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Abstract

This paper describes the OpenNMT submis-
sions to the WNGT 2020 efficiency shared
task. We explore training and acceleration of
Transformer models with various sizes that are
trained in a teacher-student setup. We also
present a custom and optimized C++ inference
engine that enables fast CPU and GPU decod-
ing with few dependencies. By combining ad-
ditional optimizations and parallelization tech-
niques, we create small, efficient, and high-
quality neural machine translation models.

1 Introduction

This paper describes the OpenNMT (Klein et al.,
2017) submissions to the Workshop on Neural Gen-
eration and Translation 2020 efficiency shared task.
For WNMT 2018, we explored training and opti-
mizations of small LSTM translation models com-
bined with a customized runtime (Senellart et al.,
2018). While this resulted in interesting decoding
speed, there was still room for improvements in
terms of quality, memory usage, and overall effi-
ciency.

For this 2020 edition, we focus on the standard
Transformer architecture (Vaswani et al., 2017)
that is now commonly used in production machine
translation systems. Similar to our first participa-
tion, we train smaller models using the teacher-
student technique (Kim and Rush, 2016). We ex-
periment with several encoder and decoder sizes
following the work by Hongfei et al. (2020) which
shows that reducing the number of decoder lay-
ers can improve decoding speed at a very limited
accuracy cost.

We also keep the approach of running the models
with a custom C++ runtime. This year we present
CTranslate21, an optimized and production-grade

1https://github.com/OpenNMT/
CTranslate2

inference engine for OpenNMT models that en-
ables fast CPU and GPU decoding with few de-
pendencies. This library implements several opti-
mizations for decoding neural machine translation
models such as 8-bit quantization, parallel trans-
lations, caching, and dynamic target vocabulary
reduction.

Section 2 of this paper describes the data prepa-
ration and the training procedures we apply to train
the candidate models. Section 3 presents the vari-
ous optimizations we implemented to reduce model
size and improve runtime efficiency. Finally, Sec-
tion 4 details the accuracy and efficiency results
achieved by the submitted models.

2 Teacher-student training

We train our systems using a teacher-student ap-
proach (Kim and Rush, 2016). First, a large
model (the teacher) is trained on all available bilin-
gual data, including synthetic data such as back-
translations of monolingual target sentences (Sen-
nrich et al., 2016; Edunov et al., 2018) and transla-
tions of monolingual source sentences (Zhang and
Zong, 2016). Model ensembles are also typically
used to build stronger teacher systems.

Then, a small model (the student) is trained by
means of minimizing the loss between the stu-
dent and teacher systems with the goal of distill-
ing the knowledge of the teacher (Kim and Rush,
2016; Zhang et al., 2018) into a smaller model with
comparable accuracy results. Crego and Senellart
(2016) show that student models can even outper-
form to some extent their teacher counterparts.

Knowledge distillation is an effective approach
to reduce the model size, thus lowering memory
and computation requirements.

2.1 Teacher system
As suggested in the task description and given the
limited amount of time available, we use Face-

https://github.com/OpenNMT/CTranslate2
https://github.com/OpenNMT/CTranslate2
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book’s WMT 2019 system as our teacher model
(Ng et al., 2019). The system is trained as an en-
semble of big Transformer models for both direc-
tions, English-German and German-English. Table
1 shows the BLEU (Papineni et al., 2002) evalu-
ation results of this model over newstest public
evaluation datasets.

newstest2018 newstest2019
Facebook WMT 2019 49.1 42.1
Microsoft-Marian 48.3 44.9

Table 1: Evaluation of the teacher system on the
English-German newstest files as reported by Sacre-
BLEU (Post, 2018). The results for Microsoft-Marian
are reported for comparison and retrieved from the
WMT matrix2.

2.2 Training data
We limit our training data to the WMT 2019
English-German translation task3. Table 2 sum-
marizes the data provided by the task organizers
which consist of more than 38M parallel sentences
and 808M monolingual English sentences.

Corpora # sents

Parallel

Europarl v9 1,838,568
Common Crawl corpus 2,399,123
News Commentary v14 338,285
Wiki Titles v1 1,305,141
Document-split Rapid 1,531,261
ParaCrawl v3 31,358,551
Total 38,770,929
news-crawl 2007-2018 199,900,557

Mono news-discuss 2011-2018 605,540,239
(Eng) europarl-v9 2,295,044

news-commentary-v14 545,919
Total 808,281,759

Table 2: English-German parallel data and English
monolingual data provided by the WMT 2019 transla-
tion task.

We use the following data to be translated by
the Facebook’s WMT 2019 teacher system: (a)
English part of the bilingual data, (b) English part
of ParaCrawl v3, and (c) English monolingual data.

Before translation, data is cleaned following sev-
eral rules: sentences that are empty or longer than
100 tokens without considering tokenization are
filtered out. We also use the language identification

2http://matrix.statmt.org/
3http://statmt.org/wmt19/

translation-task.html

(LID) toolkit langid (Lui and Baldwin, 2012) to
further clean ParaCrawl and the English monolin-
gual corpora which are known to contain a large
number of noisy sentences. Nearly 5% of the sen-
tences are discarded by the LID toolkit.

The cleaned data is then translated by the teacher
model and the resulting synthesized parallel data is
used to train the student systems4.

2.3 Vocabulary
We build a joint subword segmentation model from
the synthesized parallel data using SentencePiece
(Kudo and Richardson, 2018). The vocabulary size
is set to 32, 000 tokens. We removed the non-latin
characters before building the vocabulary.

2.4 Student models
We train 4 different student systems based on the
Transformer architecture (Vaswani et al., 2017).
The candidate configurations are presented in Ta-
ble 3. In addition to the base Transformer config-
uration, we train 3 model variants with different
number of encoder layers NEnc, decoder layers
NDec, hidden size dmodel, and feed-forward net-
work size dff . We share both the source and target
word embeddings and softmax weights in the 3 vari-
ants while the base configuration considers them
as separate weights.

2.5 Student training
Since the amount of synthetic data is relatively
large, we define an epoch as a random sampling
of 5M sentences. We set the sampling weights of
the selected data (a), (b), and (c) to 5, 2, and 2
respectively. That is, we consider a larger number
of sentences synthesized from the English part of
the bilingual data than from ParaCrawl or from the
monolingual English data set.

We use the OpenNMT-tf5 toolkit to train our stu-
dent systems. Training is run on a single NVIDIA
Tesla V100 GPU with an effective batch size of
25,000 tokens for the early epochs. Just before the
final release, we train 10 additional epochs with a
larger batch size by increasing the gradient update
delay by a factor of 16 (Ott et al., 2018). Figure 1
shows the comparison with a larger batch size. We
achieve an additional 0.1 to 0.2 BLEU using this

4Due to the long decoding time of the teacher system, the
English monolingual data was partially translated. The final
data pool used for training consists of: (a) 7.4M bilingual data,
(b) 26.1M ParaCrawl data, and (c) 127M English monolingual
data.

5https://github.com/OpenNMT/OpenNMT-tf

http://matrix.statmt.org/
http://statmt.org/wmt19/translation-task.html
http://statmt.org/wmt19/translation-task.html
https://github.com/OpenNMT/OpenNMT-tf
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Transformer NEnc NDec h dmodel dff # params newstest2018 newstest2019
Base 6 6 8 512 2048 93324544 46.7 43.0
(4:3 2xFFN) 4 3 8 256 2048 18221568 43.2 40.8
(6:3) 6 3 8 256 1024 16123904 43.0 40.3
(4:3) 4 3 8 256 1024 14544384 42.0 39.7

Table 3: Transformer configurations and their BLEU scores on newstest2018 and newstest2019. Evaluation is
performed without inference optimizations using OpenNMT-tf and a beam size of 4.

technique. Finally, we average the weights of the
last 10 checkpoints to produce the final models.

260 262 264 266 268
41

41.5

42

42.5

epochs

batch = 16x
batch = 1x

Figure 1: BLEU evaluations on larger batch size on
newstest2018.

2.6 Evaluation
We list the number of parameters of the 4 trained
models in Table 3 and their evaluation scores on the
English-German newstest2018 and newstest2019
before any inference optimizations. The results cor-
relate well with the expectation that more model
parameters lead to better performance. The base
Transformer model achieves better results on new-
stest2019 than the Facebook’s WMT 2019 model
used as a teacher (43.0 vs. 42.1). This confirms
the finding in Crego and Senellart (2016) that stu-
dent systems can sometimes outperform their cor-
responding teacher networks.

3 Inference optimizations

All models are converted and executed with CTrans-
late2. We use the version 1.10.0 of the library.

3.1 CTranslate2 technical overview
CTranslate2 is a standalone C++ library that imple-
ments the complete logic of executing and decod-

ing neural machine translation models with a focus
on Transformer variants. This custom implemen-
tation supports CPU and GPU execution with the
goal of being faster, lighter, and more customizable
than a general-purpose deep learning framework.
Key features of this project include model quantiza-
tion, parallel translations, dynamic memory usage,
and interactive decoding. Some of these features
are difficult to implement effectively with standard
deep learning frameworks and are the motivation
for this project.

The CPU runtime is backed by Intel MKL, a
popular math computation library optimized for
Intel processors. We specialize operators with
BLAS routines and Vector Mathematical functions
whenever possible to benefit from vectorization.
We also use the caching allocator provided by
mkl malloc and align allocated memory to 64
bytes. Other operations not available in Intel MKL
are implemented in plain C++ using the STL and
OpenMP.

The GPU runtime minimally requires the
cuBLAS and Thrust libraries. Basic transforma-
tions are defined using Thrust while more complex
layers such as layer normalization and softmax are
using CUDA kernels ported from PyTorch (Paszke
et al., 2019). We also integrate a caching allocator
from the CUB library to reuse previously allocated
buffers and minimize device synchronization.

3.2 8-bit quantization (CPU)

Quantization is a standard technique to reduce the
model size in memory and accelerate its execu-
tion. We quantize the weights of linear and embed-
ding layers to 8-bit signed integers after complet-
ing training. Experimental results show that model
quantization can achieve high translation accuracy
without making the training quantization-aware.
We use the equation from Wu et al. (2016) to com-
pute the quantized weight WQ from the original
weight W :
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Quantization Model size
None 373MB
16-bit 187MB
8-bit 94MB

Table 4: Effect of weight quantization on the model
size on disk. The model is a base Transformer without
shared embeddings.

si = max
j
|Wi,j |

WQ
i,j =

⌊127
si

Wi,j

⌋ (1)

Table 4 shows the effect of weight quantization
on the final model size.

On CPU, we dynamically quantize the in-
put of the linear layer using Equation 1, multi-
ply the quantized input and weight with MKL’s
cblas gemm s8u8s32 function, and dequan-
tize the result before adding the bias term. In addi-
tion, we employ two notable techniques:

Weights pre-packing. On model load, we re-
place the quantized linear weights with the packed
representation returned by MKL’s packed GEMM
API.

Unsigned compensation term. In row major
mode, Intel MKL expects the input matrix a to
be unsigned while the quantization Equation 1 pro-
duces signed values. To overcome this constraint,
we shift a to the 8-bit unsigned domain and add
a compensation term c to the output matrix. This
compensation term only depends on the quantized
weight matrix and can be computed once:

ci = −128×
k∑

j=1

WQ
i,j (2)

On GPU, 8-bit computation is disabled as our
implementation still requires some efficiency im-
provements regarding repetitive quantization and
dequantization. In this case the weights are dequan-
tized on load to single precision floating points.

3.3 Greedy decoding
To maximize speed and reduce memory usage, we
use greedy search instead of beam search. During
decoding, we also skip the final softmax layer and
simply get the maximum from the output logits.
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Figure 2: Speedup and memory usage for a base Trans-
former model when increasing the number of threads
for batch translation, either at the batch level (left blue
bars) or at the file level (right red bars).

3.4 Decoder projections caching

We apply the common technique of caching linear
projections in the Transformer decoder layers. In
particular, at step t the decoder self-attention layers
compute Attention(QtW

Q, Q1..tW
K , Q1..tW

V ).
As the matrix Q1..t−1 is constant, we only compute
QtW

K and QtW
V and concatenate the results to

previous projections before calling the attention.
We also cache the encoder output projections

KWK and VW V in the encoder-decoder attention
layers as K and V remain constant during decod-
ing.

For both cases, we transpose the matrices to de-
limit the attention heads before saving them in the
cache.

3.5 File-level parallelism (CPU)

Figure 2 compares the observed speedup when in-
creasing the number of threads at the batch level–
the number of OpenMP threads–or at the file level–
the number of batches processed in parallel. We
use the same batch size in both cases.
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As the number of threads increases, the first ap-
proach looses efficiency because not all operators
within the model scale linearly and some of them
are not parallelized at all. On the other hand, the
second approach continues to improve as we add
more threads because all batches are independent
and the full decoding can be executed in parallel.
However, the duplicated internal state of parallel
translators increases memory usage. To mitigate
this issue, we share the static model data among all
parallel translators and read and write batches in a
streaming manner while ensuring that the original
order is preserved.

Given the large number of CPU cores available
for this task, we chose to exploit parallelism at the
file level to maximize the overall throughput. The
number of parallel translators is set to the number
of physical cores. Each translator is using a sin-
gle thread so the decoding algorithm is executed
sequentially and without OpenMP.

3.6 Sorted and dynamic batches

When setting the maximum batch size to N tokens,
each consumer reads 8N contiguous tokens, sorts
the sentences from the longest to the shortest, and
then splits by batch of N tokens before running the
model. The correct order is restored when returning
the translation results. This local sorting makes the
batches contain sentences of similar sizes which
reduces the amount of padding and increases the
computation efficiency.

We use N = 6000 for the GPU task, N = 512
for the single-core CPU task, and N = 256 for the
multi-core CPU task.

During decoding we remove finished translations
from the batch to avoid unnecessary computation.
We also exploit the prior knowledge that short sen-
tences finish early: by moving shorter sentences at
then end of the batch, we reduce memory copies
when updating the decoder cache in place.

3.7 Target vocabulary reduction

We generate a static source-target vocabulary map-
ping using the technique described in Senellart et al.
(2018). We first train an alignment model with
fast align to align source and target words. To
increase the coverage of this mapping, we build a
phrase table from these alignments to extract the
N -best translation hypotheses of 1-gram, 2-gram,
..., n-gram source sequences and include all target
words in the mapping. We set n = 3 to generate

Speed BLEU
OpenNMT-tf 214.0 26.00
CTranslate2 242.5 26.00
+ int8 845.2 25.88
+ local sorting 1054.0 25.88
+ packed GEMM 1167.4 25.84
+ vocabulary reduction 1687.1 25.42

Table 5: Single-core greedy decoding speed (target to-
kens per second) for a base Transformer model. The
BLEU scores are computed on an undisclosed test set
and show the impact on quality (if any) of the enabled
optimization.

the vocabulary mapping that are included in the
models of this submission.

During decoding, we consider all 1-gram, 2-
gram, and 3-gram sequences in the input batch
and select the target tokens that are likely to appear
in the translation according to the pretrained map-
ping as well as the 50 most frequent target tokens.
These candidates are used to mask the weights of
the final linear layer and effectively reduce its com-
putational cost.

3.8 Docker images
The Docker images entrypoint is a small C++ main
function that wraps the CTranslate2 and Sentence-
Piece libraries and sets the decoding options that
are relevant for this task.

We submit separate Docker images for
CPU and GPU to only include the re-
quired dependencies. The images are
based respectively on ubuntu:18.04 and
nvidia/cuda:10.2-base-ubuntu18.04.
Without the model, the CPU image size is 104MB
and the GPU image size is 210MB.

4 Optimization results

Table 5 shows the impact of selected optimizations
when decoding a base Transformer model on a sin-
gle CPU core. The CTranslate2 library combined
with few optimizations can lead to a 8× speedup
with limited accuracy loss over a baseline Tensor-
Flow program.

Finally, Table 6 summarizes the global impact
of the optimizations described above that we com-
pare against a baseline beam search decoding with
OpenNMT-tf. For a base Transformer model,
single-core CPU translation is 13× faster while
only loosing 0.8 BLEU points and GPU translation
is 7× faster for the same quality.
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Transformer variant Time (s) BLEU
Baseline (single-core CPU)

Base 522.1 43.0
(4:3 2xFFN) 251.5 40.8
(6:3) 238.7 40.3
(4:3) 238.0 39.7

Optimized (single-core CPU)
Base 39.5 42.2
(4:3 2xFFN) 11.2 39.8
(6:3) 10.1 39.5
(4:3) 8.8 38.7

Optimized (multi-core CPU)6

Base 5.2 42.0
(4:3 2xFFN) 2.5 39.7
(6:3) 2.5 39.3
(4:3) 2.3 38.5

Baseline (GPU)
Base 57.6 43.0
(4:3 2xFFN) 40.7 40.8
(6:3) 41.6 40.3
(4:3) 42.1 39.7

Optimized (GPU)
Base 7.7 43.0
(4:3 2xFFN) 4.0 40.1
(6:3) 3.9 39.9
(4:3) 3.8 39.0

Table 6: Time in seconds to translate newstest2019 and
BLEU scores as returned by SacreBLEU. The time in-
cludes model loading and tokenization. Baseline mod-
els are decoded with OpenNMT-tf using a beam of size
4; Optimized models are decoded with the final images
submitted for this task. The runs were executed on a
c5.metal AWS instance for CPU and a g4dn.xlarge in-
stance for GPU.

5 Conclusion

We demonstrated that the OpenNMT ecosystem
can be used to train efficient and high-quality
neural machine translation models. The train-
ing frameworks–OpenNMT-tf and OpenNMT-py–
include all features and procedures that are com-
monly applied to reach competitive translation
scores. This year we presented CTranslate2, an
optimized and production-grade inference engine
for OpenNMT models that enables fast CPU and
GPU decoding with few dependencies. By combin-
ing several optimizations and parallelization tech-
niques, the library can drastically improve decod-

6The difference in BLEU score with the single-core runs
comes from the smaller batch size which changes the candi-
dates selected for reducing the target vocabulary.

ing speed and reduce memory usage over a general-
purpose deep learning toolkit.
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