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Abstract

We present the task of Simultaneous Transla-
tion and Paraphrasing for Language Educa-
tion (STAPLE). Given a prompt in one lan-
guage, the goal is to generate a diverse set of
correct translations that language learners are
likely to produce. This is motivated by the
need to create and maintain large, high-quality
sets of acceptable translations for exercises in
a language-learning application, and synthe-
sizes work spanning machine translation, MT
evaluation, automatic paraphrasing, and lan-
guage education technology.

We developed a novel corpus with unique prop-
erties for five languages (Hungarian, Japanese,
Korean, Portuguese, and Vietnamese), and re-
port on the results of a shared task challenge
which attracted 20 teams to solve the task. In
our meta-analysis, we focus on three aspects
of the resulting systems: external training cor-
pus selection, model architecture and training
decisions, and decoding and filtering strategies.
We find that strong systems start with a large
amount of generic training data, and then fine-
tune with in-domain data, sampled according
to our provided learner response frequencies.

1 Introduction

Machine translation systems are typically trained
to produce a single output, but in certain cases, it
is desirable to have many possible translations of
a given input text. For example, Duolingo—the
world’s largest language-learning platform—uses
translation-based exercises for some of its lessons.
For any given translation prompt there may be hun-
dreds or thousands of valid responses, so we use a
set of human-curated translations in order to grade
learner responses. The manual process of main-
taining these sets is laborious, and we believe it
can be improved with the aid of rich multi-output
translation and paraphrase systems.

Prompt
is my explanation clear?

Reference Translation
a minha explicação está clara?

Accepted Translations Weight
minha explicação está clara? .267
minha explicação é clara? .162
a minha explicação está clara? .111
a minha explicação é clara? .088
minha explanação está clara? .057
está clara minha explicação? .044
minha explanação é clara? .039
a minha explanação está clara? .036
... ...

Table 1: An example from the Portuguese dataset. In
this task, teams are given an English prompt and a
reference translation, and are required to produce as
many variants in the accepted translations as possible.
The evaluation favors translations with higher weight,
which is a measure of learner response frequency.

To this end, we introduce a new task called Si-
multaneous Translation and Paraphrasing for Lan-
guage Education (STAPLE). From the perspective
of the research community, we believe this poses an
interesting exercise that is similar to machine trans-
lation (MT), but also provides data with new and
unique properties that we expect to be of interest
to researchers in MT evaluation, multilingual para-
phrasing, and even language education technology.
It is our hope that this new task can help synthesize
efforts from these various subfields to further the
state of the art, and broaden their applications.

2 Shared Task Description

For the STAPLE task, participants begin with En-
glish prompts and generate high-coverage sets of
plausible translations in five different languages.
For training and evaluation, each prompt is paired
with a relatively comprehensive set of handcrafted,
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Figure 1: Screenshots from the Duolingo app (iOS, circa 2020), showing translation exercises for English prompts
into Portuguese. The first two examples show correct student translations, with Duolingo suggesting an alternate,
preferred translation in the second case. The third and fourth responses show incorrect translations.

field-tested accepted translations, each weighted
and ranked according to their empirical frequency
among Duolingo learners. We also provide a high-
quality automatic reference translation of each
prompt that may (optionally) be used as a refer-
ence or anchor point, in the event that researchers
want to explore paraphrase-only approaches (this
also serves as a strong baseline). See Table 1 for
an example from the Portuguese dataset.

2.1 Corpus Collection

Data for the task are derived from Duolingo, a free,
award-winning, online language-learning platform.
Since launching in 2012, hundreds of millions of
learners worldwide have enrolled in Duolingo’s
game-like courses via the website1 or mobile apps.
Learning happens through a variety of interactive
exercise types, combining reading, writing, listen-
ing, and speaking activities.

One such format is a translation exercise—
shown in Figure 1—in which the learner is shown
a prompt in one language, and asked to translate
it into the other. Since English is by far the most
popular language to learn on Duolingo, we created
a task corpus by sampling prompts from English
courses, in which users are shown an English sen-
tence, and then asked to translate it into a language
they already know. For instance, the examples
in Figure 1 come from the course for Portuguese
speakers learning English.

1https://www.duolingo.com

Naturally, some prompts have more accepted
translations (valid learner responses) than others,
depending on such factors as polysemy, synonymy,
or prompt length. We filtered out prompts for
which the number of accepted translations was in
the top or bottom deciles of a course, to avoid out-
liers. Although each accepted translation is techni-
cally correct, usually a small number of them are
considered most fluent or idiomatic. To estimate
this distribution empirically, we gathered learner
response data from October–November 2019. For
each translation, we counted the number of times
that learners produced that translation (with some
allowances for punctuation and capitalization).

This provided a count ct for each translation t
in the set of accepted translations A. Since many
translations were never attested in learner data, we
then smoothed and normalized these counts to pro-
duce a learner response frequency (LRF) weight
wt for each translation, such that they sum to 1 for
each prompt:

wt =

√
ct + 1∑

t′∈A
√
ct′ + 1

These weights are a unique feature of the STAPLE
corpus, and found in almost no other datasets.

Having gathered prompts from each course, we
shuffled the prompt set and selected 500 prompts
for development and 500 for test. Of the remaining
prompts for each course, we created a training set
by sampling according to course size, so smaller
courses (e.g., Vietnamese) have fewer prompts.
Statistics on the datasets can be found in Table 2.

https://www.duolingo.com
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Train Dev Test

Language prompts trans. ratio prompts trans. ratio prompts trans. ratio

Hungarian 4,000 251,442 62.9 500 27,647 55.3 500 33,578 67.2
Japanese 2,500 855,941 342.4 500 172,817 345.6 500 165,095 330.2
Korean 2,500 700,410 280.2 500 140,353 280.7 500 150,477 301.0
Portuguese 4,000 526,466 131.6 500 60,294 120.6 500 67,865 135.7
Vietnamese 3,500 194,720 55.6 500 29,637 59.3 500 28,242 56.5

Table 2: Dataset sizes by number of prompt sentences, and total number of accepted translations.

2.2 Five Language Tracks

We provide data for translating English prompts
into five languages: Hungarian, Japanese, Korean,
Portuguese (Brazilian), and Vietnamese. These
span five different language families, three dif-
ferent writing systems, and represent a wide va-
riety of popular Duolingo courses. For example,
as of this writing, English from Portuguese is the
fourth-largest Duolingo course overall, whereas En-
glish from Korean is median-sized, with the others
falling in between. As such, much effort has gone
into developing their accepted translation sets, but
there is probably still room for improvement. These
five languages also vary widely in their status as
high-to-low-resource languages in NLP research.

For the shared task, participants were allowed to
submit results to any or all of these language tracks.
Furthermore, there were no restrictions on the use
of external data; teams were encouraged to use any
available monolingual or parallel corpora.

2.3 Evaluation

The main scoring metric is (macro) weighted F1
with respect to the accepted translations. In short,
systems are scored based on how well they can
return all human-curated accepted translations, but
with lower penalties on recall for failing to produce
translations that learners rarely submit anyway.

For each prompt sentence s with accepted trans-
lation set As in the corpus, we evaluate the
weighted recall of a system’s predicted translation
set Ps as follows:

Weighted Recall(Ps) =
∑

t∈|Ps∩As|

wt

/ ∑
t∈|As|

wt

Precision is calculated in an unweighted fashion (as
there is no weight for false positives), and weighted
F1 for each Ps is simply the usual harmonic mean
of precision and weighted recall. These weighted

F1s for each prompt are then averaged over the
entire evaluation dataset D:

(Macro) Weighted F1 =
∑
s∈D

Weighted F1(Ps)
|D|

Since evaluation is done by matching predictions
with accepted translations, we ignore any differ-
ences due to punctuation, capitalization, or multi-
ple whitespaces.

2.4 Challenge Timeline
We announced the shared task on December 20,
2019, with information about the task timeline,
data, etc., published on a regular basis to a ded-
icated website2. We released the training data on
January 15, blind dev data on March 2, and blind
test data on March 30, 2020.

During the blind dev phase, participants were
able to submit up to five submissions per day to
an online evaluation leaderboard. Originally, we
had planned on closing the dev phase at the start
of the test phase, but upon request, we kept it open
so that teams could continue to experiment and
submit to the dev leaderboard even after the test
phase opened, without counting against their final
submission(s). We allowed up to three submissions
in total to the test leaderboard (to account for tech-
nical problems, etc.).

3 Results

A total of 20 teams participated during the dev
phase, 13 teams during the test phase, and 11 teams
submitted system description papers. Of the teams
with system descriptions, three of them (jbrem,
sweagraw, jindra.helcl) participated in all five
language tracks. One team (rakchada) submitted
to two tracks, and the remaining teams only submit-
ted to a single track, with Japanese and Portuguese
being the most popular.

2https://sharedtask.duolingo.com

https://sharedtask.duolingo.com
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Team

jbrem
nickeilf
rakchada
jspak3
sweagraw
masahiro
mzy
dcu
jindra.helcl
darkside
nagoudi
baseline_aws
baseline_fairseq

Hungarian
Rank F1

1 .555
–

1 .552
–

2 .469
–
–
–

3 .435
–
–

4 .281
5 .124

Japanese
Rank F1

1 .318
–
–
–

2 .294
2 .283
3 .260

–
4 .213
5 .194

–
6 .043
7 .033

Korean
Rank F1

1 .404
–
–

2 .312
3 .255

–
–
–

4 .206
–
–

5 .041
5 .049

Portuguese
Rank F1

1 .552
1 .551
1 .544

–
2 .525

–
–

3 .460
4 .412

–
5 .376
6 .213
7 .136

Vietnamese
Rank F1

1 .558
–
–
–

2 .539
–
–
–

3 .377
–
–

4 .198
5 .254

Table 3: F1 results for all systems, on all languages. Rank is assigned according to statistical significance (§3).

Official weighted F1 results are shown in Table 3.
Ranks are determined using an approximate per-
mutation test with 100,000 samples (Padó, 2006),
and adjacent-scoring systems are considered sig-
nificantly different at p < .05. Figure 3 provides
additional detail on precision and weighted recall.
Overall, teams outperformed our provided base-
lines by a wide margin, and submissions tended to
score higher on precision than weighted recall.

3.1 Baselines

We prepared two very different baselines. For base-
line_aws, we used Amazon Translate3 to generate
a single “best” machine translation from English
into the target language. These were also provided
as reference translations at each phase.

For baseline_fairseq, we used the fairseq frame-
work (Ott et al., 2019) trained solely on the STA-
PLE task data. We created bitexts by pairing En-
glish prompts with each of their target language
translations (making no use of the weights). The
baseline employs a convolutional neural network
(CNN) using byte-pair encoding (BPE) with a vo-
cabulary size of 20,000, and simply outputs default
n-best lists of size 10. While we ensured that the
output BLEU scores of this model were sensible,
we did not tune any parameters, instead treating
this as a baseline that should be attainable by any
team with minimal effort. Our baseline code was
provided as a starting point for participants, and
many chose to derive their systems from it.

3https://aws.amazon.com/translate/

Train High-Quality 
MT Model

Fine Tune 
MT Model

Generate 
n-best lists

STAPLE 
Data

Massive MT 
data

Selection & 
Sampling

Filtering
Reranking
Ensembling
Voting
Diverse Search

1. 2. 3.

Figure 2: Generalized pipeline used by most systems.

3.2 Submitted Systems

With few exceptions, participating teams followed
the generalized pipeline illustrated in Figure 2.
This consists of (1) training a high-quality machine
translation model using massive but mostly out-of-
domain corpora, (2) fine-tuning the model using
STAPLE task corpora (and sometimes others), and
then (3) employing various tricks for diverse output
generation and filtering.

jbrem (Khayrallah et al., 2020) took an ap-
proach involving score-based filtering of n-best
lists, from a Transformer model pre-trained on
large external corpora and then fine-tuned on the
STAPLE data. The authors describe benefits from
using various pre-training datasets, two different
filtering methods, and various ways of upweighting
of translations of high frequency (weight). The
resulting system was among the strongest in the
competition, ranking first in all five tracks.

nickeilf (Li et al., 2020) explored a family of
diversification approaches including beam expan-
sion, Monte Carlo random dropout, lexical substi-

https://aws.amazon.com/translate/
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Figure 3: Precision and weighted recall for each system and language. The dashed line represents equal precision
and weighted recall. Curved lines represent weighted F1 in increments of 0.1.

tution, and mixture of experts models, combined
through ensemble-based consensus voting to gen-
erate a high quality set of translation suggestions.
This tied for first place in the Portuguese track.

rakchada (Chada, 2020) used pre-trained Trans-
former models fine-tuned on the STAPLE data with
an oversampling trick that afforded more weight
to translations with higher frequency. They then
used a classifier to filter the n-best lists based on
predicted learner frequency. This tied for first place
in the Hungarian and Portuguese tracks.

jspak3 (Park et al., 2020) took a similar ap-
proach to the original BART setup (Lewis et al.,
2019), except they fine-tuned the model not only
on larger parallel corpora, but also on the STAPLE
data. This ranked second in the Korean track.

sweagraw (Agrawal and Carpuat, 2020) used a
Transformer model pre-trained on the OpenSub-
titles corpus, then fine-tuned on Tatoeba and the
STAPLE data (§4.1), with the STAPLE transla-
tions oversampled to capture frequency. Resulting
n-best lists were filtered with a two-layer neural
classifier optimized for a soft-F1 objective. This
ranked second or third in all five language tracks.

masahiro (Kaneko et al., 2020) took a simple
ensemble approach that requires no modification to

an off-the-shelf NMT system (fairseq). The authors
train multiple forward (L2R) and backward (R2L)
models using different initial seeds, first by pre-
training on general corpora and then fine-tuning
on STAPLE data. Their experiments show that
combining ensembling forward-backward models
yields more diversity and higher F1 than simply
using different seeds alone. This tied for second
place in the Japanese track.

mzy (Yang et al., 2020) explored three particu-
lar strategies: pre-training on larger corpora before
fine-tuning on in-domain corpora, using diverse
beam search, and finally reranking candidate trans-
lations. The authors found that first fine-tuning on
a similar intermediate corpus was better than fine-
tuning on the STAPLE data alone. Diverse beam
search provided modest further gains, although they
report no improvement from beam re-ranking. This
ranked third in the Japanese track.

dcu (Haque et al., 2020) compared both phrase-
based and neural models by extending the STAPLE
data with additional corpora (selected for similarity
to the task data under a language model), with the
neural model performing better. They generate
sets of high-scoring predictions according to beam
searches, majority voting, and other techniques,
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and also run these initial translations through an
additional paraphrasing model, placing third in the
Portuguese track.

jindra.helcl (Libovický et al., 2020) trained a
Transformer model by combining STAPLE data
with additional parallel corpora and back-translated
monolingual corpora. They also employed a filter-
ing classifier that predicts whether their models’
beam search outputs within accepted translations.
This ranked third or fourth in all five tracks.

darkside (Nomoto, 2020) took a very different
approach, treating the task as a paraphrase genera-
tion problem and using no data beyond what was
provided for the shared task. They took two ap-
proaches, both based on autoencoders. The first
is a sequence-to-sequence model with Gaussian
noise added to the context vector, and the second
is based on a conditional Variational Autoencoder,
which has seen success in generating variations
of input content in the literature (Bowman et al.,
2015). This ranked fifth in the Japanese track.

nagoudi (Nagoudi et al., 2020) used a combi-
nation of data augmentation and ensembles. They
combined STAPLE data with additional parallel
corpora to train their models, finding (curiously)
that this outperformed the fine-tuning approach em-
ployed by many others. They generated multiple
translations by passing the source sentence through
an ensemble of model training checkpoints, taking
the n-best outputs from each and de-duplicating.
This ranked fifth in the Portuguese track.

4 Meta-Analyses

In this section, we analyze different facets of the
various approaches taken, in an effort to under-
stand which design choices were most impactful
on final results. We identified three major areas of
variance: use of external training corpora (§4.1),
model architecture and training procedures (§4.2),
and decoding and filtering strategies (§4.3).

4.1 External Training Corpora

The STAPLE dataset is relatively small compared
to many modern machine translation efforts. This
is by design: it is challenging to develop a parallel
corpus that is complete with many acceptable trans-
lations. One of our goals in organizing this task
was to see how teams could effectively leverage ex-
isting corpora, with a modest amount of in-domain
data, to bootstrap high-quality models for the task.

Corpus effects Precision W. Recall W. F1

(Intercept) .418 *** .293 ** .283 **
Tatoeba +.190 +.223 . +.214 .
ParaCrawl +.018 +.103 +.071
Europarl +.061 +.057 +.063
QED +.011 −.004 +.004
OpenSubtitles −.098 −.083 −.087
Wikipedia −.034 −.213 −.153

Random effects St.Dev. St.Dev. St.Dev.

Prompt ID ±.183 ±.210 ±.173
Track ID ±.085 ±.106 ±.103
Team ID ±.082 ±.080 ±.075

Table 4: Mixed-effects analysis of the most commonly-
cited external corpora used for training.

Most teams began with a generic MT system
pre-trained on massive but out-of-domain parallel
corpora, either before or in tandem with the STA-
PLE task data. These were largely drawn from the
Open Parallel Corpus (OPUS) project (Tiedemann,
2012). One natural question is whether the choice
to train on a particular dataset from this collection
had any meaningful impact on final results.

To answer this question, we coded each team
with features variables indicating each corpus they
reported using for their final submission, and used
a regression analysis to see if these data choices
significantly impacted precision, weighted recall,
and weighted F1 scores for each prompt in the test
set4. To analyze this properly, however, we need
to distinguish between effects among data choices
are actually meaningful versus those that can be ex-
plained by sampling error due to random variations
among prompts, tracks, or teams. To do this, we
use a linear mixed-effects model (cf., Baayen, 2008,
Ch. 7). In addition to modeling the fixed effects
of the various corpora, we can also model the ran-
dom effects represented by the prompt ID (some
sentences may be longer or harder), the track ID
(the languages inherently vary), and the team ID
(teams will differ in other aspects not captured by
these corpus variables).

Table 4 presents a mixed-effects analysis for
the most-cited corpora among participating teams,
each used by at least four different systems. The
intercepts can be interpreted as “average” metrics,
which then go up or down according to fixed and
random effects. Only the Tatoeba corpus appears
to have a significant positive impact on metrics.
In other words, we might expect that pre-training

4Thus, a team participating in all five tracks would yield
5 × 500 = 2,500 data points for this regression analysis.
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Model Transformer
Architecture CNN
& Training LRF Weights

Pre-train→Fine-tune
Train Combined

Decoding Diverse Beam Search
& Filtering Beam Reranking

Beam Filtering
Paraphrasing
Ensembling
Backtranslation

Table 5: Table of features used by team. Descriptions of features can be found in §4.2 and §4.3.

with Tatoeba would add +.214 to prompt-specific
F1 scores (p = .088), all else being equal. Since
Tatoeba is a collaborative online database5 of sen-
tences geared towards foreign language learners
(some of which even have multiple translations, al-
though no weights), it is extremely similar to the
STAPLE task domain. Thus it makes sense that
this corpus would be helpful; in fact, sweagraw
and jindra.helcl included it alongside the STAPLE
data in fine-tuning their models.

Other effects are smaller and statistically in-
significant, suggesting that the particular choice
of supplementary out-of-domain data may not mat-
ter as much as simply using a large amount. One
notable exception is the parallel Wikipedia corpus
(Wołk and Marasek, 2014), which exhibits a large
negative trend on recall and F1, possibly due to its
noisy, automatically-aligned provenance.

The volume of parallel training data may also
impact performance. For example, for the Ko-
rean track jbrem report internal results using simi-
lar datasets to sweagraw, and achieving the same
score. But further experiments extending the
training set yielded improvements of about +.1
F1. However, simply using larger corpora in pre-
training does not guarantee higher scores: nagoudi
apparently trained on all of OPUS, yet had the low-
est Portuguese scores among participants.

4.2 Model Architecture & Training

Decisions made on model architecture and training
procedures seemed to have more impact on final
system performance. We mapped many of these
design decisions into high-level system features,
summarized at the top of Table 5.

5https://tatoeba.org

Transformer vs. CNN. The baseline_fairseq
we provided is based on a convolutional neural
network (CNN) architecture, and a few teams
also went this route. However, top-ranking teams
largely opted for a Transformer-based architec-
ture (Vaswani et al., 2017) instead. jspak3 notably
used the BART architecture (Lewis et al., 2019)
to pre-train a decoder in particular, and dcu also
compared a phrase-based statistical MT approach
(Koehn et al., 2007) to a Transformer-based neural
MT system, with the latter performing better.

LRF Weights. When training on STAPLE task
data, teams had to decide how to convert the one-to-
many relationship of prompts and accepted trans-
lations into standard bitext for more conventional
MT training. Some teams simply repeated the En-
glish prompt for each target translation (as we did
for baseline_fairseq), while others used only the
highest-weighted translation. Some of the more
successful teams took advantage of the weights
associated with each accepted translation. In partic-
ular, jbrem included multiple copies of the highest-
weighted translation, nickeilf used only the top k,
and sweagraw and rakchada both sampled each
translation in proportion to its weight.

Pre-train→Fine-tune vs. Train Combined.
Top-performing teams also tended to pre-train a
generic MT model (e.g., trained on corpora from
§4.1) and fine-tune it using STAPLE task data.
This is opposed to pooling all data together for
joint training. The latter approach certainly outper-
formed STAPLE-only baselines, but lagged behind
fine-tuned pipeline approaches in most cases.

To measure the impact of these choices, we con-
ducted a second mixed-effects regression analysis,
coding each team with the model architecture and

https://tatoeba.org
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Model effects Precision W. Recall W. F1

(Intercept) .351 *** .232 ** .221 **
Transformer +.107 +.098 . +.107 .
LRF Weights +.097 * +.060 * +.075 *
Pre-train→Fine-tune +.050 +.080 +.065

Random effects St.Dev. St.Dev. St.Dev.

Prompt ID ±.183 ±.210 ±.173
Track ID ±.085 ±.105 ±.102
Team ID ±.070 ±.049 ±.044

Table 6: Mixed-effects analysis of various model archi-
tecture and training procedure choices.

training decisions that describe their final submis-
sions. Results are presented in Table 6. Here we
see empirical confirmation that Transformer-based
systems tended to perform +.1 points better for all
three metrics, although only marginally statistically
significant (perhaps because it was also the most
common choice).

Incorporating LRF weights in the fine-tuning
strategy also appears to have a robust positive effect
(p < .05 across all metrics). The importance of
the weighting strategy can be further illustrated by
comparing jbrem with jindra.helcl. Both systems
submitted to all five tracks, and otherwise used
similar approaches. However, jbrem reports on an
ablation experiment using only the top-weighted
translation, the results of which are similar to those
of jindra.helcl, who used this very strategy.

Finally, there is also a positive trend favoring
pre-training on external corpora before fine-tuning,
as opposed to training on all data combined.

4.3 Decoding & Filtering

Since the STAPLE task requires multiple transla-
tions for each input prompt, all teams generated
n-best lists, and employed various strategies for
pruning them to contain only desirable translations.
The feature group at the bottom of Table 5 represent
these decoding and filtering steps.

Diverse Beam Search. Multiple teams at-
tempted to use diverse beam search (Vijayakumar
et al., 2016) to generate a more varied set of tran-
lation candidates. However, it proved either to be
only marginally helpful (nickeilf, mzy) or unhelp-
ful (jspak3) in various ablation experiments.

Beam Reranking. Two teams tried training an
auxiliary model to rank output candidates by pre-
dicted learner response frequencies. In both cases,
this approach performed poorly.

Beam Filtering. Several teams attempted to
filter candidate translations, which were applied
to candidate translations to decide if they should
be removed from final predictions. Approaches
to this varied significantly, from language-model
probabilities (jbrem) to binary classifiers including
gradient-boosted decision trees (rakchada), feed-
forward neural networks (sweagraw), and multilin-
gual transformers (jindra.helcl). nickeilf showed
improvements using consensus voting among an
ensemble of MT models, in which only sentences
attested by multiple subsystems are retained. Most
of these teams reported significant gains from fil-
tering in ablation studies.

Paraphrasing. Three teams implemented mono-
lingual paraphrasing models to increase the size
of their n-best list of candidates. jindra.helcl re-
ported experiments with a Levenshtein Transformer
(Gu et al., 2019), a model that learns to create new
paraphrases by editing candidate sentences. How-
ever, this produced output too noisy to be useful,
and was omitted from their final submission.

Ensembling. A number of teams employed an
ensemble of MT models, by combining either dif-
ferent training checkpoints, random initialization
seeds, or other training regimes (such as training
on reversed sequences, which was the main strat-
egy used by masahiro, who tied for second in the
Japanese track). Three teams also tried Backtrans-
lation (Sennrich et al., 2016), with mixed results.

We conducted a mixed-effects analysis of de-
coding and filtering techniques, however, the ef-
fect sizes and p-values were much less significant
than those from §4.1 and §4.2. These inconclusive
results suggest that decoding and filtering play a
smaller role in overall system performance than
pre-training and model architecture decisions.

4.4 Scoring the Top-k Test Translations

The learner response frequency weights tend to
have a tall head: a few common responses carry
most of the weight, and many more responses carry
much less weight (e.g., many human-curated ac-
cepted translations were not ever attested by learn-
ers during our data collection window). Since this
distribution determines weighted recall, and there-
fore our overall evaluation metric, it is instructive
to compare against a benchmark “oracle” that is
able to return the top-k gold translations. Table 7
shows results of such an oracle for several values
of k evaluated over the test set.
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Hun. Jap. Kor. Por. Vie.

k = ∗ 1.0 1.0 1.0 1.0 1.0
k = 10 .735 .302 .350 .655 .789
k = 5 .643 .231 .266 .578 .692
k = 1 .372 .090 .101 .340 .387

jbrem .555 .318 .404 .552 .558
sweagraw .469 .294 .255 .525 539
jindra.helcl .435 .213 .206 .412 .377
baseline_aws .281 .043 .041 .213 .198

Table 7: Weighted F1 scores on the test set for an “or-
acle” that outputs the top k translations from gold data.
All translations (k = ∗) gives a perfect score of 1.0.
For comparison, we include teams who submitted to all
tracks, and one baseline. Underscores show the small-
est value of k to outperform jbrem (the top system).

At k = 1, macro weighted F1 is still relatively
low, showing that systems need to return more than
a single translation to do well. Comparing k = 1
to baseline_aws (both output a single translation)
shows that this high-quality baseline still does
not generally produce the translation favored by
Duolingo learners. It is also worth noting that top-
ranking systems output the k = 1 translation more
often than that of baseline_aws (83% vs. 69%).

The top-ranking teams performed on par with or
better than the k = 5 oracle, and much better for
languages with a higher translation-to-prompt ratio
(see Table 2). This suggests that high-performing
models for this task are consistently producing out-
put comparable to the five most commonly-attested
translations, and often beyond (at some expense to
precision, for which the oracle is perfect).

4.5 Error Analysis
So far we have discussed only quantitative out-
comes for the STAPLE task. Here we present a
qualitative analysis by inspecting the most common
recall errors and precision errors among partic-
ipating systems. These help us to get a sense for
how important typical errors are for our educational
use case, and shed light on what performance gaps
need to be closed in future work.

Alternative word order or synonym variations
were a challenge for all teams in all tracks. For
example, here are the top four accepted translations
for a prompt in the Portuguese test dataset:

1. please don’t smoke
por favor, não fume (w1 = .663)
não fume, por favor (w2 = .030)
por gentileza, não solte fumaça (w3 = .011)
não fume, se faz favor (w4 = .011)

Most teams produced the top-weighted translation,
several more identified other variants of please,
but few systems generated reorderings that place
it after the main clause (which, for this instance,
accounts for ≈ .184 of the total LRF weight). This
can be partially explained by the use of fixed beam
sizes. Since the number of translations grows expo-
nentially with the number of lexical and structural
variations, many correct combinations that the sys-
tem could be capable of generating may still fall
off the beam. One possible solution here would
be to explore lattice-based decoding strategies that
may avoid such bottlenecks.

Korean, Japanese, and Vietnamese have diverse
sets of pronouns for use with different registers and
relationships to the subject and the listener, as seen
in this example from Japanese:

2. i exercise
私私私は運動する (top translation)
僕僕僕は運動する (not in accepted translations)

Here私 (watashi) is the most common first person
pronoun, but about half the submissions instead
produced 僕 (boku) which carries with it more
youthful or masculine connotations. While the lat-
ter is arguably correct, learners (especially begin-
ners) are unlikely to use it, and it was also missing
from the human-curated set of translations.

Pronouns were difficult in general, for multiple
language tracks. All five languages allow some
level of pronoun-dropping, as per these examples
from Hungarian and Portuguese:

3. we run to the garden
[mi] futunk a kertbe

4. would you like to try on those shoes?
[você] gostaria de provar esses sapatos?

This resulted in both over- and under-use of pro-
nouns, both in system outputs and occasionally
gold data. While both variations (with or without
the pronoun) may be correct, the rules governing
which is more fluent or more appropriate for in-
struction are subtle, and remain challenging.

Systems often produced verb suffixes that convey
discourse nuances or speaker attitudes not neces-
sarily present in the English prompt or its accepted
translations, as per these Korean and Japanese trans-
lations generated by multiple teams:

5. the woman is pretty
그여자는예쁘네네네요

(“wow, that woman is pretty”)
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6. you are not a victim
あなたは被害者ではないよよよ
(“you are not a victim, you know”)

One likely explanation for this is the pervasive use
of OpenSubtitles data in pre-training; such suffixes
are especially common in on-screen dialogue.

Mistranslation of numbers was a common prob-
lem for multiple languages, which is unacceptable
for education, or indeed most applications:

7. i have eighteen horses
tizenhárom lovam van
(“i have thirteen horses”)

8. she has sixteen cats
彼女は猫を六六六匹飼っています
(“she has six cats”)

Correct noun declension was also a struggle for
all systems, particularly the allative case in Hun-
garian (-hoz/-hez/-höz); the following example was
not produced by any system:

9. we run to the garden
elrohanunk a kerthez

Similarly, noun cases and postpositions in Korean
led some systems to alter the sentence meaning:

10. who do you love?
누가너를를를사랑하니

(“who loves you?”)

For Japanese, many systems frequently used En-
glish loanwords in their translations:

11. she makes me happy
彼女は私をハハハッッッピピピーーーにしてくれる
(uses phonetic English loan for happy)

These were generally missing from the gold data.
Such loanwords are not especially rare, although
one could also argue that using them is “cheating”
in a language-learning context!

5 Related Work

The STAPLE task is similar to machine translation
in that one takes input from one language, and pro-
duces output in another language. In fact, nearly
all of the models used by participating teams were
built using standard, off-the-shelf, modern machine
translation software. But machine translation sys-
tems typically produce only a single output.

Ultimately our goal for Duolingo—a robust sys-
tem for automatically grading learner translation
submissions—is closer to the world of machine
translation evaluation. Motivated by shortcomings
of the BLEU metric (Papineni et al., 2002), some
researchers have proposed alternative measures of
evaluating MT systems against many references
(Qin and Specia, 2015), or even exhaustive trans-
lation sets collected by human translators, as with
HyTER (Dreyer and Marcu, 2012).

We even considered using these alternatives as
official metrics for the STAPLE task. The main
challenge is the difficulty of gathering all possible
translations (the authors of HyTER estimate that
creating all translation variants for a single sentence
can take two hours or more), or the assumption that
the translations are all equally important. To ease
the burden of manually collecting references, there
have been proposals for automatically generating
them (Apidianaki et al., 2018) using paraphrase
databases such as PPDB (Pavlick et al., 2015).

This brings us to other areas of research that
are very related to our task: automatic paraphras-
ing (Wieting et al., 2015; Witteveen and Andrews,
2019), as well as research in diverse beam search
methods (Vijayakumar et al., 2016; Li et al., 2016)
for decoding multiple natural language outputs. We
are happy that this shared task can serve as a fo-
rum for studying the intersection of these problems,
and it is our hope that the STAPLE task data will
continue to foster research in all of these areas.

6 Conclusion and Future Work

We have presented the STAPLE task, described a
new and unique corpus for studying it, and reported
on the results of a shared task challenge designed
to explore this new domain. The task successfully
drew participation from dozens of research teams
from all over the world, synthesizing work in ma-
chine translation, MT evaluation, and automatic
paraphrasing to name a few.

We learned that a pipeline of strong machine
translation followed by fine-tuning on learner-
weighted STAPLE data produces strong results.
While the data for this task are geared toward lan-
guage learners (and are therefore simpler than more
commonly-studied domains such as newswire), it is
our hope that the STAPLE task provides a blueprint
for ongoing interdisciplinary work in this vein. All
task data, including dev and test labels, will remain
available at: https://doi.org/10.7910/DVN/38OJR6

https://doi.org/10.7910/DVN/38OJR6
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