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Abstract

What is given below is a brief description
of the two systems, called gFCONV and c-
VAE, which we built in a response to the 2020
Duolingo Challenge. Both are neural models
that aim at disrupting a sentence representa-
tion the encoder generates with an eye on in-
creasing the diversity of sentences that emerge
out of the process. Importantly, we decided
not to turn to external sources for extra am-
munition, curious to know how far we can go
while confining ourselves to the data released
by Duolingo (Mayhew et al., 2020). gFCONV
works by taking over a pre-trained sequence
model, intercepting the output its encoder pro-
duces on its way to the decoder. c-VAE is a
conditional variational auto-encoder, seeking
the diversity by blurring the representation that
the encoder derives. Experiments on a cor-
pus constructed out of the public dataset from
Duolingo, containing some 4 million pairs of
sentences, found that gFCONV is a consistent
winner over c-VAE though both suffered heav-
ily from a low recall.

1 Introduction

A major driver for our participating in the chal-
lenge was the curiosity to see whether recent ap-
proaches to sentence encoding with the variational
auto-encoder (VAE) have any relevance to the gen-
eration of diverse sentences. (Bowman et al.,
2016) were the first to explore the use of VAE in
language generation. The work demonstrated that
VAE provides a continuous code space for sen-
tences, where any randomly picked data point in
the space can be decoded to yield a coherent sen-
tence, which is significant given that the conven-
tional RNNs do not provide such a capability. The
problem with VAE however, is that it has no mech-
anism to ensure that the meaning of the source
sentence is passed over to the output, which of-
ten causes a sentence to be altered, or deformed

beyond recognition. While VAE is a popular ap-
proach people turn to as a way to diversify sen-
tences the model generates, no definitive answer
has been found on how to control or tame what
it spews out. A typical solution is to fuse a VAE
code with the output of a regular sentence encoder,
in order to encourage the decoder to output a sen-
tence that retains some semantic features present
in the source sentence (Gupta et al., 2017). Also
noteworthy is a recent work by (Guu et al., 2018),
who building on an idea similar to VAE, talk about
modeling the distribution of cosine similarities be-
tween word vectors for the input and target. (Li
et al., 2015) is something of an odd ball in the pur-
suit of the diversity in sentence generation. The
authors argued that we could achieve the diversity
by discouraging the decoder to select candidates
that are similar to the input. A clear advantage
they have over others is that their scheme does not
involve any learning and is straightforward to im-
plement.

The idea that one can view a latent represen-
tation as a sample drawn from some probabilistic
distribution inspired people to explore its potential
in a wide range of tasks and domains. (Miao et al.,
2015), while working on document modeling, sug-
gested that we use VAE as a way to get a compact
representation for a document. (Fang et al., 2019)
argued for using a sample based distribution over
Gaussian distribution for a latent code to better ex-
press the holistic property of the source sentence.

In this work, we focus on two approaches, both
based on VAE: one that attempts to achieve the
diversity by generalizing the sentence representa-
tion produced by the encoder; and another which
randomly perturbs the encoder’s output during the
sentence generation. We report here their respec-
tive performance on a test corpus we carved out of
the official training data. For the final submission,
we went along with the latter approach.
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Figure 1: Translation as Paraphrase

2 Translation as Paraphrase

Our effort revolved around two questions: (1)
how best to incorporate likelihood scores of tar-
get translations that were provided as part of the
training data, and (2) how not to rely on an exter-
nal resource while building a solution. We wanted
to know how far we can go using only the data
made available to us at the competition, and noth-
ing more. Our answer to the first question takes
advantage of the fact that a set of translations as-
sociated with each English prompt are considered
an equivalence class in the sense that if we take
any pair from the set, we can substitute one for the
other without significantly affecting its meaning.
We may take the likelihood that a human picks a
particular sentence (call it X) as a good translation
for some prompt (P) as the probability of its be-
ing a paraphrase of some other sentence (say Y)
from a group of possible translations of which X
is part. The intuition here is that if X is more typi-
cal as a translation of P, it is more likely to serve as
a paraphrase of whatever other way we may have
to express P in the target language. Following this
idea, we created training data by randomly sam-
pling a pair of sentences (both in the same lan-
guage) that appear as alternate translations for a
given prompt in accordance with their popular rat-
ing. For each prompt, we sampled 2,000 pairs
of translations (which may include pairs consist-
ing of identical sentences), resulting in 4,601,000
training instances (which amount to 2,300 prompts
plus those provided in the development and test
set) (Mayhew et al., 2020).1 We set aside 100

1 For this year’s challenge, we worked only on the
English-Japanese track. We included both test and develop-
ment sets as part of training data, as a way to prevent the al-
gorithm from stumbling upon unknown tokens in the test set.
We don’t see this as much of a problem because each prompt
in development and test sets carries no more than one transla-
tion, i.e. a training pair we get from the development and test
set has a same sentence for both source and target. We made
use of MeCab for tokenizing sentences in Japanese.

Encoder Decoder

Figure 2: gFCONV

prompts as a private development set and another
100 for testing. We included in each training in-
stance an English prompt as well as its transla-
tion in order to prevent paraphrases the algorithm
generates from diverging from the meaning of the
prompt (Table 1).

Figure 1 shows a schematic picture of how
our approach works. We feed into the sys-
tem a prompt and its translation which we as-
sume to be given (via AWS, for example). Out
comes its paraphrases (or translations in varied
styles). The model we built is essentially one
based on Fairseq’s convolution to sequence archi-
tecture of the type called ‘fconv iwslt de en’ (call
it FCONV) which features 4 convolutional layers
for the encoder and 3 for the decoder.2 The em-
bedding dimension for the input and output token
was set to 256. We did not use pre-trained em-
beddings for either of the languages we dealt with.
Neither did we make any architectural change to
FCONV. We simply trained it as it was given. A
departure comes in the testing phase. Following
(Guu et al., 2018), we applied a Gaussian noise
on the output of the encoder as it was sent to the
decoder (Fig. 2).

u = E(x) + ϵ, ϵ ∼ N (0, k) (1)

where x is an input and E(x) is an output from ap-
plying an encoder E on x. u denotes an input to a
decoder. A larger noise means a greater disruption
in the latent representation coming from the en-
coder, which we hoped would lead to an increase
in the diversity of sentences being generated. We
randomly sampled a noise from a normal distribu-
tion with the mean set to 0 and the variance rang-

2https://github.com/pytorch/fairseq

https://github.com/pytorch/fairseq
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Table 1: Training Instances. The source part of each input consists of two sections: the first section contains
a sentence in an original language, followed by a translation in a target language, demarcated by a separator
‘@@@@.‘

SOURCE

that apple is very big . @@@@その林檎は非常にでかいです。
i like to work . @@@@ボクは仕事は好きです。
he drinks milk . @@@@彼は牛乳を飲みます。
what are her strengths ? @@@@彼女の長所はなんでしょう？
what has she done ? @@@@彼女は何をやり終わったんですか？

TARGET

そのりんごがとてもでかい。
私は働くのが好き。
かれはぎゅうにゅうを飲みます。
何が彼女の強い所なの？
何を彼女は終わったの？

Encoder Decoder

1

E(x)
<latexit sha1_base64="9O9xWXXALpAo6XyruX3RGWEFewE="></latexit>

z
<latexit sha1_base64="xe0heDbnEuWAVaMCu3QEu5xZxOc="></latexit>

Figure 3: Conditional VAE

ing from 0 to 0.6. In what follows, we refer to the
scheme as gFCONV.

We also looked at a conditional variational auto-
encoder (c-VAE), a close cousin of gFCONV for
the sake of comparison. While both aim at build-
ing a latent representation that embraces the no-
tion of uncertainty, c-VAE differs from the vari-
ance based approach in that it seeks to find a prob-
abilistic distribution that defines a range of repre-
sentations that the encoder churns out. In terms
of formulae, this comes to the following (also see
Fig. 3 for a visual intuition).

u = E(x) + r ∗ z, (2)

Here z = µ + ϵ ∗ υ with ϵ ∼ Unif[0, 1). µ and υ
are a mean and variance, defined as µ = g(x), and
υ = f(x), respectively. x is an input, g and f are
some arbitrary functions over x. E(x) again de-
notes the output of an encoder. µ and υ are learn-
able parameters, which means that they need to be
trained to have them work. It is worth noting that
gFCONV has no extra ‘learnable’ parameters. r
is a hyper-parameter to be set manually, which de-
termines the degree of contribution of z to a latent
representation of x. We combine E(x) and a rep-
resentation sampled from a Gaussian distribution
to build a final encoder output. Our decision to

condition VAE on E(x) is motivated by a frequent
observation in the past literature that VAE is poor
at preserving the meaning of the source sentence,
often transforming it beyond recognition. Condi-
tioning VAE on the input is a popular trick to dis-
courage the algorithm from straying too far away
from the source.

Implementation-wise, c-VAE was based on
FCONV, from which we also built gFCONV. We
kept all the hyper-parameter settings intact, e.g.
the number of layers, the size and the number of
filters, etc. We did not apply any scheduled an-
nealing weight to the KL term in the loss function.

For gFCONV, we varied the variance parameter
k (Eqn. 1) from 0.00 to 0.60 in increments of 0.05.
For each value of k, we ran gFCONV on the test
set 100 times, letting the model output 80 alter-
native translations for each prompt (Setting k to 0
reduces gFCONV to a vanilla FCONV). This had
resulted in a pool of 8,000 candidates for a given
prompt under a particular value of k. Out of which
we retained only those that had a non zero similar-
ity to gold translations by AWS.3 We measured the
similarity using LASER,4 along with pre-trained
word embeddings from FastText,5 which LASER
requires. We were interested to know how vari-
ance affected the performance, in particular how it
contributed to improving the diversity.

3i.e. those found in the ‘test.en ja.aws baseline.pred.txt’
in the ‘staple-2020-test-blind’ directory.

4https://github.com/facebookresearch/
LASER

5https://fasttext.cc/docs/en/
crawl-vectors.html

https://github.com/facebookresearch/LASER
https://github.com/facebookresearch/LASER
 https://fasttext.cc/docs/en/crawl-vectors.html
 https://fasttext.cc/docs/en/crawl-vectors.html
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Table 2: Variance vs. Performance. ‘P’ denotes precision, ‘R’ recall, and ’k’ variance. Numbers in red represent
the baseline and those in blue the best performing system where we have a minimum divergence between Micro
and Macro F1.

UNWEIGHTED WEIGHTED

k P R Micro F1 Macro F1 R Micro F1 Macro F1
0.00 39.16 3.83 6.97 11.37 13.62 20.21 16.35
0.05 33.24 5.09 8.83 12.77 15.60 21.23 17.13
0.10 28.10 6.18 10.14 13.46 17.47 21.54 17.38
0.15 23.41 7.45 11.30 13.66 19.34 21.18 16.92
0.20 20.08 8.62 12.06 13.73 21.10 20.58 16.48
0.25 16.93 9.57 12.22 13.18 22.37 19.27 15.40
0.30 14.17 10.24 11.89 12.27 23.36 17.64 14.13
0.35 12.02 10.69 11.31 11.22 24.16 16.05 12.74
0.40 10.92 11.49 11.20 10.70 24.70 15.14 12.03
0.45 9.15 11.23 10.08 9.67 24.38 13.30 10.73
0.50 8.21 10.81 9.33 8.72 23.24 12.14 9.72
0.55 7.24 9.99 8.40 7.90 22.84 11.00 8.78
0.60 6.92 9.30 7.94 7.54 22.25 10.56 8.38

Table 3: Conditional VAE

UNWEIGHTED WEIGHTED

r P R Micro F1 Macro F1 R Micro F1 Macro F1
0.0 39.16 3.83 6.97 11.37 13.62 20.21 16.35
0.1 24.06 7.11 10.97 14.84 19.41 21.49 18.08
0.2 22.55 7.98 11.78 14.81 20.16 21.29 17.87
0.3 18.28 7.72 10.86 14.28 20.09 19.15 17.10
0.4 17.09 7.58 10.50 13.12 20.21 18.52 15.69
0.5 15.68 7.70 10.33 12.73 20.08 17.61 15.31

3 Results and Discussion

Results are provided in Table 2. The numbers
shown were produced using the official scorer. In
the following discussion, we concentrate on un-
weighted scores as our interest here is in know-
ing how much we improved the raw recall under
the current setup. Note that weighted scores do
not shed light on the true diversity of sentences we
have garnered.

Looking at Table 2, we see gFCONV gaining
on a vanilla FCONV, whose performance is repre-
sented by the numbers at k = 0.00. At k = 0.25,
we see the raw recall jumping from 3.83 to 9.57,
Micro F1 from 6.97 to 12.22, and Macro F1 from
11.37 to 13.18. Compare the difference between
Micro and Macro F1 at k = 0.00 and that we have
at k = 0.25. The difference for the latter is much
smaller. This suggests that under gFCONV, the
performance is more stable across test items com-
pared to the vanilla FCONV. A large divergence at

k = 0.00 indicates wild ups and downs in perfor-
mance, suggesting that the model is doing beau-
tifully well on some but failing miserably on oth-
ers. In contrast to Micro F1, Macro F1 is blind to
how many candidate translations there are for each
prompt, so may not give us an accurate picture of
how the model is doing on each prompt.

As with gFCONV, we ran c-VAE on the test set
100 times, obtaining 100 distinct pools of candi-
date translations for each prompt.6 We report in
Table 3, figures that represent performance on all
the results combined in the manner we described
for gFCONV. We varied r (in Eqn. 2) from 0.1
to 0.5 in 0.1 increments. We observe that c-VAE
is somewhat behind gFCONV (in terms of diver-
gence between Micro and Macro F1), though per-
forming well over the baseline (numbers in red). A
large gap between (unweighted) Micro and Macro

6 We generated 8,000 hypotheses for each prompt under a
particular value of r, 80 at each round.
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Table 4: Official Results. By W. Recall and W. F1, we
mean Weighted Recall and F1.

Phase Rank Precision W. Recall W. F1
DEV 6/6 0.369 0.183 0.181
TEST 6/6 0.349 0.212 0.194

F1 again shows that the model suffers from a fluc-
tuating performance, swinging wildly from one
test item to another. The final submission for the
official evaluation was prepared using gFCONV at
k = 0.10, under the pseudonym ‘darkside,’ with
the official results shown in Table 4.7

4 Conclusions

We discussed two approaches as a way to tackle
the Duolingo Challenge. One is gFCONV, which
takes over a pre-trained sequence model, inter-
cepts and perturbs the output its encoder produces
on its way to the decoder. Another is c-VAE, a
conditional variational auto-encoder, which seeks
the diversity by blurring the representation that the
encoder derives. Either approach, it was found,
outperformed the vanilla FCONV. We also noted
a large discrepancy between Micro and Macro
F1, suggesting that the models’ performance is
not even and fluctuates wildly from item to item.
Moreover, there were some test prompts for which
the models were not able to find any translations.
We recognize that this is an area we need to scru-
tinize to further improve the performance. In the
long run, it would be interesting to see if we can
bring to the task recent developments in VAE such
as (Bouchacourt et al., 2018).
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