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Abstract

This paper presents the Johns Hopkins Univer-
sity submission to the 2020 Duolingo Shared
Task on Simultaneous Translation and Para-
phrase for Language Education (STAPLE). We
participated in all five language tasks, plac-
ing first in each. Our approach involved a
language-agnostic pipeline of three compo-
nents: (1) building strong machine transla-
tion systems on general-domain data, (2) fine-
tuning on Duolingo-provided data, and (3)
generating n-best lists which are then filtered
with various score-based techniques. In addi-
tion to the language-agnostic pipeline, we at-
tempted a number of linguistically-motivated
approaches, with, unfortunately, little success.
We also find that improving BLEU perfor-
mance of the beam-search generated transla-
tion does not necessarily improve on the task
metric—weighted macro F1 of an n-best list.

1

The Duolingo 2020 STAPLE Shared Task (May-
hew et al., 2020) focuses on generating a com-
prehensive set of translations for a given sen-
tence, translating from English into Hungarian,
Japanese, Korean, Portuguese, and Vietnamese.
The formulation of this task (§2) differs from the
conventional machine translation setup: instead of
the n-gram match (BLEU) against a single refer-
ence, sentence-level exact match is computed be-
tween a list of proposed candidates and a weighted
list of references (as in Figure 1). The set of refer-
ences is drawn from Duolingo’s language-teaching
app. Any auxiliary data is allowed for building
systems, including existing very-large parallel cor-
pora for translation.

Our approach begins with strong MT systems
(§3) which are fine-tuned on Duolingo-provided
data (§4). We then generate large n-best lists, from
which we select our final candidate list (§5). Our
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N )
[ can i walk there? ]7—> eu posso andar 14? 0.049
—>  posso andar 1a? 0.015

—> da para eu andar ali? = 0.001
—> eu posso andar pra 1a?  0.001
A

Figure 1: An example English source sentence with its
weighted Portuguese target translations. The objective
of the task is to recover the list of references, and per-
formance is measured by a weighted F-score.

entries outperform baseline weighted F1 scores by
a factor of 2 to 10 and are ranked first in the offi-
cial evaluation for every language pair (§6.2).

In addition to our system description, we per-
form additional analysis (§7). We find that
stronger BLEU performance of the beam-search
generated translation is not indicative of improve-
ments on the task metric—weighted macro F1 of
a set of hypotheses—and suggest this should en-
courage further research on how to train NMT
models when n-best lists are needed (§7.1). We
perform detailed analysis on our output (§7.2),
which led to additional development on English—
Portuguese (§8.1). We also present additional
linguistically-informed methods which we experi-
mented with but which ultimately did not improve
performance (§8).

2 Task Description

Data We use data provided by the STAPLE
shared task (Mayhew et al., 2020). This data con-
sists of a single English prompt sentence or phrase
paired with multiple translations in the target lan-
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hu ja ko pt vi
total prompts 4,000 2,500 2,500 4,000 3,500
mean translations 63 342 280 132 56
median translations 36 192 154 68 30
STD. translations 66 362 311 150 62

Table 1: Statistics over the Duolingo-provided data.

guage. These translations come from courses in-
tended to teach English to speakers of other lan-
guages; the references are initially generated by
trained translators, and augmented by verified user
translations. Each translation is associated with a
relative frequency denoting how often it is selected
by Duolingo users. Table 1 shows the total number
of prompts provided as well as the mean, median,
and standard deviation of the number of transla-
tions per training prompt. All of the provided task
data is lower-cased.

For each language pair, we created an internal
split of the Duolingo-provided training data: 100
training prompts for use in validating the MT sys-
tem (JHU-VALID), another 100 intended for model
selection (JHU-DEV),! and a 300-prompt test set
for candidate selection (JHU-TEST). The remain-
ing data (JHU-TRAIN) was used for training the
MT models.

Evaluation metric The official metric is
weighted macro F. This is defined as:

Weighted Fi(s)

Weighted Macro I} = Z 5]

seS

bl

where S is all prompts in the test corpus. The
weighted F1 is computed with a weighted recall,
where TP are the true positives for a prompt s,
and F'N; are the false negatives for a prompt s:

WTP, = > weight(t)
teTPs
WEN, = > weight(t)
teFNg
WTP,
Weighted Recall(s) = —————.
eighted Recall(s) WTP, - WEN.

Note that recall is weighted (according to weights
provided with the gold data), but precision is not.
Evaluation is conducted on lowercased text with
the punctuation removed.
1However, we discovered that BLEU did not correlate

well enough with task performance to be used for this. See
§7.1 for more analysis and discussion.
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3 Machine Translation Systems

We began by building high-quality state-of-the-art
machine translation systems.

Data and preprocessing Additional data for our
systems was obtained from Opus (Tiedemann,
2012).> We removed duplicate bitext pairs, then
reserved 3k random pairs from each dataset to cre-
ate a validation, development, and test sets of 1k
sentence each. The validation dataset is used as
held-out data to determine when to stop training
the MT system.> Table 2 shows the amount of
training data used from each source.

The Duolingo data (including the evaluation
data) is all lowercased. Since our approach is
to overgenerate candidates and filter, we want to
avoid glutting the decoder beam with spurious
cased variants. For this reason, we lowercase all
text on both the source and (where relevant) target
sides prior to training. However, it is worth not-
ing that this has a drawback, as source case can
provide a signal towards meaning and word-sense
disambiguation (e.g., apple versus Apple).

After lowercasing, we train separate Sentence-
Piece models (Kudo and Richardson, 2018) on
the source and target sides of the bitext, for each
language. We train a regularized unigram model
(Kudo, 2018) with a vocabulary size of 5,000 and
a character coverage of 0.995. When applying the
model, we set &« = 0.5. No other preprocessing
was applied.

Translation models We used fairseq (Ott et al.,
2019) to train standard Transformer (Vaswani
et al., 2017) models with 6 encoder and decoder
layers, a model size of 512, feed forward layer
size of 2048, and 8 attention heads, and a dropout
of 0.1. We used an effective batch size of 200k
tokens.* We concatenated the development data
across test sets, and quit training when validation
perplexity had failed to improve for 10 consecutive
checkpoints.

We trained two sets of models: MODEL1 was
trained on just the data above the line in Table 2,
while MODEL?2 was trained on all the data.

opus.nlpl.eu

3The other two were reserved for unanticipated use cases
that never materialized.

4(batch size 4000) x (2 GPUs) x (update interval 25)


opus.nlpl.eu

hu ja ko pt vi
Europarl (Koehn, 2005) 2,351k - - 2,408k -
GlobalVoices (opus.nlpl.eu/GlobalVoices.php) 194k 822k 37k 1,585k -
OpenSubtitles (Lison and Tiedemann, 2016) 252,622k 13,097k 8,840k 196,960k 20,298k
Tatoeba (tatoeba.org) 580k 1,537k - 1,215k 16k
WikiMatrix (Schwenk et al., 2019) 5,682k 9,013k 2,598k 45,147k 17,427k
JW300 (Agi¢ and Vuli¢, 2019) 19,378k 34,325k 32,356k 39,023k 11,233k
QED (Abdelali et al., 2014) 5,693k 9,064k 9,992k 8,542k 5,482k

Table 2: Number of English word tokens for all datasets used to train the baseline MT models. Just the data above
the line was used to train the MODEL1 baseline, all the data was used to train the MODEL?2 baseline.

4 Fine-Tuning

After training general-domain machine translation
models, we fine-tune them on the Duolingo data.’
The Duolingo data pairs single prompts with up to
hundreds of weighted translations; we turned this
into bitext in three ways:

e 1-best: the best translation per prompt.
e all: each translation paired with its prompt.

e up-weighted: all possible translations with
an additional 1, 9, or 99 copies of the 1-
best translation (giving the 1-best translation
a weight of 2x, 10x, or 100x the others).

We fine-tune with dropout of 0.1, and an effective
batch size of 160k tokens. We sweep learning rates
of 1 x 10~*and 5 x 10%.

We withhold a relatively high percentage of the
Duolingo training data for internal development
(500 prompts total, which ranged from to 12.5 to
20% of the provided data), so we also train sys-
tems using all the released data (with none with-
held), taking hyperparameters learned from our
splits (number of fine-tuning epochs, candidate se-
lection parameters, etc).

5 Candidate Generation and Selection

From the models trained on general-domain data
(83) and refined on in-domain data (§4), we gen-
erate 1,000-best translations. For each translation,
fairseq provides word-level and length-normalized
log-probability scores, which all serve as grist for
the next stage of our pipeline: candidate selection.

STraining on the Duolingo data directly was less effective.

A better method might be to train using the weights
to weight the sentences in training as available in Marian
(Junczys-Dowmunt et al., 2018) but that was not available
in fairseq, so we improvised.
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5.1 Ensembling

For Portuguese only, we experimented with en-
sembling multiple fine-tuned models in two ways:
(a) using models from different random seeds, and
(b) using different types of systems.

5.2 Selecting top & hypotheses

As a baseline, we extract hypotheses
from the n-best list using the provided
my_cands_extract.py script.”  which sim-

ply extracts the same number of hypotheses, k,
per prompt. To determine how many hypotheses
to retain from the model’s n-best list, we conduct
a sweep over k on JHU-TEST and select the best k&
per language pair based on weighted macro F1.

5.3 Probability score thresholding

We propose to use the log probability scores di-
rectly and choose a cutoff point based on the top
score for each prompt.

We consider a multiplicative threshold on the
probabilities of the hypothesis, relative to the best
hypothesis. For example, if the threshold value is
—0.40, for a prompt where the top hypothesis log-
probability is —1.20, any hypothesis from the top
1000 with a log-probability greater than or equal
to —1.60 will be selected.® As in §5.2, we sweep
over this threshold value for each language pair
and choose the value that results in the highest
weighted macro F1 score from JHU-TEST.

"github.com/duolingo/
duolingo-sharedtask-2020/blob/
626239b78621af96fbb324e678ccal7b3dd4e470/
my_cands_extract.py

¥1n other words, we set a threshold of exp{—0.40} on the
likelihood ratio.


opus.nlpl.eu/GlobalVoices.php
tatoeba.org
github.com/duolingo/duolingo-sharedtask-2020/blob/626239b78621af96fbb324e678cca17b3dd4e470/my_cands_extract.py
github.com/duolingo/duolingo-sharedtask-2020/blob/626239b78621af96fbb324e678cca17b3dd4e470/my_cands_extract.py
github.com/duolingo/duolingo-sharedtask-2020/blob/626239b78621af96fbb324e678cca17b3dd4e470/my_cands_extract.py
github.com/duolingo/duolingo-sharedtask-2020/blob/626239b78621af96fbb324e678cca17b3dd4e470/my_cands_extract.py

en — ‘ hu ja ko pt vi

MODELI ‘ 448 11.8 40 326 272
= JHU-TRAIN: 1-best 434 124 114 416 41.6
S JHU-TRAIN: all 52.1 231 231 493 520
§ upweighted JHU-TRAIN: all + 1x 1-best | 52.1 235 243 50.1 523
4 upweighted JHU-TRAIN: all +9x 1-best | 56.6 24.1 25.0 52.8 54.3
& upweighted JHU-TRAIN: all + 99x 1-best | 54.0 23.0 219 51.1 524

Table 3: The weighted macro F1 on JHU-TEST for MODEL1 and fine-tuned variants. Candidates are extracted from
the n-best list using the proposed probability score thresholding (§5.3).

en — x ‘ ja ko
MODEL2 | 168 125
= JHU-TRAIN: 1-best 184 18.7
S JHU-TRAIN: all 31.5 38.0
5 upweighted JHU-TRAIN: all + 1x 1-best | 30.3 38.0
g upweighted JHU-TRAIN: all + 9x 1-best | 32.1 38.8
= upweighted JHU-TRAIN: all + 99x 1-best | 31.0 334

Table 4: The weighted macro F1 on JHU-TEST for MODEL2 and fine-tuned variants for Japanese and Korean.
Candidates are extracted from the n-best list using the proposed probability score thresholding (§5.3).

6 Results

We present results of our different methods on our
internal development set in §6.1 and present our
official evaluation performance in §6.2.

6.1 Internal evaluation

Table 3 shows the weighted macro F1 performance
on JHU-TEST for MODELI and fine-tuned vari-
ants. Candidates are extracted from the n-best
list using the proposed probability score threshold-
ing (§5.3). Fine-tuning improves performance (ex-
cept for fine-tuning on just the 1-best translation in
Hungarian). For all language pairs, the best fine-
tuning performance came from training on the up-
weighted training data, where we trained on all
possible translations with the 1-best up-weighted
10 times. For Japanese and Korean” MODEL?2 (Ta-
ble 4), all types of fine-tuning improve weighted
F1, but for both language pairs, the best fine-
tuning variant matches that of MODELI.

Table 5 shows the weighted macro F1 on JHU-
TEST for two methods of selecting candidates from
the n-best list. The first line is the baseline top &
hypothesis selection (§5.2), the second is our pro-

These were the two languages where MODEL2 improved
fine-tuning performance compared to MODELI.
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posed probability score thresholding (§5.3). The
best fine-tuned system is shown with each selec-
tion method for each language pair. The pro-
posed probability score thresholding improves per-
formance over the baseline top k candidate selec-
tion by 2-3.3 F1 points.

6.2 Official evaluation

In Table 6, we present the final results of our sub-
mission on the official test set (DUO-TEST). Our
systems ranked first in all language pairs, with im-
provements of 0.1 to 9.2 over the next best teams.
We denote in parenthesis the improvement over the
next best team’s system on DUO-TEST. We also
report the score that our system achieved on our
internal test set (JHU-TEST).

For Hungarian and Vietnamese, our winning
submission was MODEL1 fine-tuned on the up-
weighted Duolingo data (1-best repeated 10x) with
a learning rate of 1 x 10~%. For Japanese, our win-
ning submission was MODEL?2 fine-tuned on the
up-weighted Duolingo data (1-best repeated 10x)
with a learning rate of 5 x 10~%. For Korean,
our winning submission was MODEL2 fine-tuned
on the up-weighted Duolingo data (1-best repeated
10x) with a learning rate of 1 x 10—, but without



en - x

‘ hu ja ko pt vi

top k hypothesis selection (§5.2)

Probability score thresholding (§5.

3)

546 295 356 500 510
56.6 32.1 38.8 52.8 543

Table 5: The weighted macro F1 on JHU-TEST for two methods of selecting candidates from the n-best list: baseline
top k hypothesis selected (discussed in §5.2), and our proposed probability score thresholding (§5.3). The best fine-
tuned system is shown with each selection method for each language pair.

en — \ DUO-TEST JHU-TEST

hu 55.5(+0.3)  56.6
ja 31.8 (+2.4)  32.1
ko 40.4 (+9.2) 38910
pt 552 (+0.1)  54.6
vi 55.8(+1.9) 543

Table 6: The weighted macro F1 of our final submit-
ted systems on the official shared task test set (DUO-
TEST) on our internal test set (JHU-TEST). We denote in
parenthesis the improvement over the next best team’s
system on DUO-TEST.

any internal development data withheld.'”

For Portuguese, our winning submission was an
ensemble of 3 systems. We began with MODEL1
fine-tuned on the up-weighted Duolingo data with
a learning rate of 1 x 10~%. We used fairseq’s de-
fault ensembling to ensemble 3 systems trained on
all the translations of each Duolingo prompt, with
the 1-best data repeated a total of 2x, 10x, and
100x for each system.

While we submitted slightly different systems
for each language pair, the following worked
well overall: Fine-tuning on the Duolingo data
was crucial. This is a domain adaptation task—
the Duolingo data differs greatly from the stan-
dard MT bitext we pretrain on, such as Eu-
roparl proceedings, GlobalVoices news, Subtitles,
or Wikipedia text.!! Taking advantage of the rel-
ative weights of the training translations and up-
weighting the best one was also helpful across the
board. We suspect that using the weights in train-
ing directly (as opposed to our hack of upweight-

10As described in §4, we first fine-tune a system and use
our internal splits for model selection from checkpoints and
threshold selection. Then we apply all the same parameters to
fine-tune a system with no data withheld. This was better than
with holding data only for en-ko (on DUO-DEV). Since this
en-ko system was trained on JHU-TEST, Table 6 reports the
JHU-TEST results on the corresponding system that withheld
that data.

"n addition to style differences, the Duolingo sentences
are much shorter on average.
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Figure 2: Macro Weighted F1 (JHU-TEST) vs. BLEU
(JHU-DEV) for a variety of fine-tuned systems for each
language pair. The two metrics are not well correlated
within a language pair.

ing the best translation) would likely improve per-
formance further.!?

7 Analysis

We perform qualitative and quantitative analyses
of our output, which informed our own work and
will motivate future work.

7.1 BLEU vs. Macro Weighted F1

In Figure 2, we plot macro weighted F1 on JHU-
TEST against BLEU score'® on JHU-DEV for fine-
tuned systems for each language. It is clear that
this BLEU score did not identify the best per-
forming system according to the macro weighted
F1 metric. For example, performance on beam
search BLEU could be improved by further fine-
tuning systems that had already been fine-tuned
on all translations of each prompt on just the 1-
best translation of each prompt, but that degraded
the task performance. In fact, the systems that per-
formed best on macro weighted F1 in Hungarian
and Korean were over 20 BLEU behind the high-
est BLEU score for those languages (and the top
BLEU scoring systems did poorly on the task met-
ric).

2This feature does exist in Marian (Junczys-Dowmunt
et al., 2018) but not in Fairseq.
3Computed against the 1-best translation of each prompt.



While this phenomenon may be an artifact of
these particular metrics, we suspect this is indica-
tive of an interesting topic for further research. MT
models trained with NLL are trained to match a 1-
hot prediction, which may make their output dis-
tributions poorly calibrated (Ott et al., 2018; Ku-
mar and Sarawagi, 2019; Desai and Durrett, 2020).
More research is needed for strong conclusions,
but our initial analysis suggests that training on the
more diverse data improves quality of a deep n-
best list of translations at the expense of the top
beam search output. This may be important in
cases where an n-best list of translations is being
generated for a downstream NLP task.

The data for this task was unique in that it pro-
vided diverse translations for a given prompt. In
most cases where this type of data is not available,
training towards a distribution (rather than a single
target word), as is done in word-level knowledge
distillation (Buciluundefined et al., 2006; Hinton
et al., 2015; Kim and Rush, 2016) may prove use-
ful to introduce the diversity needed for a strong
n-best list of translations. This can be done ei-
ther towards a distribution of the base model when
fine-tuning (Dakwale and Monz, 2017; Khayral-
lah et al., 2018) or towards the distribution of an
auxiliary model, such as a paraphraser (Khayral-
lah et al., 2020).

7.2 Qualitative error analysis

In each language, we performed a qualitative error
analysis by manually inspecting the difference be-
tween the gold and system translations for prompts
with lowest weighted recall on JHU-TEST.

Our systems were often incapable of express-
ing target language nuance absent from the source
language. For example, for the prompt “we have
asked many times.”, a gold translation was ‘7=
HIIM I F T L X - 72° whereas our sys-
tem output ‘F./= 513 FEH Fia £ L /=", The
gold translations often included the T L X » /=
verb ending, which conveys a nuance similar to
perfect aspect. The prompt’s scenario would lead
many Japanese users to use this nuanced ending
when translating, but our system produces valid
but less natural translations that do not appear in
the references.

Another issue is vocabulary choice on a more
general level. Often there are several ways to trans-
late certain words or phrases, but our systems pre-
fer the less common version. For example, a com-
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mon translation of ‘please’ in Portuguese is ‘por
favor’, which appears in the high-weighted gold
translations. Another possible translation, ‘por ob-
séquio’, which our system seemed to prefer, ap-
pears in much lower-weighted translations. An-
other example is the translation of ‘battery’ in
Korean. The high-weighted references include
the common word for battery (‘Z Z *]”) but
only lower-weighted references include ‘¥l ] ],
which was preferred by our system.

Our system also struggled with polysemous
prompt words. For example, for the prompt “cups
are better than glasses.”, our system output trans-
lations like ‘f ©] ¢+ 4 = X o} Yt} | using ¢F
7 (eyeglasses), instead of translations like ‘%
o] fg]Ztr t} v} | using F 2] 7 (drinking
glasses). The systems seem to be incapable of con-
sidering the context, “cups” in this case, for the
ambiguity resolution.

A final class of our system’s errors is gram-
matical errors. For example, for the prompt “ev-
ery night, the little sheep dreams about surfing.”,
the gold translations included sentences like ‘toda
noite a pequena ovelha sonha com surfe’ whereas
our system output sentences like ‘toda noite as
ovelhas pequenas sonham com surfe’. The er-
ror was that our output included ‘ovelhas’ (plural
sheep), but the gold translations all used ‘ovelha’
(single sheep).

7.3 Missing paradigm slots in Duolingo data

We also find cases where our system produces
valid translations but is penalized because these
are not among the gold translations. We consider
these cases as a result of an “incomplete” gold set
with missing paradigms.'#

For example, the Vietnamese pronouns for ‘he’
and ‘she’ can vary according to age (in relation to
the speaker). From youngest to oldest, some pro-
nouns for ‘she’ are ‘chi iy’, ‘co 4y’, and ‘ba Ay’.
For several of the prompts, the gold outputs only
include some of these pronouns despite all being
valid. In the prompt “she has bread”, only the first
two pronouns are present even though a translation
representing the sentence as an older woman hav-
ing bread should be equally valid. We also find
this missing pronoun slot problem in Portuguese
(references only using ‘vocé€’ and not ‘tu’ for trans-
lations of ‘you’) and Japanese (only using ‘d> 7%

!“The task website notes this phenomenon. It calls the set
of targets ‘comprehensive’, though not ‘exhaustive’.



7=’ and not ‘7~ for translations of ‘you’).

We could not easily predict when slots would be
missing. Because the data comes from Duolingo
courses, we believe this may depend on the
prompt’s depth in the learning tree. As earlier
lessons are studied by more users, we suspect they
are also more likely to contain more complete gold
translation sets due to more users submitting ad-
ditional valid translations. This makes it difficult
to assess the success of our models and distin-
guish “true errors” from valid hypotheses that are
marked incorrect.

8 What Didn’t Work

We explored additional methods both for select-
ing candidates from an n-best lists and for gener-
ating additional candidates based on an n-best list.
While they did not improve performance and were
not included in our final submission, we discuss
the methods and the analyses learned from them.

8.1 Moore-Lewis filtering

Our error analysis revealed that our systems of-
ten output sentences that were not incorrect, but
not optimized for the Duolingo task. For exam-
ple, many of our top candidates for translations of
“please” in Portuguese used por obséquio, which
is a very formal version, instead of the more com-
mon por favor. While both versions were valid for
the prompts, the gold translations with por favor
were weighted higher, so we would desire models
to prefer this translation. We interpret this as do-
main mismatch between the STAPLE data and our
MT training data.

To filter out such bad candidates, we experi-
mented with cross-entropy language model filter-
ing (Moore and Lewis, 2010). This takes two lan-
guage models: a (generally large) out-of-domain
language model (OD), and a (typically small) in-
domain language model (ID), and uses the differ-
ence in normalized cross-entropy from these two
models to score sentences. Sentences with good
OD scores and poor ID scores are likely out-of-
domain and can be discarded based on a score
threshold.

Experimenting on Portuguese, we used KenLM
(Heafield, 2011) to train a Kneser—Ney-smoothed
5-gram model on the Portuguese side of the MT
training data (Table 2) as the OD model and a
3-gram model on the Duolingo Portuguese data
(ID). These were used to score all candidates ¢ as
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\ JHU-TEST \ DUO-TEST

Baseline
Baseline + Moore-Lewis

53.30 55.16
53.70 53.83

Table 7: Moore—Lewis filtering for Pt (macro F1).

score(t) = pip(t) — pop(t). We swept thresholds
and minimum prompt lengths on our JHU-TEST
data, and found with a threshold of —1.50 on 7-
word prompts and longer performed the best.
Moore-Lewis filtering was originally designed
for more coarse-grained selection of training data.
We suspect (but did not have time to test) that a
better idea is therefore to apply this upstream, us-
ing it to help select data used to train the general-
domain MT system (Axelrod et al., 2011).

8.2 Dual conditional thresholding

Extending the probability score thresholding
(85.3), we consider incorporating a score from a
reverse model that represents the probability that
the original prompt was generated by the candi-
date. The reverse model score is also used in
Dual Conditional Cross-Entropy Filtering when
selecting clean data from noisy corpora (Junczys-
Dowmunt, 2018), and for re-scoring n-best lists in
MMI decoding (Li et al., 2016)

We train base and fine-tuned reverse systems
for the five language pairs and use them to score
the output translations. We compute the combined
score of a hypothesis given a prompt as the arith-
metic mean of the forward and backward log prob-
ability scores and use them in the probability score
thresholding algorithm from §5.3. We find that af-
ter sweeping across threshold values, incorporat-
ing the reverse score performs slightly worse over-
all than the standard thresholding method for every
language.

8.3 N-gram filtering

The Duolingo data generally consists of simple
language, which means we did not expect to see
novel phrases in the references that were not in
our training corpora. We used this idea to fil-
ter hypotheses that had any m-grams that didn’t
appear in our training data. Our hope was that
this would catch rare formulations or ungrammat-
ical sentences, e.g. cachorro preta, which has the
wrong gender on the adjective. However, even us-
ing bigrams caused this method to filter out too
many hypotheses and hurt F1 performance.



None | elas tém cinco meninas ?

Open | elas V;3;PL NUM N;PL;FEM ?
Morph | PRO;3;PL;FEM V;3;PL NUM N;PL;FEM PUNCT
POS | PRO v NUM N PUNCT

Table 8: Preprocessing operations for filtering on one
Portuguese gold output for the prompt do they have five
girls?, organized from most specific to most general.

Part-of-speech filtering Although the language
used in Duolingo is relatively simple, the num-
ber of unique types turned out to be quite large.
However the number part-of-speech (POS) tags is
small. Instead of filtering based on words, we
count n-grams of POS tags, hoping to remove un-
grammatical sentences with tags such as DET DET.
In our experiments, this did not actually exclude
any hypotheses.

Open class words and morphology In between
the extremes of large number of types using raw
lexical forms and few types using POS tags is to
leverage open class words or additional morpho-
logical information. We morphologically tag the
dataset with the Stanford NLP toolkit (Qi et al.,
2018), then represent each sentence either by its
words, its POS tags, its morphological tags, or
words for closed-class items and tags for open-
class items, as shown in Table 8. This too resulted
in few hypotheses being filtered and did not im-
pact F1 performance.

Filtering by difficulty level As the Duolingo
data was generated by language learners, we also
considered filtering sentences by the difficulty of
the words within. Experimenting with Japanese,
we examined the grade level of kanji'> in each sen-
tence. Ignoring non-kanji characters, the average
grade level per sentence on the STAPLE training
data was 3.77, indicating a 3"—4" grade level. Fu-
ture work could consider filtering by other mea-
sures such as the coreness of a word (Wu et al.,
2020).

8.4 Generation via post-editing

Inspired by query expansion in information re-
trieval, we post-edit either by consider morpho-
logical variants in situations of underspecifica-
tion, substituting forms in different scripts (for
Japanese), or replacing long-form number names
with numerals. We found these ineffective because

'3Specified by the Japanese Ministry of Education and

annotated in edrdg.org/wiki/index.php/KANJIDIC_
Project
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Strategy P RW WFlImacro
Baseline 2691 69.70 34.49
Add 1;PL 26.62 69.84 34.27
Add 3;SG;MASC 23.97 70.19 3342
Add 3;SG;FEM 24.69 70.49 33.51
Add 3;PL 22.28 69.75 31.89
Add most frequent ‘she’ 26.77 69.84 34.38
Swap most common ‘he’s 26.71 69.82 34.37
Swap 2" most common ‘he’s 26.90 69.71 34.47
Swap 3 most common ‘he’s 26.88 69.71 34.45

Table 9: Effect of pronoun-based augmentation on met-
rics in Vietnamese, computed on JHU-TEST. All strate-
gies improve recall and weighted recall, but they cause
precision and F1 to decrease.

several acceptable translations were not present in
the ground truth dataset (see §7.3).

Morphological expansions English is morpho-
logically poorer than 4 target languages. As an ex-
ample, the English word ‘you’ may be translated
into Portuguese as ‘tu’, ‘vocé’, ‘vocés’, or ‘vos’,
to consider only nominative forms. We can thus
generate three additional candidates by altering the
morphosyntax (and maintaining grammatical con-
cord) while keeping the meaning intact.
Evaluating in Portuguese and Vietnamese, we
find that this is ineffective (see §7.3). Consider
Vietnamese. It is a morphologically isolating and
zero-marking language, so concord between con-
stituents is not overtly marked. This leaves us
fairly free to swap out morphological variants of
pronouns: there may be difference in age, conno-
tation, or register, but the overt semantics of the
English prompt are preserved. All swapping trans-
formations in Table 9 give poorer performance.

Hiragana replacement Japanese has three dif-
ferent writing systems—hiragana, katakana, and
kanji—and sometimes a word written in kanji is
considered an acceptable translation when written
in hiragana. For example, the Japanese word for
“child” is 7-ft when written with kanji, but an ac-
ceptable alternative is the hiragana Z &3, . We
experiment with expanding translation candidates
by replacing Japanese kanji with pronunciations
from a furigana (hiragana pronunciation) dictio-
nary but this method did not improve performance.

Numeral replacement For sentences contain-
ing numbers, the list of accepted translations of-
ten contains Arabic numbers, in addition to num-
bers in the native language. For example, ‘o senhor


edrdg.org/wiki/index.php/KANJIDIC_Project
edrdg.org/wiki/index.php/KANJIDIC_Project

smith vird no dia dez de julho’ and ‘o senhor smith
vira no dia 10 de julho.” are both gold translations
of “mr. smith will come on july tenth.” We ex-
periment with replacing native numbers with Ara-
bic numerals in Japanese, Portuguese, and Viet-
namese. This did not improve weighted F1.

9 Conclusion

Our approach was general, borrowing from best
practices in machine translation. We built large,
general-domain MT systems that were then fine-
tuned on in-domain data. We then followed an
“overgenerate and filter” approach that made ef-
fective use of the scores from the systems to find
a per-prompt truncation of large n-best lists pro-
duced from these systems. These techniques per-
formed very well, ranking first in all five language
pairs. We expect that further refinement and ex-
ploration of standard MT techniques—as well as
techniques that we were unsuccessful with (§8)—
would bring further improvements that would ac-
crue generally across languages.

At the same time, the Duolingo shared task
is distinct from machine translation in subtle but
important ways: presenting simpler, shorter sen-
tences and a 0-1 objective. While we were not able
to get additional gains from linguistic insights, we
don’t see these failures as conclusive indictments
of those techniques, but instead as invitations to
look deeper.
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