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Abstract

The majority of multiword expressions can be interpreted as figuratively or literally in different
contexts which pose challenges in a number of downstream tasks. Most previous work deals
with this ambiguity following the observation that MWEs with different usages occur in distinctly
different contexts. Following this insight, we explore the usefulness of contextual embeddings by
means of both supervised and unsupervised classification. The results show that in the supervised
setting, the state-of-the-art can be substantially improved for all expressions in the experiments.
The unsupervised classification, similarly, yields very impressive results, comparing favorably
to the supervised classifier for the majority of the expressions. We also show that multilingual
contextual embeddings can also be employed for this task without leading to any significant loss
in performance; hence, the proposed methodology has the potential to be extended to a number
of languages.

1 Introduction

By definition, a multiword expression (MWE) is idiomatic in the sense that its meaning cannot be derived
from the meanings of its components. However, whereas sometimes a sequence of words correspond-
ing to an MWE only has the idiomatic interpretation (e.g., by and large), there is often also a literal
interpretation of the same sequence, resulting in an ambiguity:

• And the final twenty minutes is a headlong adrenalin rush, frantically intercutting four separate
battle sequences and never dropping the ball once.

• Now, drop the ball for a bounce, tap it softly up towards your hands but let it fall back to the
pavement for another bounce. (examples taken from Korkontzelos et al. (2013))

Such multiword expressions are commonly referred as potentially idiomatic expressions (henceforth,
PIE) and determining the correct meaning of a PIE in context is shown to be crucial for many downstream
tasks including sentiment analysis (Williams et al., 2015), automatic spelling correction (Horbach et al.,
2016) and machine translation (Isabelle et al., 2017). Most of the previous work capitalizes on the
differences between the contexts where PIEs are used idiomatically and literally. Following that insight,
we investigate the applicability of recent contextual embedding models to disambiguation of PIEs.

Contextual embeddings, e.g. ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019), have emerged
in the last few years and quickly become the standard in a variety of tasks. These are very deep neural
language models which are pre-trained on large-scale corpora. Unlike the conventional static word em-
beddings, such as Word2Vec (Mikolov et al., 2013) where each word type is represented by a fixed vector,
these models assign distinct representations for each input token dependent on their context. Hence, they
are called contextual word embeddings, highlighting their sensitivity to the context. For example, in the
sentence “Can you throw this can away?” the first and second occurrence of the token can are supposed
to be assigned substantially different embeddings.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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The extent of the contextuality of these embeddings, on the other hand, is still an open research topic
(Ethayarajh, 2019). In this work, we specifically investigate whether such contextual embeddings provide
sufficient contextual information to distinguish literal usages of PIEs from idiomatic ones. To this end,
we represent the PIE tokens in a certain context by their corresponding BERT embeddings (Devlin et al.,
2019) and perform both supervised and unsupervised PIE disambiguation. The results suggest that the
plain BERT model, without any fine-tuning or further training, is able to encode the different usages of
PIEs to the extent that, even a with simple linear classifier, we can substantially improve the state-of-the-
art on common datasets in two different languages.

The unsupervised classification, on the other hand, is performed via hierarchical clustering, accompa-
nied with a simple heuristic, that PIEs with literal interpretations are semantically closer to their context
than the idiomatic ones. For the most of the time, the unsupervised classification also achieves unprece-
dented performance although not as consistently as its supervised counterpart, failing completely with
some expressions.

Finally, we compare the performance of the monolingual BERT models with the multilingual-BERT
(mBERT) to investigate the applicability of our approach to other low resource languages as well as to
provide further insight regarding the cross-lingual capabilities of the multilingual contextual embeddings
when they are employed directly; that is, without any fine-tuning in the target language. The results
show that multilingual-BERT achieves comparable results to monolingual models across all datasets,
suggesting that the proposed methodology can straightforwardly be extended to other languages.

2 Related Work

A number of models have been proposed in the literature to disambiguate PIEs, with a trend shifting
from employing linguistic features to more neural approaches, similar to the rest of the field. Fazly
et al. (2009) adopt an unsupervised approach relying on the hypothesis that multiword expressions are
more likely to occur in different canonical forms when used literally. Sporleder and Li (2009) propose a
generalized method (as opposed to “per-idiom classification”) employing cohesion graphs which initially
include all the words in the sentences. They hypothesize that a PIE is used figuratively if the removal of
the PIE improves the cohesion. Li and Sporleder (2009) prepares a dataset consisting of high confidences
instances found by (Sporleder and Li, 2009) and train a supervised classifier to classify the rest of the
instances.

Rajani et al. (2014) use a variety of features including bag of all content words along with their con-
creteness measures and train a L2 regularized Logistic Regression (L2LR) classifier (Fan et al., 2008).
Liu and Hwa (2017) also utilize the cues the context of the PIE provides and adopt an ensemble learn-
ing approach based on three different classifiers trained on different representations of the context. Liu
and Hwa (2018) propose a “literal usage metric” which quantifies the literalness of PIE. This metric is
computed as the average similarity between the words in the sentence and the “literal usage representa-
tion” which is the set of the words similar to the literal meanings of the PIE’s main constituent words
found in large corpus. Do Dinh et al. (2018) use a multi-task learning approach covering four different
non-literal language using tasks including classification of idiomatic use of infinitive-verb compounds
in German using recurrent Sluice networks (Ruder et al., 2019). Similar to (Sporleder and Li, 2009),
(Liu and Hwa, 2019) adopt a generalized approach and propose a novel “semantic compatibility model”
which is a modified version of CBOW, adapted specifically to the disambiguation of the PIEs task.

In a related line of research, contextual embeddings are successfully applied to the general problem of
word sense disambiguation (WSD). Wiedemann et al. (2019) show that BERT embeddings form distinct
clusters for different senses of a given word in line with its promise to be contextual. Huang et al. (2019)
approach WSD as a sentence pair classification task and fine-tune BERT where the input consists of a
sentence containing the target word and the one of its glosses and the objective is to classify if the gloss
matches the sense of the target word in the sentence.
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3 Method

The task here is to distinguish the compositional (literal) and non-compositional (idiomatic) usages of a
known PIE in a certain context as opposed to MWE extraction which is the task of discovering MWEs
in a corpus. Hence, the input to our method is a set of sentences containing a target PIE. We regard dis-
ambiguation of PIEs as a word sense disambiguation problem. Our basic assumption is that the context,
in which PIEs occur literally and figuratively are distinct enough from each other to be assigned a funda-
mentally different contextual representations. Below, we briefly introduce the contextual language model
we use in the experiments, BERT, followed by the descriptions of the supervised and the unsupervised
classifiers.

3.1 BERT

BERT (Bidirectional Encoder Representations for Transformers) is a multi-layer Transformer encoder
based language model (Devlin et al., 2019). As the transformer encoder reads its input at once, BERT
learns words full context (both from left and from right), as opposed to directional models where the
input is processed from one direction to another. BERT takes a pair of sentences padded with the special
“[CLS]” token in the beginning of the first sentence and “[SEP]” token after the end of each sentence
indicating sentence boundaries.

BERT is trained with two objective functions on large-scale unlabeled text: (i) Masked Language
Modelling (MLM) and (ii) Next Sentence Prediction (NSP). In MLM, 15% of the input tokens are ran-
domly replaced with a special “[MASK]” token and the task is to predict the masked token by looking
at its context. Contrary to the traditional language modelling, where the task is to predict the next word
given a sequence of words, the MLM objective forces BERT to consider the context in both sides hence
increases its context sensitivity. The NSP objective is a binary classification task to determine if the
second sentence in the input follows the first one in the original text. During training, BERT is fed with
sentence pairs where half of the time the second sentence is randomly selected from the full corpus.

3.2 Supervised Classification

The supervised model consists of an encoder and a classifier. The task of encoder is to assign each token
a representation in a way that every occurrence of each word is represented differently, reflecting their
context. We use two different BERT models (Devlin et al., 2019) as encoders in our experiments:

• Monolingual BERTs We use bert-base-cased and German-bert1 as the monolingual BERT models.
Each model has the same architecture, consisting of 12 transformers layers and trained on huge
monolingual corpus of the respective language.

• multilingual BERT (mBERT):2 mBERT is trained on the concatenation of the 104 Wikipedia
dumps with shared word-piece vocabulary. Since the training data does not contain any cross-
lingual signal, the source and the extent of the cross-lingual capabilities of mBERT has been a topic
of research on its own (Pires et al., 2019).

Since BERT’s internal tokenizer splits some words into multiple tokens, e.g. ‘microscope’ becomes
[‘micro’, ‘##scope’], we first compute a word-token map which keeps track of the word pieces PIEs are
split into. Then, each PIE is represented by the average of their word piece embeddings,

VPIEi =
1

k

k∑
j=1

vi,j

where k is the number of word pieces that PIE is split into; vi,j is the representation of the jth word
piece in the ith sentence in the dataset. We only count the lexicalised components in the canonical form

1https://deepset.ai/german-bert
2https://github.com/google-research/bert/blob/master/multilingual.md
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of the PIEs as its constituents, e.g. we would leave out the embedding of any realization of someone
from the embeddings of the MWE break someone’s heart.

A typical characteristic of compositional PIEs is that their component words display larger variation
of inflectional forms than idiomatic PIEs, which is a property that has previously been used as a feature
for the purpose of disambiguation (Fazly et al., 2009) (e.g. “broke a leg” can be more likely to be used
with the literal sense as opposed to “break a leg” which is almost always used figuratively). Yet, this
correlation between the form and the meaning may obscure the results of our experiments as our main
aim is to test the degree of contextuality captured by these contextual embeddings. Hence, in order to
control for this variation, we lemmatize all the words in PIEs before feeding them to the encoder. In the
case of German PIEs, where whether a PIE is written as one word or two words is a strong indicator of
its sense, we always spell them as two words. We do not modify the sentence which we pass to encoder
in any other way. As for classifier, we use a simple single-layer perceptron to predict the correct usage.s

3.3 Unsupervised Model

The unsupervised model uses the same representations that are used in the supervised setting. We use the
hierarchical agglomerative clustering (HAC) algorithm (Day and Edelsbrunner, 1984). We experimented
with various configurations and finally adopted Ward as the linkage criterion with Euclidean distances
as the similarity metric. Additional experiments with k-means clustering algorithm also yielded similar
results but we choose HAC over k-means as it is a deterministic algorithm so the results are more stable.3

The unsupervised model relies on the observation that the multiword expressions are semantically in
sharp contrast with their surrounding context when used idiomatically, following the previous studies
(Peng and Feldman, 2016; Liu and Hwa, 2018). We quantify these heuristics as the average of the cosine
similarities between the words in the sentence and the PIE inspired by (Liu and Hwa, 2018):

score =
1

L

L∑
j=1

cos(VPIE , wj)

where wj is the jth word in the sentence and cos(VPIE , wj) is the cosine similarity between the word
embedding and the embedding of the PIE. Following our heuristics, we label all PIEs as “idioms” in the
cluster, in which the average cosine similarity between PIEs and the sentence they occur in is the lowest.

4 Experiments

We conduct our experiments on the widely used datasets in two languages: the VNC dataset (Cook et
al., 2008) and SemEval5b (Korkontzelos et al., 2013) for English and the Horbach dataset for German
(Horbach et al., 2016).

Dataset Language # of MWEs Idiom Literal Total
VNC English 12 489 (66.4%) 248 (33.6%) 737
SemEval5b English 10 1204 (50.7%) 1172 (49.3%) 2376
Horbach German 6 3369 (64.2%) 1880 (35.8%) 5249

Table 1: Statistics of the datasets used in the experiments. Note that the statistics reflect the subset of the
respective dataset used in experiments.

In order to have comparable results, we follow the the official train/test split of Semeval5b dataset
whereas for VNC dataset, we used multiword expressions which have at least 10 instances with both
literal and idiomatic usage following (Liu and Hwa, 2019). Since there is not any official train/test split
for both VNC and Horbach datasets, we report the results of 5-fold cross-validation for the former4 and
10-fold for the latter. We use Scikit-learn library (Pedregosa et al., 2011) to implement both perceptron

3All model selection experiments were performed with the VNC dataset only, thus leaving the larger SemEval5b and Hor-
bach datasets untainted.

4Due to the limited size of the VNC dataset.
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Semeval5b VNC German Dataset
Model Acc F-score Acc F-score Acc F-score
(Fazly et al., 2009)† - - 0.74 0.73 - -
(Li and Sporleder, 2009)† 0.62 0.64 0.66 0.67 - -
(Rajani et al., 2014) 0.75 0.71 0.7 0.69 - -
(Liu and Hwa, 2017) 0.77 0.77 0.75 0.75 - -
(Liu and Hwa, 2018)† 0.74 0.75 0.75 0.73 - -
(Liu and Hwa, 2019)† 0.75 0.76 0.73 0.75 - -
(Horbach et al., 2016) - - - - 0.86 -
(Do Dinh et al., 2018) - - - - 0.88 -
mBERT (Unsupervised) 0.81 0.81 0.69 0.69 0.50 0.55
mBERT (Supervised) 0.91 0.91 0.89 0.85 0.88 0.90
BERT-base (Unsupervised) 0.79 0.78 0.73 0.73 0.55 0.59
BERT-base (Supervised) 0.94 0.93 0.91 0.90 0.94 0.94

Table 2: Averaged results across all idioms in datasets. *BERT-base refers to the monolingual BERT
trained on the language of the respective dataset. † indicates an unsupervised baseline.

and agglomerative clustering. The learning rate of the perceptron is set to 1×10−5. The embeddings are
normalized before they are fed into the classifiers. As the length of the available context differ for each
dataset, we limit the context to the sentence containing the PIE. We use the embeddings from the last
layer of the BERT models in the experiments; yet, we conduct a layer-wise analysis as well (see Section
6).

5 Results

Our average results with a detailed comparison with the previous studies are provided in Table 2 and
per-idiom results in Figure 1 and in Appendix A. We report the overall accuracy and the F-score for
the idiomatic (“figurative”) class. The results indicate that contextual embeddings is clearly a better
alternative to the previous approaches. The supervised classifier trained on monolingual BERT embed-
dings achieves the best performances, improving the current state-of-the-art models from 76+% to 91+%
F-score on English and from 88% to 92% accuracy on German datasets. Similarly, the unsupervised
classification outperforms or is on par with the previous state-of-the-art results on the English datasets
but fails to perform equally well on German, which is further discussed in the next section.

Switching to the multilingual contextual embeddings does not lead to a significant decrease in per-
formance, especially in the supervised setting where the results stay considerably above the previous
state-of-the-art. It must be noted that the relatively lower performance of the multilingual embeddings in
the unsupervised setting is because of a significant drop with certain PIEs, not due to a general failure of
the classifier across all PIEs (Figure 1).

6 Discussion

In this section, we further discuss some implications of our results. Overall, we comprehensively evalu-
ated our approach in three datasets. The performance of the supervised classification is pretty consistent
across all the PIEs in two languages, ranging between 0.77 to 1.00 F-score with a mean of 0.92 (±0.06).
Hence, the increase in the average results are not due to a significant increase in a subset of PIEs but
constant improvement in all PIEs covered in the datasets.

As for unsupervised classification, in line with our hypothesis, most of the time BERT embeddings
form distinct enough clusters corresponding the different usages of PIE, allowing high performing unsu-
pervised classification. Yet, the unsupervised classifier is more prone to make errors as it completely fails
with certain expressions which significantly lowers its overall performance (see Figure 1). We group the
errors of the unsupervised classification under two categories:
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Figure 1: Idiom-wise performance (accuracy) of both classifiers with monolingual and multilingual con-
textual embeddings. The MWEs are represented in alphabetical order and the lines are added for visibil-
ity.

• Clustering errors occur due to the formation of poor clusters, consisting of PIEs with different
usages. Clustering errors happen relatively rarely in English, where there are only four expressions
( “blow whistle”, “pull leg”, “break a leg”, “in the fast lane”) with F-score < 0.6; as opposed to
German where the unsupervised classifier achieves only 0.59 F-score on average. We suspect that
behind the high error rate in German lies the fact that German MWEs exhibit a wider range of
polysemy both in literal and figurative interpretation. Horbach et al. (2016) also discusses this point
as one of the challenges during annotation, stating that there are not very clearly separated uses of
the respective verbs in the dataset, as opposed to, e.g., “bread and butter” in English which has a
dominant figurative interpretation. For example, according to (Horbach et al., 2016), stehen+bleiben
(stand+still) has a large number of meanings, some of which are (i) a person’s heart may stand
still; (ii) people may stand still in their mental development; (iii) you can claim that a statement
cannot “remain standing” (remain uncontradicted). This point is also visible in the dendrograms
of German PIEs where there are more distinct clusters on the lower levels (Figure 3). A preliminary
analysis of these clusters show tendencies towards this direction, but a more systematic evaluation
is left for future work.

• Labeling errors In this case, the lower performance of the unsupervised classifier is due to the
failure of our heuristics to label the clusters correctly rather than the formation of poor clusters.
The most representative example of this error is the expression “break a leg” where the supervised
classification achieves the F-score of 0.89 whereas the unsupervised classifier completely fails as
our heuristics fail to label the clusters correctly. We ran a further experiment with an updated
heuristics where we directly measure the cosine similarity between the sentence and the PIE by

(a) BERT-base (b) Multilingual-BERT

Figure 2: The averaged results in accuracy over all layers.
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(a) “Bread and butter” (b) “Through the roof” (c) “Liegenbleiben” (d) “Stehenbleiben”

Figure 3: Hierarchical clustering of several cherry-picked English and German PIE embeddings obtained
from the respective monolingual BERT model. The leaves corresponding to idiomatic examples are
labeled whereas the rest are left empty in order to visualize how the idiomatic and literal instances are
separated across clusters.

representing the former as the average of its constituents’ embeddings (as opposed to average of
the the pair-wise similarity between the PIE and the words in its context). However, the updated
heuristics also yielded the same results, highlighting the need for more elaborate heuristics.

Furthermore, we ran all the experiments without performing lemmatization on the target expressions
(see Section 3.2) to see if lemmatization had any adverse effect on BERT. Overall, lemmatization turned
out to lead to mixed results (1 to 2 point change in F-score) but surprisingly mostly positive; the surface
(unlemmatized) forms achieve slightly better performance (+1 F-score) only on VNC dataset in the su-
pervised setting and on SemEval dataset in the unsupervised setting when multilingual embeddings are
employed. However, as discussed in Section 3.2, without lemmatization it is not possible to know if the
classifiers exploit the possible correlation between the surface forms and associated usages. Therefore,
we believe lemmatization is a necessary pre-processing step as it allows us for that correlation, without
harming the performance.

We, additionally, conducted a layer-wise analysis as different layers of BERT is shown to capture
different properties of the language (Tenney et al., 2019). In addition to each layer, we experiment
with the concatenation of the last four layers following the original BERT paper (Devlin et al., 2019)
which claims that it yields the best contextualized embeddings. The results show that the sixth layer and
upwards yield better performances where the concatenation of the last four layers leads mixed results,
leading a slight drop on two datasets and increase in one (Figure 2).

Finally, as can be seen in Figure 1, the performance of the supervised classifier with mBERT em-
beddings are consistent across PIEs which suggests that disambiguation of PIEs can be performed with
high accuracy in a large number of languages, requiring only a small set of annotated sentences, e.g. the
portion of the VNC dataset used in the experiments contains only 61 sentences annotated per MWE on
average (see Table 1).

7 Conclusion

In the current paper, we have proposed two methods, one supervised and one unsupervised, for disam-
biguation of potentially idiomatic expressions in running text. Our models utilize contextual embeddings
which are able to recognize the different usages of the same lexical units and assign representations ac-
cordingly. Experimental results in two languages show both of our classifiers substantially outperform
the previous state-of-the-art; yet, there is much room for improvement, especially with unsupervised clas-
sification which is less stable. The proposed methodology, furthermore, is shown to have a high potential
to be extended into a large number of languages thanks to the multilingual contextual embeddings.
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Appendix A Per-Idiom Results

Supervised Unsupervised
MWE Acc F1 Acc F1
blow trumpet 0.93 0.95 0.58 0.66
blow whistle 0.86 0.82 0.63 0.53
get wind 0.86 0.77 0.77 0.77
have word 0.86 0.92 0.55 0.66
lose head 0.75 0.78 0.72 0.72
make face 0.98 0.98 0.65 0.60
make mark 0.99 0.99 0.86 0.91
make scene 0.92 0.94 0.82 0.82
pull leg 0.90 0.79 0.69 0.55
pull plug 0.92 0.95 0.80 0.81
take heart 0.94 0.96 0.80 0.84
take root 0.98 0.99 0.88 0.92
Average 0.91 0.90 0.73 0.73

(a) VNC dataset

Supervised Unsupervised
MWE Acc F1 Acc F1
at the end of the day 0.88 0.91 0.84 0.86
bread and butter 0.97 0.97 0.95 0.95
break a leg 0.93 0.89 0.17 0.00
drop the ball 0.92 0.86 0.86 0.77
in the bag 0.89 0.90 0.87 0.88
in the fast lane 0.93 0.95 0.32 0.46
play ball 0.95 0.95 0.95 0.95
rub it in 1.00 1.00 0.97 0.98
through the roof 0.97 0.98 0.99 0.99
under the microscope 0.95 0.93 0.96 0.95
Average 0.94 0.93 0.79 0.78

(b) SemEval5b dataset

Supervised Unsupervised
MWE Acc F1 Acc F1
hängenbleiben 0.93 0.95 0.49 0.57
liegenbleiben 0.91 0.91 0.39 0.49
sitzenbleiben 0.94 0.96 0.63 0.67
sitzenlassen 0.98 0.99 0.46 0.60
stehenbleiben 0.91 0.91 0.60 0.59
stehenlassen 0.94 0.93 0.74 0.60
Average 0.94 0.94 0.55 0.59

(c) German dataset

Table 3: Per-idiom results of our supervised and unsupervised classifiers across datasets using monolin-
gual BERT models
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Appendix B Visualization of MWE Embeddings

(a) Blow trumpet (b) Blow whistle (c) Get Wind (d) Have word

(e) Lose head (f) Make face (g) Make mark (h) Make scene

(i) Pull leg (j) Pull plug (k) Take heart (l) Take root

Figure 4: PCA plots of the BERT-base embeddings for the VNC dataset


