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Abstract

We propose a method for natural language gen-
eration, choosing the most representative out-
put rather than the most likely output. By view-
ing the language generation process from the
voting theory perspective, we define represen-
tativeness using range voting and a similarity
measure. The proposed method can be ap-
plied when generating from any probabilistic
language model, including n-gram models and
neural network models. We evaluate differ-
ent similarity measures on an image caption-
ing task and a machine translation task, and
show that our method generates longer and
more diverse sentences, providing a solution
to the common problem of short outputs being
preferred over longer and more informative
ones. The generated sentences obtain higher
BLEU scores, particularly when the beam size
is large. We also perform a human evaluation
on both tasks and find that the outputs gener-
ated using our method are rated higher.

1 Introduction

A language model specifies a probability distri-
bution over sequences of words: given a se-
quence s = x1x2 - - - Ty, Of length n, the model as-
signs a probability P(s) to the entire sequence.
The probability distribution may be conditioned:
for example in machine translation the distribution
is conditioned on the source language sentence.

In many applications, it is desirable to output
a single sequence, rather than a distribution. A
common approach is to choose the most likely se-
quence. However, this is problematic when the
most likely sequence is not representative of the
whole distribution.

For example, in dialogue generation tasks, the
most likely output can be “I don’t know”, even
when most of the probability mass is assigned to
long informative sequences. Cao and Clark (2017)
call this the “boring output problem”.
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For a real-valued distribution, we can choose a
representative output by taking the mean. However,
for a discrete distribution (such as over sequences),
the mean is not defined. In this paper, we choose a
representative output using tools from voting the-
ory, allowing us to avoid the boring output problem.
The general idea is that, if the distribution assigns
most of the probability mass to a group of similar
sequences, we would like to generate one of them
— even if they have low probability as individual
sequences, they have high probability as a group.
We can formulate this process as a range voting
election, where the sentences vote for each other,
with the strength of a vote being proportional to
the similarity between the voter sequence and the
candidate sequence.

Our approach can be used to mitigate problems
commonly associated with language models. For
example, a long-recognised problem is that shorter
sequences are assigned higher probabilities and
thus choosing the most likely sequence favours
short sequences (Brown et al., 1995). Indeed,
Stahlberg and Byrne (2019) show that the most
likely output in machine translation is often the
empty string. By designing the similarity function
to be asymmetric such that more informative candi-
date sequences receive stronger votes, we can gen-
erate longer and more diverse outputs (see Fig. 1
for an example).

We focus on simple similarity metrics based on
n-grams and generate the candidates and voters
using beam search. We evaluate on two tasks: im-
age captioning and machine translation. For both
tasks, we find that our approach achieves higher
BLEU scores, and performs better in a human eval-
uation. Our approach also generates longer and
more diverse outputs, with the generated length
and diversity more closely matching the length and
diversity of the reference captions and reference
translations.
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0.00230: a couple of people that are sitting on a bench
§ 0.00132: a man sitting on a bench next to a dog
0.00079: a black and white photo of a man sitting on a
bench
0.00075: a couple of people sitting on a bench
0.00066: a man sitting on a bench with a dog
0.00064: a man and a woman sitting on a bench
0.00048: a man and a woman sitting on a park bench
0.00046: a black and white photo of a man and a horse
# 0.00033: ablack and white photo of a man and a dog
0.00025: a black and white photo of a man on a horse

Figure 1: Image from the MSCOCO validation dataset
and beam search captions with their probabilities
(beam size k=10). See §3.1 for beam search, §4.1
for the sequence model. Range voting with overlap,
similarity (see §3.2) on this set of sequences selects
“a black and white photo of a man sitting on a bench”,
which shares many bigrams with other sequences.

2 Related work

Much work has gone into analysing sources of
errors in language generation, often focused on
machine translation. Koehn and Knowles (2017)
raise 6 challenges for machine translation, includ-
ing degrading performance for longer sentences,
and degrading performance for larger beam sizes.
Stahlberg and Byrne (2019) distinguish model er-
rors (high probabilities of bad sequences) and
search errors (failing to find sequences preferred
by the model). They show that the global optimal
translations (according to likelihood) are consider-
ably worse than translations found by beam search.
This points to both serious model errors and seri-
ous search errors, which cancel out to some degree.
This suggests there is much work to be done in im-
proving both our models and our search objectives
— the latter is the aim of this paper.

Ott et al. (2018) find that beam search typically
covers only a small proportion of the model’s prob-
ability mass,' and they show that the degradation
for large beams is at least partly due to the train-
ing data containing target sentences that are exact
copies of source sentences. They also suggest that
beam search is an effective search strategy, for the
maximum-likelihood search objective, finding hy-
potheses with higher model probabilities than the
reference translations.

Cohen and Beck (2019) also find a performance
degradation with larger beam sizes across different
tasks (translation, image captioning and summari-
sation) and propose to add a search discrepancy

!Since our paper was submitted, this finding was repli-
cated by Eikema and Aziz (2020), who further argue that
the maximume-likelihood decoding objective is hard to justify
when the maximum likelihood is so low.
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heuristic to beam search. For image captioning,
Vinyals et al. (2017) show that larger beams not
only decrease performance but also reduce the di-
versity of the captions. They claim this is an over-
fitting effect and propose the use of small beam
sizes as further regularization.

In unconditional, open-ended language genera-
tion, Holtzman et al. (2020) find that using likeli-
hood as the decoding objective leads to bland and
repetitive text with unnaturally high probability and
too little variance. They claim this is not due to a
search error, but due to the maximum-likelihood
decoding objective. They propose sampling, trun-
cated the distribution to the top p percent of tokens.

2.1 Generation length and diversity

To increase the length and diversity of a model’s
outputs, some authors have proposed changes to the
model architecture. In dialogue generation, Cao
and Clark (2017) use a latent variable model to
capture the possible “topics” of a response.

Others have proposed changing the objective
function. In dialogue generation, Li et al. (2016a)
optimise mutual information instead of probability.
In machine translation, Tu et al. (2017) modify an
encoder-decoder model by adding a “reconstructor”
to predict the input based on the output.

However, modifying the model or the objec-
tive function depends on the particular task, and
applying these techniques to an existing system
requires retraining the model. In this paper, we
focus on general methods which can be applied
to any probabilistic model in any generation task.
Length normalisation (Wu et al., 2016; Freitag and
Al-Onaizan, 2017) explicitly penalises shorter se-
quences during the beam expansion phase by divid-
ing the log-probability of a sequence by its length.
Diverse decoding (Li et al., 2016b; Li and Juraf-
sky, 2016) penalises repeated expansions of the
same beam node. Diverse beam search (Vijayaku-
mar et al., 2018) penalises generation of similar
beams using their Hamming diversity. These last
two methods aim to increase the diversity within a
beam, but not necessarily across the dataset.

Kool et al. (2019) propose a stochastic beam
search based on the Gumbel-Top-k trick to sample
without replacement. The proposed approach can
trade-off BLEU score against translation diversity.

Finally, it is important to make sure that improve-
ments to a model can be properly evaluated. After
our paper was submitted, Freitag et al. (2020) re-



port that the references used in machine translation
often exhibit poor diversity, which can unfairly pe-
nalise models which exhibit good diversity. They
propose to use paraphrased reference translations
instead. These paraphrases yield higher correla-
tion with human judgement when evaluated using
BLEU, and could be used in future work to im-
prove the evaluation of translation systems which
aim to generate appropriately diverse outputs.

2.2 Minimum Bayes Risk Decoding

Kumar and Byrne (2004) introduce the Minimum
Bayes Risk (MBR) decoder for machine transla-
tion. Like our proposed approach, this aims to use
the whole distribution, rather than picking the most
likely sequence. They frame the problem in terms
of Bayes Risk: given the true distribution over out-
puts, and given a loss function between the system
output and the target output, the Bayes Risk is de-
fined as the expected loss. The best output is the
one which minimises the Bayes Risk.

However, the true distribution over outputs is not
known, so Kumar and Byrne approximate it using
the model’s distribution. The MBR decoder first
uses beam search, and then re-ranks it according to
the BLEU scores between sequences in the beam.

Tromble et al. (2008) apply MBR over transla-
tion lattices. Shimizu et al. (2012) use MBR with a
smoothed BLEU loss function and propose to limit
the possible translations to those that are similar to
most-likely translation generated by beam search.

Blain et al. (2017) propose to re-rank the sen-
tences generated by beam search using a similar-
ity metric. Their approach is similar to ours but
doesn’t include the probability of the sentences
given by the decoder, and thus would degrade com-
pletely in the limit of very large beam sizes. They
find that using BLEU as a similarity metric reduces
the quality of generated translations, according to
both BLEU and a human evaluation.

3 Method

3.1 Beam search

When working with a distribution over sequences,
it is not feasible to consider all possible sequences.
Finding the most likely sequence can be compu-
tationally expensive — in fact, for an RNN it is
undecidable in the general case (Chen et al., 2018).
A common solution is to use beam search, which
generates the sequence one token at a time, main-
taining a list of the k£ most promising sequences at
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each time step (for example: Brown et al., 1995;
Koehn, 2004a). Greedy search is the special case
where k = 1.

Beam search introduces an extra hyper-
parameter, the beam size k. Increasing k covers
more of the search space, but increases the compu-
tational cost. It is tempting to assume that increas-
ing k will produce better results, but empirically,
the quality of the most likely sequence starts to
decrease after k exceeds a certain threshold (Koehn
and Knowles, 2017; Cohen and Beck, 2019).

In the next section, we propose an alternative
way to generate from a beam, which aims to avoid
the drop in performance as beam size increases.
Rather than choosing the most likely sequence, we
choose the most representative sequence.

3.2 Range voting

To formalise representativeness, we propose to use
a voting procedure. Although voting has been ap-
plied to ensembles of classifiers (for an overview,
see: Kuncheva, 2004; Kuncheva and Rodriguez,
2014), we are not aware of work using voting to
select from a distribution.

We can see each sequence as a candidate in an
election, and the probability of a sequence as the
proportion of votes for that candidate. From this
perspective, the problem of probability mass being
split across long sequences is the well-known prob-
lem of vote splitting. Suppose candidate 7 wins an
election. Now suppose we run the election again,
but add an additional candidate j, identical to 7. A
voting system is robust against vote splitting (and
called independent of clones) if the winner must
be i or j (Tideman, 1987).

A well-studied system which is independent of
clones is range voting (Heckscher, 1892; Smith,
2000; Tideman, 2006; Lagerspetz, 2016). Each
voter scores each candidate in the range [0, 1], and
the candidate with the highest total score wins.

In our setting, probability mass can be seen as
the proportion of votes placing a candidate as first
choice (see Fig. 1 for an example). For range vot-
ing, we need to augment the votes with scores for
all other candidates. We propose to do this using a
similarity measure. The final score for a sequence
c € C (the set of candidates) is given in (1), for a set
of voter sequences )V and a similarity measure sim.

score(c) = Z P(v) - sim(v,c)

veV

)



A sequence can act as both voter and candidate.
Each voter sequence is weighted by its probability,
and casts a vote for each candidate sequence, where
the strength of the vote is the similarity between
the voter and the candidate. The simplest way to
apply this method is to use beam search to define
both the set of candidates and the set of voters.

This can be seen as a generalisation of tak-
ing an average. In a Euclidean space, the mean
is equivalent to voting with quadratic similar-
ity 1 — k(z — y)?, and the median is equivalent
to voting with linear similarity 1 — k|x — y|, for
some constant k.

Although the vote splitting problem may appear
abstract, it can happen in practice, even without
considering similarity. When using subword vocab-
ularies (Sennrich et al., 2016), there are multiple
ways of encoding any given sentence. The model’s
probability mass is split across sentences with iden-
tical surface form but different encodings.

Defining semantic similarity between sentences
is recognised as a hard problem (Achananuparp
et al., 2008; Cer et al., 2017; Pawar and Mago,
2019). In this work, we focus on simple, domain-
agnostic similarity measures which do not require
additional training.

First, we consider similarity based on n-grams.
For a sequence s, we write set,,(s) for its set of
n-grams, and bag,(s) for its bag (or multiset)
of n-grams. We define two measures in (2-3).
Both are asymmetric, to encourage informative se-
quences: if ¢ contains v plus more information,
sim(v, c¢) should be high, but if ¢ contains less in-
formation, then sim(v, c¢) should be lower. This
allows an informative candidate sequence to gather
more votes.

_ | bag,(v) N bag,(c)|

precision,, (v, c) = Do (v) (2)
tn (V) M sety,
overlap,,(v,c) = [se |(:eln(ie)‘ ()l 3)

Second, inspired by Mueller and Thyagarajan
(2016), we consider a similarity measure based
on the hidden states of the decoders (LSTM and
Transformer) during generation (see §4.1). For
each sequence, we find the average of the hid-
den states, and then compute the cosine similar-
ity. We refer to this measure as Istm_states and
transformer_states.
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3.3 Comparison with MBR Decoding

The formulation used for range voting is reminis-
cent of MBR decoding (see §2.2). In fact, if the sim-
ilarity measure in (1) is sim(v, ¢) = BLEU(c, v),
range voting recovers MBR decoding. From a the-
oretical point of view, range voting provides an
independent motivation for MBR decoding, and
furthermore, one which does not require the as-
sumption that we can approximate the true distribu-
tion by the model’s distribution. We know that the
model’s distribution does not match the true distri-
bution (or else we would have already solved the
task), and so this is a strong assumption to make.

From a practical point of view, range voting sug-
gests that any similarity measure could be used, and
not necessarily the evaluation metric. Using BLEU
has several disadvantages. Firstly, BLEU can be
harsh: when there are no 3- or 4-gram matches, the
score is 0. Secondly, BLEU is a corpus-level metric
which does not decompose over sentences. Finally,
BLEU is precision-based, penalising translations
containing information that is not in the reference.
In MBR, this means that candidate sequences are
penalised for containing more information than
voter sequences. Our proposed similarity measures
are asymmetric in the opposite direction, to encour-
age generation of long and informative sequences.

Indeed, in our experiments, we have found that
simple similarity measures produce longer and
more diverse sentences than BLEU, and for trans-
lation better results, even though BLEU is used as
the evaluation metric.

Furthermore, the voting theory perspective can
yield analytical insights even when range voting is
not used. For example, the performance degrada-
tion found by Cohen and Beck (2019) can be in-
terpreted in terms of vote splitting. They argue for
the need to filter out sequences which begin with a
low-probability token that is followed by very-high-
probability tokens, in favour of sequences where all
tokens have fairly high probability. The sequences
they want to filter out have not split the vote (later
tokens have probability close to 1, so there are no
similar sequences that have high probability), but
the sequences they want to keep have split the vote
(there are similar sequences with similar probabil-
ity). Their method aims to remove these problem-
atic sequences that don’t split the vote, while our
method aims to be robust against vote splitting.



BLEU-1 BLEU-4
Beam size k 1 2 10 100 1 2 10 100
Beam search 66.66 6797 67.22 66.18 | 2539 26.83 27.16 26.31
" Length normalisation ~ 66.66 68.47 64.72 63.10 | 2539 2672 25.76 2472
Diverse decoding 66.66 6790 67.24 6643 | 2539 26.68 26.93 26.37
“overlap, 66.66 68.55 6626 6636|2539 2647 2561 24.60
precision; 66.66 68.54 6631 6646 | 2539 2647 25.62 24.58
overlap, 66.66 68.20 67.36 67.19 | 2539 26.82 27.22 27.13
precision, 66.66 68.20 67.63 67.21 | 2539 26.82 27.23 27.13
Istm _states 66.66 67.97 68.42 69.10 | 2539 26.83 27.96 28.23
“bleuy MBR) 66.66 6793 67.66 6856|2539 26.83 27.80 28.71
smoothed_bleuy (MBR) 66.66 67.98 67.87 69.45 | 2539 26.84 27.89 29.19

Table 1: BLEU-1 and BLEU-4 scores obtained on the MSCOCO validation images.

4 Experiments

We evaluate our method on two tasks: image cap-
tioning and machine translation. For MBR, we use
BLEU (bleuy) and a smoothed version of BLEU
(smoothed_bleuy) which adds 1 to the n-gram
counts for n>1 to mitigate the harshness of the
metric (Shimizu et al., 2012).

We consider two baselines: length normalisation
and diverse decoding, described in §2.1. For ma-
chine translation, we also consider diverse beam
search as a further baseline. Other methods men-
tioned in §2 cannot be straightforwardly applied as
they require modifying the model or the training
objective.

4.1 Image captioning

We use the MSCOCO dataset (Lin et al., 2014),
which consists of 82,783 training images and
40,504 validation images, each annotated with 5
captions from human annotators.

We use the “Show and Tell” encoder-decoder
architecture of Vinyals et al. (2015). The encoder
is a pretrained Inception V3 CNN (Szegedy et al.,
2016) from which we extract a feature vector from
the final pooling layer (Ioffe and Szegedy, 2015).
The decoder is an LSTM (Hochreiter and Schmid-
huber, 1997) with 512 hidden units, initialising the
hidden state using the encoder. The vocabulary
consists of the 5000 most common words in the
training captions, for which embeddings of size
512 are learned from scratch.

4.1.1 BLEU scores

Table 1 shows BLEU scores (Papineni et al., 2002)
on the MSCOCO validation set computed using
NLTK (Bird et al., 2009). The bigram similarity
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measures and the lstm_states measure improve
BLEU scores for almost all beam sizes. In contrast,
diverse decoding has almost no effect on BLEU,
while length normalisation performs worse than
standard beam search. The best result with our sim-
ilarity metrics is achieved by Istm_states at k=100.
This is significantly better than the best result for
standard beam search (k=10), with p<0.001 for
a paired bootstrap test following Koehn (2004b).
Using smoothed_bleuy and increasing the beam
size to k=100 gives the overall best results.

Sampling methods proposed for open-ended gen-
eration perform poorly. Top-k sampling (Fan et al.,
2018) achieves BLEU scores of 17.15 (k=4) and
13.79 (k=10), nucleus sampling (Holtzman et al.,
2020) achieves a score of 13.62 (top_p=0.9)

Consistent with Ott et al. (2018) and Koehn and
Knowles (2017), increasing k with beam search
too much reduces BLEU. However, this drop does
not occur for our voting method.

4.1.2 Caption length

To analyse differences between methods, we first
look at caption length, shown in Table 3. Standard
beam search produces slightly longer captions as
k increases up to 10. All n-gram measures gen-
erate longer captions than standard beam search,
and length continues to increase as k goes to 100.
Length normalisation also increases caption length,
but this is at the cost of BLEU score (see §4.1.1).
Diverse decoding does not increase caption length.
The Istm _states measure produces slightly shorter
captions — as it is symmetric, it does not favour long
sequences as the asymmetric n-gram measures do
(see §3.2). As predicted by our range voting inter-
pretation, MBR, for which the asymmetry is in the



Distinct captions

Distinct unigrams Distinct bigrams

Beam size k 2 10 100 2 10 100 2 10 100
Beam search 9208 5488 4150 [ 668 621 605 [ 3395 2778 2479
“Length normalisation 9978 6418 5039 | 681 627 587 | 3502 2863 2471
Diverse decoding 9942 6424 4403 | 672 646 612 | 3402 3023 2561
overlapy, ] 10727 8916 10808 | 687 646 628 | 3576 3232 3596
precision; 10727 8902 10768 | 687 645 638 | 3572 3238 3607
overlap, 9519 7598 9221 | 673 620 580 | 3446 2854 2887
precision, 9522 7590 9248 | 673 620 581 | 3444 2848 2892
Istm_states 9208 7613 10133 | 668 629 655 | 3395 2891 3331
bleus MBR) 9159 6512 6763 | 667 612 570 | 3392 2666 2446
smoothed_bleus (MBR) ~ 9206 6522 7019 | 667 613 560 | 3396 2675 2415

Table 2: Number of distinct captions, unigrams and bigrams in the generated captions.

Average caption length

Beam size k 1 2 10 100
Beam search 841 879 9.18 9.11
“Lengthnorm. 841 9.19 1024 1043
Diverse decod. 8.41 8.71 9.12 9.15
“overlap, 841 9.22 1040 11.20
precision; 841 921 1038 11.15
overlapy 841 896 9.86 10.55
precision, 841 896 9.86 10.55
Istm_states 841 8.79 9.17 8.82
“blewy MBR) 841 877 927 932
smoothed_bleuy 8.41 879 924 9.13

Table 3: Average length of the generated captions. The
reference captions contain on average 10.59 words.

opposite direction, produces shorter captions than
the simple n-gram similarity metrics.

4.1.3 Caption diversity

Following the approach of Li et al. (2016a), Dhin-
gra et al. (2017), and Xu et al. (2017, 2018), we
investigate the diversity of the generated captions
by counting the number of distinct captions, uni-
grams, and bigrams (see Table 2).

For standard beam search, the number of dis-
tinct captions drops as k increases. Both baselines
weaken this effect, but the drop is still present. In
contrast, range voting maintains caption diversity
as k increases, for all similarity measures.

Similarly, standard beam search sees a drop in
the number of distinct unigrams and bigrams as
k increases, and the baselines do not seem to miti-
gate this. In contrast, the unigram measures and the
Istm_states measure maintain both unigram diver-
sity and bigram diversity as k increases, while the
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bigram measures partially maintain bigram diver-
sity. As expected from our range voting perspective,
MBR generates less diverse captions.

4.1.4 Human evaluation

BLEU is known to be imperfect, and does not al-
ways match human judgements (Callison-Burch
et al., 2006; Blain et al., 2017). While the n-gram
similarity measures produce similar BLEU scores
to standard beam search, they also produce longer
captions, which are potentially more informative.
To investigate whether they are more informative
in way that is not reflected by BLEU, we took 500
validation images for human evaluation, compar-
ing the captions produced by standard beam search
(k=10) against our best-performing n-gram mea-
sure (precisiony, k=100). Each pair of captions
was presented in a random order, with the original
image, and judged on a five-point scale (one cap-
tion much better, slightly better, or no difference).

The voted caption was rated better 106 times,
and worse 73 times. This is statistically significant,
with p=0.0165 for a two-tailed sign test, discard-
ing ties (Emerson and Simon, 1979). However,
for captions rated much better, the voted caption
was better 27 times and worse 40 times. This is
suggestive but not fully significant (p=0.142).

These results support the claim that a voted cap-
tion represents more of the information present in a
model’s distribution over captions — this often leads
to a better caption, but where the model is wrong,
adding wrong information can make the caption
much worse. After all, our method is designed as a
better way to select from a distribution, not as an
improvement to the distribution itself.



Beam size k 1 2 4 10 30 100
Beam search 24.04 25.10 2536 2491 2346 20.56

" Length normalisation ~ 24.04 25.19 2559 2555 2440 21.78
Diverse decoding 24.04 24.88 25.17 2471 2349 20.82
Diverse beam search 24.04 24.55 2470 2393 22.14 18.38
Beam search (no copy) 23.96 25.10 2543 25.23 2438 22.59

“overlap, 2396 25.17 2548 2555 2497 2420
precision; 23.96 25.17 2547 2554 2495 2421
overlap, 2396 25.14 2549 25.70 25.08 24.62
precision, 2396 25.20 2553 2539 24.69 23.96
transformer_states 2396 25.10 2544 2551 24.67 23.36

“bleuy MBR) 2396 25.09 2542 2551 2479 2353
smoothed_bleuy MBR) 23.96 25.10 2542 2551 24.81 23.65

Table 4: BLEU scores on newstest2014, with range voting applied to the beams obtained with no-copy filtering.

4.2 Machine translation

For the translation task, we use the WMT’ 14
English-German dataset, consisting of 4.5M sen-
tence pairs. We train a Transformer ‘big’ model
(Vaswani et al., 2017), implemented in the Ten-
sor2Tensor library (Vaswani et al., 2018). We use
the joint source and target byte-pair encoding vo-
cabulary (Sennrich et al., 2016) with 32,000 tokens
available on Tensor2Tensor. All results reported are
for the newstest2014 test set, containing 2737 sen-
tence pairs (Bojar et al., 2014).> The BLEU scores
were computed using SacreBleu (Post, 2018).

Ott et al. (2018) found that a common source of
model error comes from outputting a copy of the
input sentence, still in the source language. We
also observe this phenomenon: with beam size 4,
0.4% of the outputs are exact copies of the input.
This increases to 3.8% of the outputs for beam
size 100. When counting the number of partial
copies’ the effect is even stronger: for beam sizes
4 and 100, respectively 1.3% and 12.4% of the
generated translations are partial copies. Because
of this, we add the method proposed by Ott et al.

2We are evaluating systems translating from English into
German, but half of the newstest2014 sentences were orig-
inally in German and translated into English. Translation
artifacts are known to have an impact on machine translation
performance (for example: Kurokawa et al., 2009; Holmqvist
et al., 2009; Lembersky et al., 2012). One reviewer asked
whether there is a difference in performance for the two halves
of the dataset, as found by Freitag et al. (2019). In terms of
BLEU score, range voting appears more effective for forward-
translation (original text in English), but in terms of manual
evaluation, it appears more effective for backward-translation
(original text in German). For reasons of space, we only report
results for the whole dataset.

3 A partial copy is defined to be a generated sentence con-
taining at least 50% of the unigrams in the input sentence.
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(2018), which filters out partial copies during beam
search, as an extra baseline.

4.2.1 BLEU scores

The BLEU scores obtained on the WMT’ 14 En-De
newstest2014 test set are shown in Table 4.

For beam search and all considered baselines, the
scores for the larger beam sizes drop considerably.
Adding the copy pruning heuristic from Ott et al.
(2018) does help mitigate this problem somewhat
but does not solve it: there is almost a 3 BLEU
point drop between k=4 and k=100.

To decouple a trivial source of model errors (in-
put copies) from search errors, we apply our range
voting method on the beams obtained with the fil-
tering heuristic (Table 4, bottom half). Regardless
of which similarity metric is used, re-ranking using
range voting improves the BLEU score, and with
the overlap, similarity, we achieve the best overall
score of 25.70. Furthermore, the performance drop
at large beam sizes is reduced when using range
voting to about 1 BLEU point for overlaps.

There are two possible reasons for lower perfor-
mance at larger beams: (1) different candidates:
the sentence selected for a small beam is not in
the larger beam; or (2) different voter preferences:
the sentence selected for a small beam size is still
there, but range voting selects a different sentence.
In fact, both phenomena occur. First, for beam
search and all similarity metrics, about 10% and
5% of the sentences selected at k=4 and k=10 re-
spectively are not in the beam of size 100. Second,
48% and 61% of the sentences chosen by standard
beam search with k=4 and k=10 respectively are
also chosen for k=100, but this drops to 32% and
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Figure 2: The lengths (left) and the number of unique bigrams in the generated translations (right). Baseline
methods are shown as dashed lines, voting and MBR results as solid lines, and reference translations in black (the
horizontal line). Full tables of results are given in Appendix A.

36% respectively when using range voting with
overlap, similarity. This suggests that generating
candidates and voters independently could lead to
further improvements, which we explore in §4.2.5.

Sampling methods also perform poorly on this
task. Top k sampling achieves BLEU scores of
17.39 (k=4) and 15.21 (k=10), nucleus sampling
achieves a score of 10.10 (top_p=0.9)

4.2.2 Translation length

The average length of the generated translations
are shown in Figure 2. All similarity metrics gener-
ate longer translations than standard beam search
with and without filtering, but shorter than length
normalisation. At beam size k=100, length nor-
malised beam search generates almost an extra
word per translation compared to k=30.

Just as for image captioning, the length of trans-
lations generated by standard beam search de-
creases as the beam size increases. We again
note that the translations generated by range voting
with asymmetric similarity metrics are on average
longer, except for MBR where the asymmetry in
the similarity metric penalises longer candidates.
However, it is no longer the case that increasing
the beam size also increases the length of the trans-
lations generated by range voting.

4.2.3 Translation diversity

The numbers of distinct bigrams generated are
shown in Figure 2. Out of diverse decoding and di-
verse beam search, which aim to increase diversity
within a beam, only diverse decoding increases the
number of generated bigrams compared to beam
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search. Length normalisation generates the most
unique bigrams, and this increases with beam size,
also due to the translations being longer on average.
On the other hand, the copy filtering heuristic de-
creases the number of distinct bigrams generated.
Just as for image captioning, range voting increases
the diversity of the generated translations. For all
similarity metrics, more unique bigrams are gener-
ated than beam search with copy filtering (on top
of which range voting was applied). Furthermore,
the simple n-gram metrics generate more unique
bigrams than standard beam search, recovering the
drop occurring for the filtering heuristic.

4.2.4 Human evaluation

We used a human evaluation to investigate dif-
ferences not reflected by BLEU. For 500 sen-
tences, we compared the strongest baseline
(length normalisation, k=4) with range voting
(precisiony, k=10, as this performed well on
BLEU, length, and diversity), following the proce-
dure as in §4.1.4. The voted translation was rated
better 69 times, and worse 44 times. This is statis-
tically significant, with p=0.0235 for a two-tailed
sign test. For translations rated much better, the
difference is not significant (36 better, 28 worse).

4.2.5 Including more voters

The range voting formulation doesn’t require the
set of candidates C and voters V to be the same (see
Equation 1). We can capture more knowledge from
the underlying distribution by using a larger and
more diverse set of voters (and could be acquired
more efficiently by repeatedly sampling) whilst
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constraining the set of candidates to avoid model
errors. This was similarly done by Tromble et al.
(2008), who refer to the sets of voters and candi-
dates as the “evidence” and “hypothesis” spaces.

For the voters, we increase k from 4 to 1000 and
apply 3 different search methods: sampling % times,
stochastic beam search (Kool et al., 2019), and
beam search with copy filtering. For the candidates
we use beam search with copy filtering and k=4.
We fix the similarity metric to overlap,, which was
the best performing metric for large >4 ( §4.2.1).

For all 3 generation methods, increasing the num-
ber of voters increases BLEU (Figure 3), suggest-
ing that the previous drop in performance is due
to worse candidates in larger beams, rather than
worse voter preferences.

5 Conclusion

Instead of generating the most likely sequence, we
propose a method to generate the most representa-
tive sequence, formalising representativeness using
a similarity measure and range voting.

The evaluation on image captioning and machine
translation shows that despite using simple simi-
larity measures, we achieve an increase in BLEU
score, an increase in caption length and diversity,
and statistically significantly better human evalua-
tion performance on both tasks.

For the image captioning task, performance of
our method does not drop as beam size increases,
removing the sensitivity of results to this hyperpa-
rameter. On the machine translation task, perfor-
mance does drop for larger beam sizes, although
by much less than with standard beam search or
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the baselines. Furthermore, performance increases
as the number of voters increases, for a fixed set of
candidates.

Using better similarity measures that capture
semantics could further improve results and is a
promising direction for further research.

Finally, our approach can be applied to any prob-
abilistic language model, without any need for ad-
ditional training. This opens up many other tasks,
including summarisation, dialogue systems, and
question answering. If multiple outputs can be used
(e.g. offering options to a user), our method can be
extended to use reweighted range voting (Smith,
2005), a procedure that elects multiple candidates.
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A Translation length and diversity

Average translation length

Beam size k 1 2 4 10 30 100
_Beamsearch 1974 19.53 1942 19.15 1888 17.99
Length norm. 19.74 19.86 20.02 20.19 2036 21.09
Diverse decoding 19.74 19.57 1938 19.19 19.08 18.69

Diverse beam search 19.74 19.33 19.13 18.60 17.93 16.68
Beam search (no copy) 19.66 19.50 19.39 19.09 18.73 17.59

overlap, 19.66 19.79 19.86 1993 20.03 19.96
precision; 19.66 19.79 19.86 19.93 20.03 19.96
overlap, 19.66 19.69 19.70 19.67 19.61 19.39
precision, 19.66 19.95 19.98 20.09 20.21 20.36
transformer_states 19.66 19.50 1948 19.31 19.12 18.27
“bleuy MBR)  19.66 1950 1946 19.28 19.06 18.18

smoothed_bleuy MBR) 19.66 19.50 19.46 19.28 19.06 18.30

Table 5: Average length of the generated translations on the newstest2014 dataset. The reference translations
contain on average 21.66 words, more than for any of the above generation methods.

Number of distinct bigrams

Beam size k 1 2 4 10 30 100
_Beamsearch 38629 39029 39205 38894 38424 37135
Length normalisation 38629 39445 39971 40263 40638 41195
Diverse decoding 38629 39307 39217 38989 38870 38227

Diverse beam search 38629 38661 38611 37740 36575 34266
Beam search (no copy) 38473 38956 39073 38593 37694 35609

overlap; 38473 39353 39743 39775 39636 39334
precision; 38473 39354 39739 39772 39634 39334
overlap, 38473 39221 39528 39396 39015 38526
precision, 38473 39617 39955 40195 40170 40426
transformer_states 38473 38956 39223 38930 38277 36787
“bleuy (MBR) 38473 38957 39157 38792 38166 36564

smoothed_bleuy (MBR) 38473 38961 39169 38799 38166 36645

Table 6: Number of distinct bigrams in the generated translations for the newstest2014 dataset. The reference
translations consist of 39,533 unique bigrams.
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