
Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 153–160
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

153

Expand and Filter: CUNI and LMU Systems for the WNGT 2020
Duolingo Shared Task

Jindřich Libovický1 and Zdeněk Kasner2 and Jindřich Helcl2 and Ondřej Dušek2

1Center for Information and Language Processing, LMU Munich, Germany
2Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

libovicky@cis.lmu.de, {kasner,helcl,odusek}@ufal.mff.cuni.cz

Abstract

We present our submission to the Simultane-
ous Translation And Paraphrase for Language
Education (STAPLE) challenge. We used a
standard Transformer model for translation,
with a crosslingual classifier predicting correct
translations on the output n-best list. To in-
crease the diversity of the outputs, we used
additional data to train the translation model,
and we trained a paraphrasing model based
on the Levenshtein Transformer architecture
to generate further synonymous translations.
The paraphrasing results were again filtered
using our classifier. While the use of addi-
tional data and our classifier filter were able to
improve results, the paraphrasing model pro-
duced too many invalid outputs to further im-
prove the output quality. Our model with-
out the paraphrasing component finished in the
middle of the field for the shared task, improv-
ing over the best baseline by a margin of 10–
22% weighted F1 absolute.

1 Introduction

The usual goal of machine translation (MT) is to
generate a single correct translation of a source
sentence. Neural machine translation (NMT; Bah-
danau et al., 2015; Vaswani et al., 2017) models
a conditional distribution over possible target sen-
tences given a source sentence, and uses beam-
search decoding as a heuristic to get one or more
translations. However, the number of possible cor-
rect translations is often vast in comparison (Bojar
et al., 2013).

The STAPLE challenge (Mayhew et al., 2020)
poses the problem of MT slightly differently. Here,
the goal is to generate as many correct translations
as possible. Knowing many correct translations
can be useful e.g. for automatic scoring in tools
for language education, such as Duolingo.1 On

1https://www.duolingo.com

one hand, the learners should be guided to use
the more common formulations, on the other hand,
they should not be penalized for providing a correct
but unusual answer.

We present a pipeline of two systems in our sub-
mission to the STAPLE challenge. As the first step,
we use a standard NMT model trained with addi-
tional, carefully filtered data. The NMT output
n-best lists are filtered using a classifier. Second,
we use a Levenshtein Transformer model (Gu et al.,
2019) to generate paraphrases of the outputs of the
first model. Again, the outputs of the Levenshtein
Transformer are filtered using another classifier.

The paper is structured as follows. Our training
datasets are described in detail in Section 2. We
describe the two models in Sections 3 and 4 re-
spectively. We conduct experiments with all five
target languages in the challenge, i.e. Hungarian,
Japanese, Korean, Vietnamese and Portuguese. The
source language is English in all setups. The exper-
iment settings are shown in Section 5. The results
(Section 6) show that the Levenshtein Transformer
paraphrase generator cannot easily improve on the
filtered NMT output n-best list.

2 Data

2.1 STAPLE Dataset

The data in the STAPLE shared task comes from
the Duolingo language learning platform. This
represents a specific domain with a limited number
of mostly simple sentences targeted at learners,
using a limited vocabulary.

Each source (English) sentence comes with a list
of valid translations in the target language, ranging
from a few up to hundreds of paraphrases. All of
the valid translations are further annotated with a
probability score indicating how frequent a given
variant is. Statistics of the data are given in Table 1.

We held out 200 source sentences with all their

https://www.duolingo.com


154

Language Prompts Trans. Avg. P/S

Hungarian 3,800 238,467 62.75
Korean 2,300 646,410 281.05
Japanese 2,300 788,591 342.87
Portuguese 3,800 503,839 132.59
Vietnamese 3,300 183,339 55.57

Table 1: STAPLE training data statistics (target lan-
guage set, number of source sentences (prompts), num-
ber of paraphrases (translations), average number of
paraphrases per source).

translations as our internal validation dataset. We
use this dataset for validating the translation models
and for estimating the filtering thresholds.

2.2 Additional data for MT
For training the translation model, we obtained
out-of-domain parallel corpora from the OPUS col-
lection (Tiedemann, 2012) for all target languages,
ParaCrawl (Esplà et al., 2019) for Portuguese and
Hungarian, and JParaCrawl (Morishita et al., 2019)
for Japanese. We applied FastText language iden-
tifier (Joulin et al., 2016b,a) to clean the corpora.
Furthermore, we filtered out sentence pairs with a
length ratio that differs from the estimated mean
ratio by more than 2.5 times the standard deviation.

As in-domain training data, we mix data from the
STAPLE training dataset and the Tatoeba2 corpus
(part of the OPUS collection). To balance the under-
representation of the in-domain data in the training
dataset, we oversample both the STAPLE dataset
(200×) and the Tatoeba dataset (10×).

We use the combined mixed-domain parallel cor-
pora for training backtranslation models (Sennrich
et al., 2016) and an XLM-R-based domain classi-
fier. The classifier is trained to predict whether a
target sentence came from the STAPLE training
dataset, conditioning on the source sentence.

The monolingual data consists of Wikipedia,
WMT NewsCrawl (Barrault et al., 2019) for Hun-
garian, Japanese and Portuguese, Leipzig Corpora
NewsCrawl (Goldhahn et al., 2012) for all lan-
guages and the jpWaC corpus for Japanese (Erjavec
et al., 2008).

We filtered both the monolingual and parallel
data using the domain classifier. The classifier has
over 99% accuracy on balanced data. We set a
permissive threshold for keeping the sentence pair
to 10−5.

2https://tatoeba.org/

Based on preliminary experiments, we include
only a single correct translation from the STAPLE
training set into the machine translation training
data. This had a slightly positive effect on trans-
lation quality. Also, the n-best lists obtained by
machine-translating the STAPLE dataset are more
representative and thus more suitable for training
the classifier for n-best list filtering than if we in-
cluded all translations from the training set.

3 Translation and Filtering Model

3.1 Translation Model
Our pipeline starts with the Transformer model
(Vaswani et al., 2017) trained on the provided
dataset enriched with additional data (see Sec-
tion 2). This provides initial translations of the
source sentence on the output n-best list, which are
further filtered.

3.2 Filtering Classifier
We train a crosslingual classifier which predicts
whether a translation in the MT output n-best list
is correct (given the source sentence). Using the
trained translation model, we first generate large
n-best lists for all English sentences in the original
training data. Next, we label each generated sen-
tence whether it is a positive or a negative sample
(based on the reference data). Finally, we create
a balanced mix of negative and positive samples.
Since the n-best lists contained much more incor-
rect translations, we oversample the list of correct
translations.

We use XLM-RoBERTa as our sentence classi-
fier model (XLM-R; Conneau et al., 2020), specif-
ically the pretrained variant available in the Hug-
gingFace Transformers library3 (Wolf et al., 2019).
We finetune this model on the balanced mix of
the correct and incorrect translations for a given
sentence.

During inference, we generate an n-best list for
a given source sentence, and we apply the classi-
fier to filter out the sentences which are labeled as
incorrect using a threshold value. The n-best list
size and the threshold are hyperparameters of the
method.

4 Paraphrasing Model

As an additional step to increase the number of
valid translations produced, we train a target-

3https://github.com/huggingface/
transformers

https://tatoeba.org/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


155

All
parallel

+ lang. &
length filter

+ domain
filtering Monolingual + domain

filtering
Total

(unique)

Hungarian 56.1M 47.9 M 22.1M 54.3M 7.0M 27.1M
Japanese 14.7M 14.0 M 1.9M 44.2M 2.8M 4.7M
Korean 2.2M 2.0 M 0.6M 9.3M 0.8M 1.4M
Portuguese 63.5M 53.7 M 21.3M 30.0M 4.5M 25.8M
Vietnamese 3.9M 3.4 M 1.5M 9.7M 1.4M 2.8M

Table 2: Number of sentences in the parallel and monolingual data used for training the MT systems. The data
in the second column were used for training the backtranslation systems, the last column corresponds to final
translation systems.

language paraphrasing model. Rather than generat-
ing a translation directly from the source sentence,
the model refines existing translations in order to
produce new ones.

The model is based on the Levenshtein Trans-
former (LevT; Gu et al., 2019), which is a se-
quence generation model based on the Transformer
(Vaswani et al., 2017) architecture. Instead of left-
to-right autoregressive generation, LevT generates
sequences in an arbitrary order using two basic
operations – insertion and deletion. Using an ini-
tial sequence as a starting point, LevT is able to
perform sequence refinement.

4.1 Training

LevT iteratively applies three policies represented
by fully-connected neural network layers on top of
the last layer of a Transformer decoder:

1. Deletion policy πdel removes tokens from the
sequence;

2. Placeholder policy πplh inserts placeholders
into the sequence;

3. Insertion policy π ins replaces placeholders
with tokens from the vocabulary.

The policies are trained to follow oracle policies.
Given a source sequence X and a target sequence Y ,
L(X ,Y ) is a minimum sequence of edit operations
(delete and insert) that transform X to Y . Its length
is equal to the Levenshtein distance (Levenshtein,
1966) between X and Y . The operations in L(X ,Y )
define oracle policies for πdel, πplh and π ins.

There are two other possible training strategies:
Either training the insertion policy to repair a target
sentence with randomly dropped tokens, or training
the deletion policy to refine the output from the
insertion policy. However, we do not use these
strategies for our model. In the first case, we did not
find it beneficial for the model performance. In the

second case, the option does not fit together with
our inference scheme as described in Section 4.2.

To train the model to gradually produce more
diverse, but still valid paraphrases, we provided
the model with training paraphrase pairs with min-
imum edit distance. We represent the set of para-
phrases as a complete graph with edges weighted
by the Levenshtein distance (see Figure 1). We
construct a minimum spanning tree of this graph
and use the sentence pairs from the spanning tree
edges as training examples.

Formally, a training example for LevT is a tuple
(E,X0,X ,Y ) where E is the original English sen-
tence, X0 is the gold translation, X is the source
node and Y is the target node. (E,X0) is processed
by the encoder, X is used as the initial sequence for
the decoder and Y acts as the ground truth. We do
not use any additional data for LevT.

4.2 Inference
In the original LevT formulation, inference is done
by applying the model over the initial sequence for
several iterations. This approach aims to produce a
single output translation and the intermediate trans-
lations are deemed to be incorrect. We redefine the
generation process as state-space search, consider-
ing translations in each step as potentially correct
and accepting the translations based on the classi-
fier score. We also repurpose the deletion policy as
paraphrasing policy, which gives us the possibility
to generate multiple translations in each step. Simi-
larly to the original LevT architecture, the encoder
output is grounding the translations in the source
sentence throughout the inference process.

The process can start from an arbitrary number
of initial translations – in our case, the initial trans-
lations are the filtered outputs from the MT system.
We put all the initial translations in a queue. In each
step, we pop a translation from the queue, and we
let the deletion policy mark all tokens suitable for
paraphrasing. To expand our search space, we gen-



156

o lugar está aberto.

o site está aberto.

o local está aberto.

o lugar é aberto.

o sítio está aberto.

o site é aberto.

o local é aberto.

o sítio é aberto.

a área está aberta.
a página está aberta.

o website está aberto.

o website é aberto.

o espaço está aberto.

a página é aberta.

a página da web é aberta.

a página da internet é aberta.
a área é aberta.

a página da internet está aberta.

o espaço é aberto.

a página da web está aberta.

Figure 1: A minimum spanning tree of the graph of Portuguese translations for “The site is open.”. Levenshtein
distance (the sum of delete and insert operations) is 2 for solid green lines and 6 for the dashed yellow line.

Figure 2: An example of a step of the inference algo-
rithm of the paraphrasing model. A translation is taken
from the queue Q and expanded using LevT policies.
Results are scored by the classifier C; the translations
scoring above the threshold thr = 0.5 are accepted. The
translations are grounded in the source sentence by the
encoder output.

erate multiple versions of the partially deleted sen-
tence using all possible combinations of selected
tokens, which are individually processed by the
placeholder and insertion policies. We put the out-
put translations in the queue and repeat the process
until the queue is empty or we reach a preset limit
on the number of generated sentences.

4.3 Filtering

Similarly to our NMT model, we filter relevant
translations using a classifier built on top of XLM-
R (see Section 3). In this case, the negative exam-
ples for the classifier are generated from LevT. We
use the classifier’s predictions to accept only trans-
lations passing a preset threshold. Moreover, we
use the scores predicted by the classifier (probabil-
ity of translation correctness) to define the priority
of the translations in the queue, thus making it a pri-

ority queue. Figure 2 shows an example of a single
step of the inference algorithm with filtering.

5 Experiments

5.1 Evaluation Metric
We use the official evaluation metric for the STA-
PLE challenge, which is the weighted macro F1
score, computed by exact match with respect to
the set of all valid translations for a given source
sentence. The weighted F1 is a compound of un-
weighted precision and weighted recall, where the
weight is determined based on each translation’s
probability (see Section 2.1).

5.2 Translation Model
We train the translation model using the Marian
toolkit4 (Junczys-Dowmunt et al., 2018). We
use the Transformer Base hyperparameters, i.e.,
model dimension 512, feed-forward layer dimen-
sion 2048, 8 attention heads with a head dimension
of 64. All models use SentencePiece-based (Kudo
and Richardson, 2018) vocabulary of 32k units.
Japanese was tokenized using UDPipe (Straka and
Straková, 2017), other languages were processed
with SentencePiece without tokenization.

The model is trained using the Adam optimizer
(Kingma and Ba, 2015), with Noam learning sched-
ule (Vaswani et al., 2017) with 8,000 warmup steps
and initial learning rate 3 ·10−4, dropout rate 0.1,
label smoothing 0.1 and gradient clipping at 5.0.
We set the training batch size to 4,096 tokens.

5.3 Paraphrasing Model
We base our paraphrasing model on the Leven-
shtein Transformer as implemented in fairseq5 (Ott

4https://marian-nmt.github.io/
5https://github.com/pytorch/fairseq

https://marian-nmt.github.io/
https://github.com/pytorch/fairseq


157

et al., 2019). We replace the Transformer encoder
with the pretrained XLM-R Base with 12 layers
and 8 attention heads, keeping the vanilla Trans-
former decoder with 6 layers and 8 attention heads.
We use the output layer of XLM-R as the decoder
output layer and finetune it together with the last
four layers of XLM-R (freezing the rest of XLM-R
parameters). We train a separate decoder for each
policy and employ the early exit as described by
Gu et al. (2019) by using only the features from
the third layer of the decoder for the deletion and
placeholder policies.

The model is optimized using the Adam opti-
mizer, with fixed learning rate 10−5, batch size
1,500 tokens, dropout rate 0.5 and label smoothing
0.1. We set the maximum number of placeholders
for each position at 3 instead of 256.

We experiment with various decoding strategies.
For deletion and placeholder policies, we introduce
a penalty parameter preventing the policy from pro-
ducing the zero (unchanged) outcome. This proved
beneficial in particular for the deletion policy, as
it frequently did not mark any tokens for deletion,
thus limiting the search process. Alternatively, we
force the policy to produce an outcome by selecting
top k results with the highest score. In both cases,
we find that limiting the number of placeholders
generated at the same position to 1 helps to prevent
excessive sentence length.

For the insertion policy, we give up the non-
autoregressivity and replace the placeholders in the
left-to-right order, re-running the decoder in each
step. This acts as a supplement for the fact that the
insertion policy cannot repeatedly interact with the
deletion policy in a single state-space search step.

Our experiments show that it is difficult to find
a set of decoding parameters which would consis-
tently produce meaningful output. For generating
paraphrases, we find it useful to use the penalty
strategy described above and tune the penalty sep-
arately for each language. Producing less para-
phrases generally leads to better results, as it tends
to limit the amount of incorrect output. On the
contrary, we use the top-k strategy for generating
the classifier training data, as it produces negative
samples more robustly.

6 Results

The results on the blind development and test data
are shown in Table 3. Our translation model was
able to bring considerable improvements over the

provided baseline models – 10–22% weighted F1
absolute due to increase in both precision and re-
call. We observed the highest improvements for
Portuguese. Overall, our model tends to finish in
the middle of the field.

Experiments with training data filtering showed
that a smaller training set with better selected sen-
tences leads to better trasnslation quality than us-
ing a larger general domain corpus (see Table 4),
although the general corpus was double in the num-
ber of sentences (see Table 2). The optimal beam
size for filtering only roughly corresponds to the
average number of paraphrases in the data (see Ta-
ble 1). Figure 3 shows the effect of beam size on
the output quality. Without filtering, the precision
quickly drops with increasing beam size. The filter-
ing can partially compensate for the precision loss,
however, at the expense of decreasing recall, too.

Despite our extensive efforts, the paraphrasing
model did not bring substantial improvements over
the translation model. Increase in recall typically
came with lower precision and lower weighted F1
score. Even with the specific classifier training
and its overall accuracy over 99%, the LevT output
was too noisy to be precisely filtered. The only
improvement was achieved for Portuguese, where
the final paraphrasing and filtering setting resulted
in slightly higher precision and similar recall. How-
ever, the improvement was mostly influenced by
the second round of filtering (on the paraphrasing
output). Therefore, we did not include the para-
phrasing output in our primary submission.

We suppose that the inefficiency of the LevT
model is caused by a mismatch between model
training criteria and its application: the individual
policies are trained separately, but need to com-
plement each other to achieve good results. More-
over, the loss computed independently for each
paraphrase may prevent the model from learning
to generate multiple paraphrases. The shortage of
useful paraphrases may be also caused by the lack
of additional training data.

7 Conclusions

We presented our submission to the 2020 STA-
PLE translation and paraphrasing shared task. Our
model is based on the Transformer architecture,
used additional carefully selected training data, a
XLM-R-based classifier to filter MT output beams,
and an optional paraphrasing component based on
the Levenshtein Transformer approach. The MT



158

Target System Development Test

Rk Pre W-R W-F1 ∆base ∆best Rk Pre W-R W-F1 ∆base ∆best

Hungarian MT 4/9 50.65 50.66 46.25 +16.40 -13.58 4/7 51.04 45.77 43.49 +15.39 -11.91
+Para - 49.73 50.57 45.75 +15.90 -14.08 - 49.91 45.66 43.01 +14.91 -12.39

Japanese MT 5/10 39.02 19.36 21.50 +17.25 -10.09 5/8 36.70 19.93 21.28 +16.97 -10.49
+Para - 38.27 19.32 21.34 +17.09 -10.25 - 35.76 19.87 21.08 +16.77 -10.69

Korean MT 4/8 40.05 21.57 22.21 +16.76 -19.16 4/6 38.94 19.35 20.58 +15.71 -19.77
+Para - 39.65 21.06 21.87 +16.42 -19.50 - 38.42 18.92 20.29 +15.42 -20.06

Portuguese MT 8/14 49.75 46.78 42.74 +21.59 -13.00 6/10 49.88 43.81 40.84 +19.54 -14.26
+Para - 50.72 46.60 43.22 +22.07 -12.52 - 50.94 43.44 41.18 +19.88 -13.92

Vietnamese MT 3/6 52.27 37.36 38.26 +11.47 -16.47 3/5 51.59 36.84 37.71 +12.32 -17.85
+Para - 53.17 36.39 37.68 +10.89 -17.05 - 52.09 36.35 37.34 +11.95 -18.22

Table 3: Results for both system variants and all languages. “MT” denotes the variant without paraphrasing (final
official result), “+Para” is the system with paraphrasing. Metrics: Rk = official competition rank (with the number
of valid submissions), Pre = precision (%), W-R = weighted recall (%), W-F1 = weighted F1 (%), ∆base = weighted
F1 difference w. r. t. the best baseline model (% absolute), ∆best = w. r. t. the overall winner (% absolute).

100 101 102

Beam size

20

40

60

80

Pr
ec

is
io

n/
R

ec
al

/F
-S

co
re

Beam: Precision
Beam: Recall
Filtered: Precision
Filtered: Recall
Beam: F1-score
Filtered: F1-score

Figure 3: Precision, weighted recall and weighted F1 score for NMT decoding with different beam sizes and with
and without beam filtering.

AWS Gen. Dom. Best

Hungarian 29.2 27.4 40.2 49.1 100
Japanese 4.8 2.8 11.9 18.6 1000
Korean 4.9 6.5 11.5 22.0 1000
Portuguese 23.1 29.9 39.6 44.0 50
Vietnamese 20.3 33.0 38.5 42.1 5

Table 4: Translation quality measured by the weighted
F1 score for general training (Gen.) data and domain-
specific (Dom.) training data measured on our valida-
tion set with beam size 10 compared with the task base-
line (AWS) and best filtered beam with beam size.

model with the filter was able to gain substantial
increases over the baseline, but did not reach the
top places in the challenge. The paraphrasing com-
ponent’s output proved too noisy to bring any sub-
stantial benefits – we only observed minor improve-
ments in Portuguese. Therefore, the paraphrasing
was not included in our primary submission.

Improving the paraphrasing model could be an
interesting direction of future work. The amount
of incorrect output could be reduced by better ac-

counting for deletion and insertion policy interplay.
However, computing the loss independently for
each paraphrase may still hinder the ability of the
model to generate multiple paraphrases for a sin-
gle sentence. It may be thus necessary to rethink
the training objective and tie it together with the
inference process.

Acknowledgements

Work conducted at LMU was supported by the
European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innova-
tion programme (grant agreement No. 640550).

Work conducted at CUNI was supported by the
Charles University grant No. 140320, the SVV
project No. 260575, the European Union’s Hori-
zon 2020 research and innovation programme
under grant agreement No. 825303 (Bergamot),
Czech Science Foundation grant No. 19-26934X
(NEUREM3), and the Charles University project
PRIMUS/19/SCI/10.



159

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations
(ICLR2015), San Diego, CA, USA.

Loı̈c Barrault, Ondřej Bojar, Marta R. Costa-jussà,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine transla-
tion (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.

Ondřej Bojar, Matouš Macháček, Aleš Tamchyna, and
Daniel Zeman. 2013. Scratching the surface of pos-
sible translations. In Proc. of TSD 2013, Lecture
Notes in Artificial Intelligence, Berlin / Heidelberg.
Západočeská univerzita v Plzni, Springer Verlag.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of ACL 2020. ArXiv: 1911.02116.

Tomaž Erjavec, Kristina Hmeljak Sangawa, and
Yoshiko Kawamura. 2008. Japanese web corpus
with difficulty levels jpWaC-l 1.0. Slovenian lan-
guage resource repository CLARIN.SI.

Miquel Esplà, Mikel Forcada, Gema Ramı́rez-Sánchez,
and Hieu Hoang. 2019. ParaCrawl: Web-scale paral-
lel corpora for the languages of the EU. In Proceed-
ings of Machine Translation Summit XVII Volume 2:
Translator, Project and User Tracks, pages 118–119,
Dublin, Ireland. European Association for Machine
Translation.

Dirk Goldhahn, Thomas Eckart, and Uwe Quasthoff.
2012. Building large monolingual dictionaries at
the leipzig corpora collection: From 100 to 200 lan-
guages. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC’12), pages 759–765, Istanbul, Turkey. Euro-
pean Language Resources Association (ELRA).

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.
Levenshtein transformer. In Advances in Neural In-
formation Processing Systems, pages 11179–11189.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016a. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2016b. Bag of tricks
for efficient text classification. arXiv preprint
arXiv:1607.01759.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.

Stephen Mayhew, Klinton Bicknell, Chris Brust, Bill
McDowell, Will Monroe, and Burr Settles. 2020. Si-
multaneous translation and paraphrase for language
education. In Proceedings of the ACL Workshop on
Neural Generation and Translation (WNGT). ACL.

Makoto Morishita, Jun Suzuki, and Masaaki Nagata.
2019. Jparacrawl: A large scale web-based english-
japanese parallel corpus. CoRR, abs/1911.10668.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Milan Straka and Jana Straková. 2017. Tokenizing,
POS tagging, lemmatizing and parsing UD 2.0 with
UDPipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eight In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

http://arxiv.org/abs/1410.0473
http://arxiv.org/abs/1410.0473
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.1007/978-3-642-40585-3_59
https://doi.org/10.1007/978-3-642-40585-3_59
https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1911.02116
http://hdl.handle.net/11356/1047
http://hdl.handle.net/11356/1047
https://www.aclweb.org/anthology/W19-6721
https://www.aclweb.org/anthology/W19-6721
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
http://papers.nips.cc/paper/9297-levenshtein-transformer
https://arxiv.org/abs/1612.03651
https://arxiv.org/abs/1612.03651
https://arxiv.org/abs/1607.01759
https://arxiv.org/abs/1607.01759
http://www.aclweb.org/anthology/P18-4020
http://www.aclweb.org/anthology/P18-4020
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/D18-2012
https://www.aclweb.org/anthology/D18-2012
https://www.aclweb.org/anthology/D18-2012
http://arxiv.org/abs/1911.10668
http://arxiv.org/abs/1911.10668
https://www.aclweb.org/anthology/N19-4009/
https://www.aclweb.org/anthology/N19-4009/
http://www.aclweb.org/anthology/P16-1009
http://www.aclweb.org/anthology/P16-1009
https://doi.org/10.18653/v1/K17-3009
https://doi.org/10.18653/v1/K17-3009
https://doi.org/10.18653/v1/K17-3009
https://www.aclweb.org/anthology/L12-1246/
https://www.aclweb.org/anthology/L12-1246/


160

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30, pages 6000–6010, Long Beach,
CA, USA. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv preprint arXiv:1910.03771.

http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771

