Compressing Neural Machine Translation Models with 4-bit Precision

Alham Fikri Aji and Kenneth Heafield
School of Informatics, University of Edinburgh
10 Crichton Street
Edinburgh EH8 9AB
Scotland
a.fikri@ed.ac.uk, kheafiel@inf.ed.ac.uk

Abstract

Quantization is one way to compress Neu-
ral Machine Translation (NMT) models, es-
pecially for edge devices. This paper pushes
quantization from 8 bits, seen in current work
on machine translation, to 4 bits. Instead of
fixed-point quantization, we use logarithmic
quantization since parameters are skewed to-
wards zero. We then observe that quantizing
the bias terms in this way damages quality, so
we leave them uncompressed. Bias terms are
a tiny fraction of the model so the impact on
compression rate is minimal. Retraining is nec-
essary to preserve quality, for which we pro-
pose to use an error-feedback mechanism that
treats compression errors like noisy gradients.
We empirically show that NMT models based
on the Transformer or RNN architectures can
be compressed up to 4-bit precision without
any noticeable quality degradation. Models
can be compressed up to binary precision, al-
beit with lower quality. The RNN architec-
ture appears more robust towards compression,
compared to the Transformer.

1 Introduction

Neural Machine Translation (NMT) is resource-
demanding. Current state-of-the-art architectures,
such as the Transformer (Vaswani et al., 2017) or
deep RNN (Barone et al., 2017) are typically hun-
dreds of megabytes in size. In a client-based trans-
lation system, these large models must be deployed
locally, thus consuming network bandwidth for dis-
tributing the model, and disk space for storing the
model.

Model quantisation has been widely studied as
a way to compress model size and increase the in-
ference speed. However, most of this work has
focused on convolution neural networks for com-
puter vision tasks (Miyashita et al., 2016; Lin et al.,
2016; Hubara et al., 2016, 2017; Jacob et al., 2018).

35

As such, research on model quantisation for NMT
tasks remains limited.

We find that the model can be compressed at
up to 4-bit precision without sacrificing quality.
We first explore the use of logarithmic-based quan-
tisation over fixed-point quantisation (Miyashita
et al., 2016) based on the empirical findings that
parameter distribution is not uniform, but instead
concentrated near zero (Lin et al., 2016; See et al.,
2016). The magnitude of a parameter also varies
across layers; therefore, we propose an improved
method of scaling the quantization centres. We
also notice that biases do not quantise very well.
However, since biases do not consume a noticeable
amount of memory, they can be left unquantised.
Lastly, we explore the significance of re-training in
the model compression scenario. We adopt an error
feedback mechanism (Seide et al., 2014) to pre-
serve the quantisation error rather than discarding
it at every update during re-training.

2 Related Work

A considerable amount of research on model quan-
tisation has been performed in the area of computer
vision with convolutional neural networks; how-
ever, research on model quantisation in the field
of neural machine translation is far more limited.
Therefore, we will also refer to work on neural
models for image processing in this section, where
appropriate.

Hubara et al. (2016) quantised the model and
activation to binary on a CNN network for vari-
ous image classification tasks. The binary network
achieved near state-of-the-art quality on several
easier tasks such as MNIST and CIFAR-10 but
achieved sub-par performance on the more chal-
lenging ImageNet dataset (losing over 20% accu-
racy with quantised GoogleNet). Hubara et al.
(2017) later reported that with 6-bit fixed-point

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 35-42
Online, July 10, 2020. ©2020 Association for Computational Linguistics
www.aclweb.org/anthology/D19-56%2d

quantisation, GoogleNet “only” lost 5% accuracy.
(Lin et al., 2016) used different bit precisions on
various CNN layers, achieving over 20% compres-
sion on the CIFAR-10 task.

Since the model’s parameters are highly con-
centrated near zero, Miyashita et al. (2016) opted
for logarithmic quantisation. They report an im-
provement in preserving model accuracy over lin-
ear quantisation while achieving the same model
compression rate. They also reported negligible
accuracy degradation when compressing VGG16
with 3-bit logarithmic quantisation, whereas 3-bit
fixed-point quantisation suffered a 6% accuracy
drop.

Hubara et al. (2017) compress an LSTM-based
architecture for language modelling to 4-bits with-
out any quality degradation but had to scale the
hidden layer size by 3. See et al. (2016) pruned an
NMT model by removing any weight values lower
than a certain threshold. They achieve 80% model
sparsity without any quality degradation.

A relevant work with respect to our purposes is
the submission of Junczys-Dowmunt et al. (2018)
to the Shared Task on Efficient Neural Machine
Translation in 2018. This submission applied an
8-bit linear quantisation for NMT models without
any noticeable deterioration in translation quality.
Similarly, Quinn and Ballesteros (2018) proposed
the use of 8-bit matrix multiplication to increase
the CPU inference speed of an NMT system.

3 Low-precision Neural Machine
Translation

3.1 Log-based Compression

Parameters in deep learning models are normally
distributed (Lin et al., 2016; See et al., 2016).
Therefore, a uniformly distributed fixed-point quan-
tisation may not fit the parameter distribution. To
improve resolution for small values, we adopt log-
arithmic quantisation following Miyashita et al.
(2016) where parameter density is the highest. Fig-
ure 1 illustrates the weight distribution and our
log-based quantisation.

We use the same quantisation centres for positive
and negative values. When compressing to B bits,
a single bit represents the sign while the remaining
B —1 bits represent the log magnitude. The centres
are tuned based on the absolute value of the data.

For efficient implementation and because the
impact on quality was minimal after re-training,
we use log base 2. Log base 2 means that ex-

36

-0.3 -0.2 —01 0.0

.1 0.2 0.3

(a) First layer encoder self attention weight histogram

-0.3 -0.2 -0.1 0.0

0.1 0.2 0.3

(b) First layer decoder self attention weight histogram

-0.3 —02 -0.1 0.0

0.3

(c) First layer decoder context attention weight

Figure 1: Histograms of the first layer’s attention key
weights. Parameters follow a normal distribution. Ver-
tical lines illustrate the log-based quantisation centres.

ponentiation amounts to a bit-shift while taking
a rounded log (which will be used to quantise a
value) amounts to addition followed by finding the
leftmost 1 in binary.

We find that tensors might not have the same
parameter magnitude. Therefore we also scale
the quantisation centres to approximate each ten-
sor better. This approach is different from that
of Miyashita et al. (2016), where quantisation cen-
tres are not scaled, thus letting every tensor to have
the same set of centres. Formally, each quantisation
centre takes the form +.527 where S is a scaling
factor, and ¢ is an integer in the range (—2571,0].
The scaling factor S is selected separately for each
tensor in the model.

To minimise the mean squared encoding error,
values should be quantised to the nearest centre.
Miyashita et al. (2016) find the nearest centre in
logarithmic space by taking the log and then round-
ing to the nearest integer, which is not the same
as finding the nearest centre in normal space. For
example, their approach will quantise 5.8 to 23
instead of 22 because log,(5.8) ~ 2.536, which
rounds to 3. In normal space, 5.8 is closer to 22
instead of 23,

We can implement rounding to the nearest centre
in normal space efficiently by multiplying by %,

taking the log and rounding up to the next integer.
Let z € [29,2971]. Thus:

24 4 94+l
2
24(1 + 2)
2

x rounds up to 297! — z >

= x>
)

2
<:>§a:>2q

2
< logy gx > q
Therefore, given a positive x, we can find the

quantised magnitude of g with respect to rounding
scheme in normal space by:

1= oga (1) @

Ultimately, given a value v that will be quantised
a B-bit logarithmic quantisation. We encode v as
(sign,q), where sign represents the sign (1-bit),
and q represents the magnitude (B — 1 bits). Our
quantisation functions as follows:

sign = sign(v)

t = clip(|v| /S, [1,2"~

4= Mogy (1)

2B—1

) (3)

where ¢ is a temporary variable. We first scale the
value to the desired range based on scaling factor S.
We will discuss more on computing S later. Then,
we clip the value into the given range since we have
limited quantisation centres. This then decodes to
v as v/ = signS29. In practice, the sign is
stored with q.

TS

3.2 Selecting the Scaling Factor

There are a few heuristics to choose a scaling factor
of S. Junczys-Dowmunt et al. (2018) and Jacob
et al. (2018) scale the model based on its maxi-
mum value, which can be very unstable—especially
during re-training. Alternatively, Lin et al. (2016)
and Hubara et al. (2016) use a pre-defined step size
for fixed-point quantization. Our objective is to
select a scaling factor .S such that the quantised
parameters are as close to the original as possible.
Therefore, we optimise .S such that it minimises
the squared error between the original and the com-
pressed parameters.

We propose a method to fit S by minimising the
SME. We start with an initial scale .S based on the

37

parameters’ maximum value. For a given S, we
apply our quantisation routine described in Equa-
tion 3 to a tensor v, resulting in an approximation
of v'. For a given assignment v, we fit a new scale
S such that:

S = arg mgn Z (vh — v;)? 4)
K3
Substituting v; within Eq. 4, we have:

S = arg mgn Z(Sign(vi)Squ —v)? (5

To simplify the equation, let a temporary vari-
able a; to substitute sign(v;)2%. Hence we have:

— i Q42
S—argmsln;(azs v;) (6)

To optimise the given objective, we take the first
derivative of Equation 6 such that:

% Z(aiS —v))2=0
2Z(ai(a¢5 — ;) =0
> _(afs) = > (aiw) =0
Szaf = Z(am)
>i(aivi)

TS
S = Zi(Sign(Ui)qu'Ui)
Zi(Sign(Ui)qu)g

(7
We optimise .S for each tensor independently.

3.3 Re-training

We observe later in Section 4.2 that quantisation
damages the model. Therefore, we re-train the
model after initial quantisation to allow it to re-
cover some of the quality loss. In the re-training
phase, we compute the gradients normally with
full precision. We then re-quantise the model after

Figure 2: Log-quantization step function.

every update to the parameters, including fitting
scaling factors.

Re-quantising the model after every update intro-
duces quantisation errors. The re-quantisation error
is preserved in a residual variable and added to the
next step’s parameter (Seide et al., 2014) before
quantisation. We find that re-training fails to work
without this mechanism (Section 4.2).

3.4 Handling Biases

We do not quantise bias values in the model. We
find that biases are not as highly concentrated near
zero when compared to other parameters. Empiri-
cally, in our pre-trained Transformer architecture,
bias has a higher standard deviation of 0.17 (com-
pared to 0.07 for other parameters). Attempting to
log-quantise them used only a fraction of the avail-
able quantisation points. In any case, bias values
do not consume a lot of memory relative to other
parameters. In our Transformer architecture, they
account for only ~0.2% of the parameter values.

3.5 Low-precision Dot Products

To improve the CPU inference speed, we explore
training and computing dot products in low preci-
sion. Activations coming into a matrix multipli-
cation are quantised on the fly, while intermediate
activations (such as tanh) are not quantised.

We use the same log-based quantisation proce-
dure described in Section 3.1 when training the
model. However, we only attempt a fixed pre-
determined scale. Running the slower EM ap-
proach to optimise the scale before every dot prod-
uct would not be fast enough for inference applica-
tions.

Training with Quantised Dot Products

Our log-quantised activation is a step function, as
illustrated in in Figure 2. Therefore, the deriva-

38

tive of this function is O almost everywhere, or
undefined in the quantization centres. Thus, we
cannot back-propagate through this function nor-
mally. Inspired by (Hubara et al., 2017), we utilise
a straight-through estimator (Bengio et al., 2013)
to set the derivative of the the function to 1, thus
enabling training.

Computing Dot Products in Log-space

A dot product operation consists of two sub-
operations: element-wise multiplication and sum.
In our case, we now have two vectors a and b, both
in the form of:

a =Sy *[(signji * 271),..., (signj, * 2/)]

b= Sy« [(signg; * 2K1), ..., (signg, * 28]

Multiplication is performed by adding the powers.
We then add the resulting multiplications together
normally, as follows:

a-b=5S,*Sp Z(signﬁ * STGNJ; * 2ji+ki))

)

Computing power is obtained by using a bit-shift,
while computing sign; * signy; can be performed
using bitwise xor, therefore avoiding expensive
multiplication instructions (Miyashita et al., 2016).

4 Experiments

4.1 Experiment Setup

We use systems for the WMT 2017 English-to-
German news translation task for our experiment,
which differs from the WNGT shared task set-
ting previously reported. We use back-translated
monolingual corpora (Sennrich et al., 2016a) and
byte pair encoding (Sennrich et al., 2016b) to pre-
process the corpus. Quality is measured based on
BLEU (Papineni et al., 2002) score using sacre-
BLEU script (Post, 2018).

We first pre-train baseline models with both
Transformer and RNN architectures. Our Trans-
former model consists of six encoder and six de-
coder layers with tied embedding. Our deep RNN
model consists of eight layers of bidirectional
LSTM. Models were trained synchronously with
a dynamic batch size of 40 GB per batch using
the Marian toolkit (Junczys-Dowmunt et al., 2018).
The models are trained until we observe no im-
provement in 10 consecutive validations. Models
are optimised with the Adam optimiser (Kingma
and Ba, 2014). The rest of the hyperparameter

settings on both models follow the suggested con-
figurations (Vaswani et al., 2017; Sennrich et al.,
2017). We use wmt2016 as the test set.

4.2 4-bit Transformer Model

In this experiment subsection, we explore different
ways to scale the quantisation centres, the signif-
icance of quantising biases and the significance
of re-training. We use a pre-trained Transformer
model as our baseline and apply our quantisation
algorithm on top of that. This experiment focuses
solely on the compression ratio. Therefore, models
are decompressed back into a 32-bit floating-point
value for inference.

Table 1 summarises the results. Using a sim-
ple (albeit unstable) max-based scaling has shown
to perform better than not using the scale factor.
However, fitting the scaling factor to minimise the
quantisation squared error produces the best qual-
ity. The BLEU score differences between methods
of choosing the scaling factor are diminished after
re-training.

We can also see improvements by not quantis-
ing biases, especially without re-training. Without
any re-training involved, we reached the highest
BLEU score of 35.47 by using an optimised scale
in addition to uncompressed biases. Without bias
quantisation, we obtained a ~7.9x compression ra-
tio (instead of 8x) with a 4-bit quantisation. Based
on this trade-off, we argue that it is more beneficial
to keep the biases in full precision.

Re-training has shown to generally improve qual-
ity. After re-training, the quality differences be-
tween various scaling and biases quantisation con-
figurations are minimal. These results suggest that
re-training helps the model to fine-tune under a new
quantised parameter space.

Training Routine

We prepare our 4-bit quantisation model by re-
training from a full precision model. We also store
the quantisation errors to be considered for the next
update. In this subsection, we answer the question
of whether it is necessary to perform these steps.
We explore the preparation of the 4-bit model if
trained from scratch. Similarly, we explore 4-bit
model preparation without an error feedback mech-
anism. For this experiment, we use optimised scal-
ing and 32-bit bias when applying 4-bit log quanti-
sation. Based on the previous result, we left biases
unquantised.

The results in Table 2 indicate that fine-tuning

39

from a pre-trained model and error feedback are
necessary to produce a high-quality 4-bit model.
Removing either of them degrades the quality.
BLEU score is dramatically reduced if we train
the model from scratch. Likewise, the quantised
model is practically unable to learn without the
error feedback mechanism. As shown in Table 1,
the quantised model achieved a 34.31 BLEU score
without re-training. Re-training said model barely
improves the BLEU to 34.45 without the error feed-
back mechanism.

Size Comparison

To demonstrate the improvement of our method,
we compare several compression approaches to
our 4-bit logarithmic quantisation method with re-
training and without bias quantisation. One of the
arguably naive methods used to reduce model size
is the use of smaller unit size. For Transformer,
we set the feed-forward dimension to 512 (from
2048) and the embedding size to 128 (from 512).
For RNN, we set the dimension to 320 (from 1024)
and the embedding size to 160 (from 512). Using
this method, the model size is ~8x smaller and
similar to 4-bit quantisation in terms of the model
compression rate.

We also introduce the 4-bit fixed-point quanti-
sation approach as a comparison, which is based
on Junczys-Dowmunt et al. (2018). However, we
made a few modifications to the original approach.
Firstly, we apply re-training, which is absent in
their implementation. Moreover, we skip bias quan-
tisation. Finally, we optimise the scaling factor
instead of the suggested max-based scale.

Table 3 summarises the results, which indicate
that reducing the model size by simply reducing the
dimension resulted in the worst performance. Our
result is in line with (Huang et al., 2019), who show
that reducing the model size by using fewer layers
degrades quality. Logarithmic-based quantisation
has been shown to perform better when compared
to fixed-point quantisation using both architectures.

The RNN model seems to be more robust to-
wards the compression. RNN models exhibit re-
duced quality degradation in all compression sce-
narios. We hypothesise that the gradients computed
with a highly compressed model are very noisy,
thus resulting in noisy parameter updates. Our find-
ing is in line with prior research (Chen et al., 2018;
Aji and Heafield, 2019), which state Transformer
is more sensitive towards noisy training conditions.

Method Compression Scaling

Unscaled Max Optimized
32-bit FP model (Baseline) - 35.66 - -
4-bit log model 8x 25.20 28.08 33.33
4-bit log model + 32-bit FP bias 7.88x 34.16 34.29 34.31
4-bit log model + re-training 8x 34.92 34.81 35.26
4-bit log model + 32-bit FP bias + re-training 7.88x 35.09 35.25 35.47

Table 1: 4-bit Transformer quantisation performance for English-to-German translation, measured in BLEU score.
We explore different methods of determining the scaling factor as well as skipping bias quantisation and re-training.

Method FT EF Transformer RNN Method Transformer RNN
Baseline - - 35.66 34.28 Baseline 35.66 34.28

4-bit v /' 3547019 34.22 (-0.06) + 4-bit model 35.47 (-0.19) 34.22 (-0.06)
4-bit vV X 3445¢121) 33.32(-0.96) + 4-bit dot-product 35.05 (-0.61) 33.12 (-1.16)
4-bit X vV 2854(-712) 28.45(-5.83)

4-bit X X 0.05(-35.61) 0.00(-34.48) Table 4: Model performance (in BLEU) of model quan-

Table 2: The model performance (based on BLEU
score) of various training scenarios using both Trans-
former and RNN architectures. FT = Fine-Tuning, EF
= Error-Feedback.

Method Transformer RNN
Baseline 35.66 34.28
Reduced Dimension 29.03 (-6.63) 30.88 (-3.40)
4-bit fixed point 34.61 (-1.05) 34.05 (-0.23)
4-bit log (Ours) 35.47 (-0.19) 34.22 (-0.06)

Table 3: The model performance (based on BLEU
score) of various quantisation approaches using both
Transformer and RNN architecture.

4.3 Quantised Dot-Product
Quality Benchmark

We now apply logarithmic quantisation for all ma-
trix multiplication inputs. We use the same quanti-
sation procedure as the parameter. However, we do
not fit the scaling factor since it is very inefficient.
Hence, we do not scale the quantization centres
for the activation. For the parameter quantisation,
we use an optimised scale with uncompressed bi-
ases based on the previous experiment. Table 4
presents the quality results of the experiment. Gen-
erally, we observe quality degradation compared to
a full-precision dot product.

Speed Benchmark

Unfortunately, current hardware does not support
a 4-bit instruction, thus our dot-product must be

40

tisation with dot product quantisation using both Trans-
former and RNN architecture.

Dot-Product Method time (ns)
32-bit float 8.45699
8-bit integer 2.08390
4-bit log (16-bit Shift) 3.89595

4-bit log (8-bit Lookup table) 2.51924

Table 5: Time measurement of dot products of 128 el-
ements with different value representations. We use a
Cascade Lake processor.

emulated using instructions with wider bit widths.'

Since there is no 4-bit or 8-bit shift instruction,
we emulate 27 in 16-bit instead. Alternatively, we
can choose a lower base, for example 25611 in-
stead of 2 so that the resulting power fits in 8-bit
precision. In this case, we can use the 8-bit lookup
table instruction vpshufb instead.

We benchmark our result with an 8-bit integer
dot product based on the vpdpbusds instruction
(which was introduced in the Cascade Lake to opti-
mise 8-bit matrix multiplication) and a basic 32-bit
float dot product using fused multiplication and
addition.

Table 5 reports the time required to perform a
dot product under different quantisation schemes.
8-bit lookup table is faster than 16-bit. Unfortu-
nately, our 4-bit dot product is inefficient, resulting
in it being much slower than an 8-bit dot product.
With current hardware, the main advantage over
8-bit quantization is smaller model size, which is

'nttps://github.com/kpu/intgemm/blob/
logd-unstable/log4/logd.h

https://github.com/kpu/intgemm/blob/log4-unstable/log4/log4.h
https://github.com/kpu/intgemm/blob/log4-unstable/log4/log4.h

Bit Transformer RNN
Size (rate) BLEU(A) Size (rate) BLEU(A)
32 251 MB 35.66 361 MB 34.28
4 32MB(788x) 35470190 46 MB (7.90x) 34.22 (-0.06)
3 24 MB (10.45x) 34.95 (-0.71) 34 MB (10.49x) 34.11 (-0.17)
2 16 MB (15.50x) 33.40(-226) 23 MB (15.59x) 32.78 (-1.50)
1 8 MB (30.00x) 29.43 (-6.23) 12 MB (30.35x) 31.71 (-2.51)

Table 6: Compression rate and performance of both Transformer and RNN with various bit widths. The compres-
sion rate between Transformer and RNN is not equal since they have different biases to parameter size ratio.

of interest for local deployment on mobile devices.
Should future hardware also support 4-bit instruc-
tions natively, 4-bit models could also improve de-
coding efficiency.

4.4 Beyond 4-bit precision

With 4-bit quantisation and uncompressed biases,
we obtain a 7.9x compression rate. Bit width can
be set below 4 bit to achieve an even better com-
pression rate, albeit introducing more compression
error. To explore this, we sweep several bit widths.
Moreover, we skip bias quantisation and optimise
the scaling factor.

Training an NMT system below 4-bit precision
remains a challenge. As shown in Table 6, model
performance degrades with fewer bits being used.
While this result might be acceptable, we argue
that the result can be improved. One worthwhile
idea would be to increase the unit size in an ex-
tremely low-precision setting. We have shown that
4-bit precision performs better compared to the full-
precision model with (near) 8x compression rate.
Moreover, Han et al. (2015) demonstrated that 2-bit
precision image classification can be achieved by
scaling the parameter size. An alternative approach
is to have different bit widths for each layer (Hwang
and Sung, 2014; Anwar et al., 2015).

We also observe the robustness of RNN over
Transformer in this experiment since RNN models
degrade less compared to the Transformer counter-
part. The RNN model outperforms Transformer
when compressing at binary precision.

5 Conclusion

We compress the model size in neural machine
translation to approximately 7.9x smaller than 32-
bit floats by using a 4-bit logarithmic quantisation.
Bias terms can be left uncompressed without sig-
nificantly affecting the compression rate. We also
find that re-training after quantisation is necessary

41

to restore the model’s performance.

Matrix multiplication can further be quantised,
although quality is sacrificed. Unfortunately, 4-
bit dot products found in matrix multiplication are
slow because current hardware does not natively
support the necessary 4-bit instructions.

Acknowledgements

This work was conducted within the scope
of the Horizon 2020 Research and Innova-
tion Action Bergamot, which has received funding
from the European Union’s Horizon 2020 research
and innovation programme under grant agreement
No 825303. Additional support was provided by
Intel Corporation. This work was performed us-
ing resources provided by the Cambridge Service
for Data Driven Discovery (CSD3) operated by
the University of Cambridge Research Comput-
ing Service (http://www.csd3.cam.ac.uk/), pro-
vided by Dell EMC and Intel using Tier-2 funding
from the Engineering and Physical Sciences Re-
search Council (capital grant EP/P020259/1), and
DiRAC funding from the Science and Technology
Facilities Council (http://www.dirac.ac.uk).

References

Alham Fikri Aji and Kenneth Heafield. 2019. Making
asynchronous stochastic gradient descent work for
transformers. EMNLP-IJCNLP 2019, page 80.

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung.
2015. Fixed point optimization of deep convolu-
tional neural networks for object recognition. In
2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
1131-1135. IEEE.

Antonio Valerio Miceli Barone, Jindfich Helcl, Rico
Sennrich, Barry Haddow, and Alexandra Birch.
2017. Deep architectures for neural machine trans-
lation. In Proceedings of the Second Conference on
Machine Translation, pages 99-107.

http://www.csd3.cam.ac.uk/
http://www.dirac.ac.uk

Yoshua Bengio, Nicholas Léonard, and Aaron
Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional com-
putation. arXiv preprint arXiv:1308.3432.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar,
et al. 2018. The best of both worlds: Combining
recent advances in neural machine translation. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 76—86.

Song Han, Huizi Mao, and William J Dally. 2015.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. arXiv preprint arXiv:1510.00149.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Ji-
quan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019.
Gpipe: Efficient training of giant neural networks
using pipeline parallelism. In Advances in Neural
Information Processing Systems, pages 103—112.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized
neural networks. In Advances in neural information
processing systems, pages 4107—4115.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. 2017. Quantized
neural networks: Training neural networks with low
precision weights and activations. The Journal of
Machine Learning Research, 18(1):6869-6898.

Kyuyeon Hwang and Wonyong Sung. 2014. Fixed-
point feedforward deep neural network design using
weights+ 1, 0, and- 1. In 2014 IEEE Workshop on
Signal Processing Systems (SiPS), pages 1-6. IEEE.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 2704-2713.

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu
Hoang, Roman Grundkiewicz, and Anthony Aue.
2018. Marian: Cost-effective high-quality neural
machine translation in c++. In Proceedings of the
2nd Workshop on Neural Machine Translation and
Generation, pages 129—135.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Darryl Lin, Sachin Talathi, and Sreekanth Anna-
pureddy. 2016. Fixed point quantization of deep
convolutional networks. In International Confer-
ence on Machine Learning, pages 2849-2858.

42

Daisuke Miyashita, Edward H Lee, and Boris Mur-
mann. 2016. Convolutional neural networks us-
ing logarithmic data representation. arXiv preprint
arXiv:1603.01025.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311-318. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting bleu
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191.

Jerry Quinn and Miguel Ballesteros. 2018. Pieces of
eight: 8-bit neural machine translation. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 3
(Industry Papers), pages 114-120.

Abigail See, Minh-Thang Luong, and Christopher D
Manning. 2016. Compression of neural machine
translation models via pruning. arXiv preprint
arXiv:1606.09274.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and
Dong Yu. 2014. 1-bit stochastic gradient descent
and application to data-parallel distributed training
of speech DNNSs. In Interspeech.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich
Germann, Barry Haddow, Kenneth Heafield, An-
tonio Valerio Miceli Barone, and Philip Williams.
2017. The University of Edinburgh’s neural mt
systems for WMT17. In Proceedings of the Sec-
ond Conference on Machine Translation, pages 389—
399.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86-96, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics, pages 1715-1725.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998—-6008.

