work shares similar goals, in that we
investigate what type of information these models
learn, we focus on data subsets and performance
analysis.

7 Future Work

Our work offers several avenues for future ex-
ploration. We focus only on English Wikipedia.
However, there are numerous language editions
of Wikipedia, many of which have far fewer ar-
ticles than the English edition and could benefit
from tools for text generation.2 Additionally, while
we discard the hierarchical nature of Wikipedia
sections, this information could offer a way to im-
prove model performance (potentially at the cost
of generalizability to other data sets). Furthermore,
while we evaluate the performance of our gener-
ated section embeddings for clustering, more work
is needed to assess their usefulness on other tasks,
such as retrieving relevant sections from a query,
measuring section similarities, or as features for
text classification.

8 Conclusions

Overall, our work introduces the task of generat-
ing section titles for text. We also introduce the

2https://en.wikipedia.org/wiki/List_
of_Wikipedias

https://en.wikipedia.org/wiki/List_of_Wikipedias
https://en.wikipedia.org/wiki/List_of_Wikipedias
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RNN+SC model and demonstrate how RNN de-
coders can be utilized for short text generation and
improved section embeddings. Specifically, our
method for generating text embeddings, which in-
volves leveraging internal states of models trained
for generation, allows the embeddings to contain
targeted information that maximizes their useful-
ness for specific tasks.
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