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Abstract 

This paper is a system description of HMSid, officially sent to the PARSEME Shared Task 2020 

for one language (French), in the open track. It also describes HMSid2, sent to the organizers of 

the workshop after the deadline and using the same methodology but in the closed track. Both 

systems do not rely on machine learning, but on computational corpus linguistics. Their score 

for unseen MWEs is very promising, especially in the case of HMSid2, which would have re-

ceived the best score for unseen MWEs in the French closed track. 

 

1 Introduction 

Although the PARSEME Shared Task 2018 (Savary et al., 2018) produced very interesting results for 

the extraction of verbal multiword expressions, one important note of caution has to be made: the par-

ticipating systems produced poor results for unseen MWEs, i.e. expressions that were absent from the 

training data. As pointed out by the organizers of the new Parseme Shared Task 20201, a possible solution 

to this issue is the recourse to large MWE lexicons. 

In this paper, however, we report the results of two systems offering promising results for unseen 

MWEs with no recourse to MWE lexicons: HMSid (Hybrid Multi-layer System for the extraction of 

Idioms) and HMSid2. Both systems are based on computational corpus linguistics: they just used the 

training data and an additional general linguistic corpus. As the models require a fine-tuned adaptation 

to each language under study, they were only applied to the French dataset of the PARSEME Shared 

Task 2020. 

HMSid used as an external corpus the French WaCky corpus (Baroni et al., 2009) and was submitted 

to the PARSEME Shared Task 2020. As there was a recourse to an external corpus, it was logically put 

in the open track. Thanks to the feedback from the organizers of PARSEME 2020, however, we adapted 
the system in order to propose it in the closed track: the corpus used was the Wikipedia corpus included 

in the training data. The new version, HMSid2, was sent to the organizers after the official deadline. In 

this paper, both the official results of HMSid and the new results from HMSid2 are discussed.  

Our theoretical starting point for both systems is that, while Deep Learning will surpass most tech-
niques for reproducing elements that are somehow present in training sets, it will need additional corpus-
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based information for unseen-in-training MWEs. It should also be pointed out that MWE extraction is a 
daunting practical task, but that the theoretical background is also very complex, as it is related to gram-

matical and semantic structure. Information retrieval (Baeza-Yates and Ribeiro-Neto, 1999) has shown 

that semantic relations may be analyzed by very diverse methods, including vector space models and 
clustering methods. Many of its findings are compatible with the Distributional Hypothesis (Harris 

1954): differences in meaning will be reflected by differences in distribution. However, the distribution 

of words is also affected by existing MWEs, as at least 50 percent of the words from any text will actually 

be included in MWEs, collocations or phraseological units (Sinclair, 1991). In addition, a wide array of 
studies in construction grammar (Hoffmann and Trousdale, 2013) strongly suggest that language struc-

ture consists of a very complex and probabilistic network of constructions at various levels of abstraction 

and schematicity. 
It is no wonder then that very complex techniques are necessary for extracting MWEs, in much the 

same way as for the extraction of semantic links. In particular, the complex interplay between 1st-order 

co-occurrence (words appear together) and 2nd-order co-occurrence (words appear in similar contexts, 

Lapesa and Evert, 2014) probably requires a hybrid methodology. While deep learning and in particular 
neural networks are very efficient ways of gaining information from a training set, it may be comple-

mented by a more traditional, corpus-based approach in the case of the extraction of data that are unseen 

in the training set.  
The technical background for HMSid and HMSid2 is a combination of techniques inherited from 

Information Retrieval, such as metric clusters (Baeza-Yates and Berthier Ribeiro-Neto, 1999) and a 

query likelihood model, with a big data approach, in this case a large (unparsed and untagged) linguistic 
corpus: the French WaCky for HMSid and the Parseme French training corpus (Wikipedia) for HMSid2. 

As described in Colson (2017; 2018), a clustering algorithm based on the average distance between the 

component parts of the MWEs is measured, the cpr-score (Corpus Proximity Ratio): 
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Figure 1. The cpr-score 

 

This approach, as opposed to vector models, is a 1st-order model, as it is based on the co-occurrence 

of words and not on similar contexts. Given a window W of x tokens (depending on the language and 
the corpus, typically set at 20 for MWEs), the score simply measures the ratio between the number of 

exact occurrences of an n-gram, divided by the number of occurrences with a window between each 

gram. The main advantages of this metric are that it is not limited to bigrams, and that semantic links 
may be captured as well by enlarging the window, a point that has also been made by Lapesa and Evert 

(2014): larger windows may enable 1st-order models to capture semantic associations.  

Experiments with large datasets of idiomatic MWEs have shown (Colson, 2018) that most formulaic 
and idiomatic constructions can be captured by co-occurrence clusters, provided that the corpus used is 

sufficiently large (at least 1 billion tokens). In order to reach a good compromise between results that 

could be extracted from co-occurrence in large corpora and recurrent patterns with specific categories 

of MWEs, a hybrid methodology was used, as detailed in the following section.  
 

2 Methodology used for HMSid and HMSid2 

In the PARSEME Shared Task 2020 for French, the following categories of verbal MWEs had to be 

extracted from the test set: IRV (inherently reflexive verbs, as in the English example to help oneself), 

LVC.cause (light-verb constructions in which the verb adds a causative meaning to the noun, as in the 

English to grant rights), LVC.full (light-verb constructions in which the verb only adds meaning ex-

pressed as morphological features, as in to give a lecture), MVC (multi-verb constructions, as in to make 

do) and VID (verbal idioms, e.g. to spill the beans).   
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After a number of preliminary tests, we decided to extract French MWEs from the test set in a two-
step process. The first step concerned all categories of verbal MWEs, as described above, except the last 

one (VID, verbal idioms). The second step was just devoted to verbal idioms. 

This two-step approach was motivated by the unpredictable character of verbal idioms: contrary to 
the other categories of MWEs used for the PARSEME Shared Task, idioms display a very irregular 

number of elements, of which the syntactic structure is also diverse.  

During the first step, we used a Perl script and the Data::Table module2 for storing each sentence at a 

time in RAM memory. For the categories IRV, LVC.cause, LVC.full and MVC, the specific syntactic 
features of these categories were taken into account by the algorithm: in the case of IRV, for instance, 

the parsed sentences provided by the PARSEME dataset made it easy to extract all pronouns preceding 

or following the verbs, and an additional check was performed in order to determine whether those 
pronouns were indeed French reflexive pronouns, including elision (e.g. the pronominal form s’ instead 

of se). For LVC.cause, a list of French causative verbs was extracted from the training data (for instance 

apporter, causer, créer, entraîner). In the extraction phase, all objects depending on such causative verbs 

were measured by our co-occurrence score, the cpr-score (Colson, 2017; 2018) and the highest values 
were considered as cases of LVC.cause constructions. For LVC.full, a similar methodology was used, 

taking into account all subjects (for passive constructions) and objects (for direct object constructions) 

depending on verbs, excluding causative verbs, with a medium-range association between the sub-
ject/object and the verb (computed by the cpr-score). In the same way, the MVC category was extracted 

on the basis of the degree of association between two successive verbs, as in faire remarquer (to point 

out).  
In the second step of our extraction methodology, verbal idioms were extracted and added to the 

results. This made it possible to add the category of verbal idioms in the labels of the final results if and 

only if the results had not yet received another category label, for instance LVC.full. Preliminary tests 

on the basis of the training data indeed revealed that our algorithm tended to assign the VID category 
quite often, whereas the annotators of the gold set had been rather strict as to the idiomatic character of 

verbal MWEs. Using two separate scripts was a simple way of avoiding interference in the results. 

In the Perl script devoted to the extraction of VIDs, we also used the Data::Table module and selected 
in the parsed data all verbs, all their complements, and all complements of each complement. Extensive 

testing with the training data showed that this approach yielded higher scores than an n-gram based 

approach, in which the successive grams of each verb were analyzed left and right. 
  

3 Results and discussion 

Table 1 below displays the results obtained for HMSid, our system that was officially sent to the 

PARSEME Shared Task 2020. As explained in section 2, HMSid relied on an external corpus and was 

therefore placed in the open track.  

Table 2 shows the results obtained with HMSid2, using the same methodology but relying solely on 

the training data and the training corpus, and therefore belonging to the closed track. The results with 
HMSid2 were sent to the organizers of the Shared Task after the deadline.  

 

System Track 

Unseen MWE-based Global MWE-based Global Token-based 

P R F1 Rank P R F1 Rank P R F1 Rank 

HMSid open 27.73 53.33 36.49 4 63.85 67.84 65.79 5 66.4 67.81 67.1 5 

 

Table 1: Global results obtained with HMSid at the PARSEME 2020 Shared Task (French). 

              

 

 

 

 
 

2 https://metacpan.org/pod/Data::Table 
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System Track 

Unseen MWE-based Global MWE-based Global Token-based 

P R F1 Rank P R F1 Rank P R F1 Rank 

HMSid2 closed 32.53 49.33 39.21 1 68.90 72.04 70.43 2 71.10 72.63 71.86 2 

 

Table 2: Global results obtained with HMSid2 at the PARSEME 2020 Shared Task (French). 
 

 

As shown in Table 1, HMSid obtained a global F1 (Token-based) of 67.1, which puts it in 5th position 

in the open track. It should be noted, however, that its F1-score on unseen MWEs (36.49) puts it in 4th 

position (and very close to the 3d one), while its recall for unseen French MWEs is the best of all sys-

tems, open or closed track (53.33). This is noteworthy, because HMSid (and HMSid2) do not try to 

reproduce recurrent patterns from the training set, but rely on statistical extraction from a large linguistic 

corpus. In other words, both systems do not try to reproduce decisions made by annotators, as reflected 

in the training set, but are looking for statistical patterns in a large linguistic corpus, regardless of the 

training set. Of course, the training set was used for fine-tuning the statistical thresholds and deciding 

whether a combination was a MWE or not, and the different categories (which are in itself debatable, 

such as the distinction between LVC.full and LVC.cause) were integrated into the statistical extraction. 

The recall score on unseen MWEs also provides additional evidence of the statistical nature of recurrent 

MWEs in large linguistic corpora.  

This is even more obvious with HMSid2, which used exactly the same methodology, as explained in 

the above section, but relied on the training corpus provided by the Shared Task (part of the Wikipedia 
corpus), and would therefore be placed in the closed track. Among the 3 systems submitted to the closed 

track for French, HMSid2 would receive rank 2 for the global F1-score (MWE-based or Token-Based), 

and rank 1 for unseen MWEs, with an F1-score (39.21) far better than those obtained by the other sys-
tems in the closed track (with respectively 24.4 and 3.67). The best overall system officially submitted 

to the French closed track (Seen2Seen) has an F1-score of 3.67 for unseen MWEs. 

The difference between precision and recall, especially for unseen MWEs, should also be relativized 

by the choices made in the training and gold set. In spite of the excellent quality of the PARSEME 
annotated dataset, decisions as to the idiomatic character of a MWE will never be unanimous. In the 

case of the French dataset, for instance, the notion of verbal idiom (VID) was taken strictly by the an-

notators, but there are a few notable exceptions. A number of less idiomatic constructions were also 
labeled as VIDs. For instance, avoir lieu (to take place), il y a (there is / there are), mettre en pratique 

(to put into practice), tenir compte de (take into account), are all considered French verbal idioms in the 

training data, a choice that may be respected but has consequences on the statistical extraction. The 

statistical metric indeed had to be more tolerant for weaker associations when assigning the label ‘VID’, 
which contributed to a fairly good recall but a slightly lower precision. This appears clearly in all results 

from Tables 1 and 2, and in particular for unseen MWEs. In this case, one should bear in mind that the 

algorithm is looking for recurrent patterns in the linguistic system itself, as there are no similar examples 
in the training set.  

Many cases of verbal idioms from the gold set are quite obvious, such as tourner le dos à (turn one’s 

back on, lines 5817-19 of the gold set), il pleuvait des cordes (it was raining cats and dogs, lines 7415-
17) or sortir le grand jeu (pull out all the stop, lines 12129-32), all three labelled as VID and also rec-

ognized by the algorithm because of the very strong association between the grams: a cpr-score of resp. 

0.92 / 0.88 / 0.94. In other cases, however, the algorithm and the annotators are at odds. In lines 5868-9, 

for instance, rester silencieux (remain silent, keep quiet) is not considered as MWE by the annotators, 
but the cpr-score contradicts this view: 0.81. The same holds true of many other examples, such as 

trouver un compromis (lines 14387-89), not considered as a MWE in the gold set, but displaying a cpr-

score of 0.80. In this specific case, it should be reminded that native speakers are not always the best 
judges of the idiomaticity of their own language. It may be pretty obvious for speakers or French and of 

English that a compromise may be found but a quick look at other European languages reveals that this 

is far from being the case: in Spanish, for instance, the common construction is llegar a un compromiso. 
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It should also be pointed out that the methodology used for HMSid and HMSid2 is easily applicable 
to other languages. As a matter of fact, we have already implemented it as an experimental web tool3, 

IdiomSearch for English, German, Spanish, French, Dutch and Chinese. Measuring associations based 

on the cpr-score is indeed possible for any language, provided that the necessary web corpus is compiled. 
The only caveat is the goal of the classification. The Parseme Shared Task 2020, as the previous editions, 

wanted the systems to target very specific categories of verbal expressions, whereas our experimental 

tool IdiomSearch  looks for recurrent statistical associations, whatever the precise category may be. Fine-

tuning the algorithm to specific categories expected by the gold set, and annotated as such by native 
speakers of the language requires sophisticated training algorithms such as those used in deep learning.  

In conclusion, the most interesting results from HMSid and HMSid2 are those obtained for unseen 

MWEs. Due to the well-known phenomenon of overfitting, deep learning models often have problems 
with unseen data, which suggests that a hybrid approach combining deep learning and our model may 

be useful for future research. 
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