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Abstract
This paper describes the third place submis-
sion to the shared task on simultaneous transla-
tion and paraphrasing for language education
at the 4th workshop on Neural Generation and
Translation (WNGT) for ACL 2020. The final
system leverages pre-trained translation mod-
els and uses a Transformer architecture com-
bined with an oversampling strategy to achieve
a competitive performance. This system sig-
nificantly outperforms the baseline on Hungar-
ian (27% absolute improvement in Weighted
Macro F1 score) and Portuguese (33% abso-
lute improvement) languages.

1 Introduction

This paper describes the third place submission to
the shared task Mayhew et al. (2020) on simulta-
neous translation and paraphrasing for language
education at the 4th workshop on Neural Genera-
tion and Translation (WNGT) for ACL 2020. The
shared task involves generating multiple transla-
tions for a given source text in English and a target
language. The five target languages in the task are
Hungarian (hu), Portuguese (pt), Japanese (ja), Ko-
rean (ko) and Vietnamese (vi). We competed in
the Hungarian and Portuguese tracks. A goal of
the shared task, hosted by Duolingo, is to enable
development of automated grading processes and
curation systems for language learners’ responses.
A high-coverage and precise multi-output transla-
tion and paraphrasing system would vastly help
such automated efforts. For the task, participants
were provided with hand-crafted and field-tested
sets of several possible translations for each En-
glish sentence. Each of these translations were also
ranked and weighted according to actual learner re-
sponse frequency and these weights were provided
as additional features. Along with these, transla-
tions from AWS were provided as a baseline and
additional data. The challenges associated with

the shared task are two-fold: i) Translating from
English to target languages and ii) Producing multi-
ple valid translations (paraphrases) while balancing
precision with the coverage. We conduct several
experiments to address these two challenges and
develop a simple system that leverages pre-trained
transformer Vaswani et al. (2017) models and a
wide beam search strategy. Furthermore, we lever-
age the provided translation scores and experiment
with multiple training distribution strategies to de-
velop a simple oversampling strategy that produces
improvements over the vanilla method of using one
translation one time.

2 Related work

Paraphrasing and machine translation are well-
studied research areas in general but there’s
not much research specifically in the context of
multi-output translation systems, especially for
low resource languages. Tan et al. (2019) train
a Transformer-based Neural Machine Transla-
tion model for Hungarian-English and Portugese-
English translation. However, their goal was to
assess the benefits of multilingual modeling by
clustering languages and is different from that of
a multi-output translation system. For English-
Portuguese, Aires et al. (2016) build a phrase-
based machine translation system to translate
biomedical texts. For multilingual parahrasing,
Ganitkevitch and Callison-Burch (2014) release
a database consisting of paraphrases for several
languages, including Hungarian and Portuguese,
at lexical, phrasal and syntactic level. Guo et al.
(2019) build a zero-shot multilingual paraphrase
generation model to show mixed results. However,
their end goal was to generate paraphrases in the
same language (English) as opposed to our shared
task which requires generating paraphrases in a
different language.
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Target Language
Train Dev Test

Prompts Pairs MSL MTL 99p SL 99p TL Prompts Pairs
Hungarian (hu) 4000 251442 21 21 11 14 500 500

Portuguese (pt) 4000 526466 33 21 25 15 500 500

Table 1: Dataset statistics. MSL=Maximum Source Length. MTL=Maximum Target Length. 99p SL=99th
percentile Source Length. 99p TL=99th percentile Target Length.

Ippolito et al. (2019) study diverse decoding meth-
ods on conditional language models and show
promising results on movie dialogue corpus and
image captioning tasks.

3 Task

We describe dataset statistics and evaluation met-
rics in this section.

3.1 Data

There are two phases of the competition - Dev
and Test. Table 1 shows data statistics for all
phases. There were 4000 train prompts provided,
in English, for both Hungarian and Portuguese lan-
guages. However, each of these prompts were
accompanied with multiple translations leading
to 251,442 English-Hungarian (en-hu) pairs and
526,466 English-Portuguese (en-pt) pairs. There
were 500 prompts in both dev and test phases. Af-
ter tokenization, for en-hu, most of the source sen-
tences were shorter than 11 tokens and target sen-
tences were shorter than 14 tokens. For en-pt, most
of the source sentences were shorter than 25 tokens
and target sentences were shorter than 15 tokens.

3.2 Evaluation Metrics

The main scoring metric for the competition is the
weighted macro F1 score. This is a measure of how
well the system returns all human-curated transla-
tions weighted by the likelihood that an English
learner would respond with each translation. For
each prompt p, weighted macro F1 is calculated
as the harmonic mean of precision and weighted
recall (note that the precision is unweighted). To
calculated weighted recall for each example, we
first calculate Weighted True Positives (WTP) and
Weighted False Negatives (WFN) as:

WTPp =
∑

t∈TPp

weight(t)

WFNp =
∑

t∈FNp

weight(t)

Then, weighted recall (WR) is calculated as:

WRp =
WTPp

WTPp +WFNp

The weighted Macro F1 (WF) over all prompts P
is then calculated by averaging over all prompts in
the corpus as:

WF =
∑
p∈P

WFp

|P |

4 System Design

We now describe the final submitted system design
in detail. We have experimented with several other
variants and describe these in a later section 5.

4.1 Data sampling
For the final system, we chose to use weighted sam-
pling of the data where the weights correspond to
the provided learner response frequency. Specifi-
cally, we multiply the frequency of the translation
(a number between 0 and 1) with a heuristic value
of 50 and duplicate the source-translation pair that
many number of times. In effect, this would create
repeated samples of certain pairs whose frequency
is greater than 0.02 while eliminating pairs whose
frequency is less than 0.02. With this sampling, we
end up with 40,500 en-hu pairs and 42,000 en-pt
pairs. We separate 15% of the provided prompts as
a validation set. The performance on this validation
set is used to pick the best model.

4.2 Preprocessing
For text pre-processing, we use sentencepiece to-
kenization Kudo and Richardson (2018) for en-hu
and byte-pair encoding Sennrich et al. (2016) for
en-pt data. We use pre-trained tokenization models
provided in OPUS-MT.

4.3 Model Architecture
The final submitted model architecture, shown in
Figure 1, uses the standard Transformer sequence-
to-sequence model. This has 6 encoder and 6 de-
coder layers and an 8-headed attention mechanism

https://github.com/Helsinki-NLP/OPUS-MT-train/tree/master/models
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Figure 1: Architecture of the final system

in both encoder and decoder. We initialize the
model with the pre-trained representations obtained
from the OPUS-MT data. This model is then fine-
tuned on the task data. We tie the encoder, decoder
and output embedding weights and use a shared vo-
cab size of 60,522. For position-wise feed-forward
layers, the Swish activation function Ramachan-
dran et al. (2018) is used. The whole model is
fine-tuned, through an early stopping mechanism,
on the dataset constructed as detailed in 4.1 .

For fine-tuning, we use the standard cross-
entropy loss objective on the target sequence along
with a label smoothing loss Szegedy et al. (2016).

For decoding, we use beam search with a beam
size of 10 and select top 10 hypotheses for en-hu
track. For en-pt track, we use a beam size of 28 and
select top 28 hypotheses. We implement the model
in Marian NMT Junczys-Dowmunt et al. (2018).

4.4 Postprocessing

The beam search outputs scores for each individ-
ual token. These scores represent the log likeli-
hood of that token in the output sentence. As a
post-processing step, we remove all translation
predictions where the maximum of these token-
level scores is less than -3.5. This value was de-
termined by studying the impact of the maximum
score thresholding on validation set performance.

4.5 Hyperparameters

We use the following hyperparameters. Batch size
is set to 500. Dropout is set to 0.1. Label smoothing
is set to 0.1. We use Adam optimizer with learning
rate of 3e-4, β1=0.9, β2=0.98 and epsilon = 1e-9.
We decay the learning rate by an inverse square
root mechanism for 16000 steps. The gradient clip
norm is set to 5. And patience for early stopping is
set to 5.

5 Ablations

5.1 Ablations

We have performed several ablation studies on the
en-hu task. The results of all these studies are listed
in Table 3. We list the experiment methodologies

below.
No fine-tuning: Here, we applied the pre-trained
translation model directly on the task without any
fine-tuning. The decoding was done using beam
search beam size of 12 and by selecting top 12
hypotheses (determined based on validation perfor-
mance).
No oversampling: Here, we use all provided trans-
lation pairs without any filtering based on the
learner response frequency. We fine-tune the pre-
trained model on this dataset and decode using
beam search with a beam size of 15 and selecting
top 15 hypotheses.
No post-processing: This is the same as the final
submitted model without the post-processing (max-
imum score thresholding).

6 Other Modeling Variants

We experimented with different modeling alterna-
tives for the shared task. We describe them in this
section. The results of these variations are listed in
Table 4.

6.1 Multi-output sequence formulation

Here, we re-formulate the task as a multi-output
prediction task by taking the top 5 translation pairs
(based on the learner response frequency) and
concatenating them into a single target sequence.
The pre-trained model is then fine-tuned on this
dataset.
Nucleus sampling: Here, we use the above
multi-output sequence model and add Nucleus
sampling Holtzman et al. (2019) while decoding
with p value set to 0.95.

6.2 Back Translation

Here, we start with a pre-trained hu-en translation
model. We then construct a hu-en dataset from the
provided en-hu translation pairs. The pre-trained
model is fine-tuned on this dataset. We apply this
fine-tuned hu-en model on the provided reference
AWS translations of the target hu sentences. With
a beam size of 15 and top-5 hypotheses selection,

https://github.com/Helsinki-NLP/OPUS-MT-train/tree/master/models
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Model
Validation Dev Test

P WR WF P WR WF P WR WF
Fairseq Baseline
(en-hu)

- - - 19.35 12.47 13.02 18.3 11.8 12.17

AWS Baseline (en-
hu)

- - - 84.6 19.9 29.85 86.8 18.9 28.1

Fine-tuned Trans-
former (en-hu)

75.14 50.34 56.72 75.2 55.2 59.8 75.5 49.2 55.08

Fairseq Baseline
(en-pt)

- - - 29.86 13.3 15.14 28.2 11.7 13.57

AWS Baseline (en-
pt)

- - - 86.8 14.09 21.15 87.8 13.9 21.3

Fine-tuned Trans-
former (en-pt)

72.14 49.22 54.25 69.96 52.55 55.03 72.06 50.11 54.39

Table 2: Final submission results. Bold indicates best performance. P=Precision. WR=Weighted Recall.
WF=Weighted Macro F1.

Model
Validation

P R WR MiF MaF WMiF WMaF
No fine-tuning 52.41 6.32 41.18 11.28 19.21 46.12 41.31

No oversampling 58.40 13.26 46.70 21.62 32.34 51.90 45.98

No post-processing 74.04 9.28 49.71 16.49 28.81 59.49 54.93

Table 3: Performance of various en-hu ablations on validation dataset. Bold indicates best
performance. R=Recall. MiF=Micro F1. MaF=Macro F1. WMiF=Weighted Micro F1.
WMaF=Weighted Macro F1.

Model
Validation

P R WR MiF MaF WMiF WMaF
Multi-output
sequence

74.44 7.33 44.35 13.35 23.58 55.59 52.29

Nucleus sampling 72.98 7.70 45.13 13.93 24.27 55.77 52.67

Back Translation 70.98 7.42 44.45 13.43 23.63 54.67 52.08

Model-based
Prediction Filtering

72.71 10.60 51.90 18.51 31.01 60.56 56.10

Table 4: Performance of modeling variants on en-hu validation dataset. Bold indicates best
performance.

we generate 5 English paraphrases for each given
English prompt. Now, the en-hu fine-tuned model
from the “Multi-output sequence formulation”
ablation is made to predict separately for each
of the generated English paraphrases and all the
outputs are combined into the final prediction.

6.3 Model-based Prediction Filtering

Here, we start with the final submission model and
build a binary XGBoost classifier on top of it to
filter predictions (accept vs reject). The features
of the XGBoost model are the token-level scores,
as described in Section 4.4, that are obtained from
the final submission model. As different sequences
have different lengths, we build a fixed size feature
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vector by truncating or padding all sequences to a
length of 11. This is the 99 percentile source length
listed in Table 1. The binary labels for training are
obtained by comparing output translation with the
provided gold translations. We do a randomized
search on “max depth”, “colsample bytree”, “col-
sample bylevel” and “n estimators” hyperparame-
ters of the XGBoost model to find the best set of
values. We then perform a 5-fold cross-validation
to identify the best model. The F1 score of this
model on the “accept” class is 0.81 and on the “re-
ject” class is 0.48. The overall accuracy is about
72%.

7 Results & Discussion

Table 2 shows results of the final submission, for
en-hu and en-pt tracks, along with a comparison
to the baseline. As per the main evaluation metric
(Weighted Macro F1 score), our model outper-
forms the strong AWS baseline by a significant
margin on both en-hu and en-pt tracks. For en-hu,
the improvement is about 30 absolute points on
the dev dataset and 27 points on the test dataset.
For en-pt, the improvement is about 34 absolute
points on the dev dataset and 33 absolute points on
the test dataset. This model ranked 1st on the dev
leaderboard and 2nd on the test leaderboard for
en-hu track. It ranked 2nd on the dev leaderboard
and 3rd on the test leaderboard for en-pt track.

Table 3 shows the results for several ablations for
en-hu model listed in section 5. And Table 4 shows
results for several modeling variants listed in sec-
tion 6. There are several interesting observations
to be made from these ablations and variants. First,
there’s a clear improvement of about 15.4 points
in Weighted Macro F1 from fine-tuning the pre-
trained model on the provided dataset. The sim-
ple post-processing strategy of score thresholding
yielded a gain of about 1.79 absolute points. Simi-
larly, there’s also a big improvement of about 10.7
absolute points from the oversampling strategy we
used (as opposed to no oversampling). However,
this gap seemed to have been closed by a big mar-
gin (about 7 absolute points) through the multi-
output sequence formulation and slightly more by
adding Nucleus sampling on top of it. A sepa-
rate approach that uses back translation seemed to
also have yielded similar gains upon the “No over-
sampling” approach. The model-based prediction
filtering yielded an improvement of about 4 abso-

lute points. Interestingly, all of these variants still
ended up inferior (by varying levels) to the sim-
ple oversampling + fine-tuning + post-processing
strategy that was used for the final submission.

8 Summary

We describe the system for our submission to
the shared task on simultaneous translation and
paraphrasing for language education at the 4th
workshop on Neural Generation and Translation
(WNGT) for ACL 2020. The final submitted
system leverages pre-trained translation models,
with Transformer architecture, and an oversam-
pling strategy to achieve competitive performance.
For future, it’d be interesting to see if initializing
the model with latest state-of-the-art sequence-to-
sequence pre-trained models such as BART Lewis
et al. (2019) and T5 Raffel et al. (2019) and fine-
tuning could help boost performance. It would
also be a promising direction to explore the ben-
efit of using cross-lingual models such as XLM-
Roberta Conneau et al. (2019). One way to use
them would be to initialize the encoder part of
the architecture with pre-trained representations.
Given the shared representations, it might be in-
teresting to see if concatenating several language
pairs’ train datasets and training a joint model pro-
duces additional benefits.
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