
Proceedings of the Third Workshop on Multilingual Surface Realisation (MSR’20), pages 50–56
Barcelona, Spain (Online), December 12, 2020.

50

NILC at SR’20: Exploring Pre-Trained Models in Surface Realisation

Marco Antonio Sobrevilla Cabezudo
msobrevillac@usp.br

Thiago Alexandre Salgueiro Pardo
taspardo@icmc.usp.br
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Abstract

This paper describes the submission by the NILC Computational Linguistics research group
of the University of São Paulo/Brazil to the English Track 2 (closed sub-track) at the Surface
Realisation Shared Task 2020. The success of the current pre-trained models like BERT or GPT-
2 in several tasks is well-known, however, this is not the case for data-to-text generation tasks
and just recently some initiatives focused on it. This way, we explore how a pre-trained model
(GPT-2) performs on the UD-to-text generation task. In general, the achieved results were poor,
but there are some interesting ideas to explore. Among the learned lessons we may note that it is
necessary to study strategies to represent UD inputs and to introduce structural knowledge into
these pre-trained models.

1 Introduction

Universal Dependencies1 (UD) have gained relevance in the Natural Language Processing (NLP) com-
munity. UD treebanks have already proved useful in the development of multilingual applications, be-
coming an advantage for developers.

One of the successful applications of UD is related to Data-to-text generation. This may be seen
in the two shared-tasks proposed (Mille et al., 2018; Mille et al., 2019) in which there were several
participants. In general, the Surface Realisation Shared Task aims to continue with the development of
natural language generation methods focused on the surface realisation task. Specifically, models in this
task must generate sentences from dependency trees (or similar structures) in CoNLL format.

This task comprises two tracks: (1) the Shallow Track, in which word order and word forms are
removed from the UD structure, and (2) the Deep Track, which, in addition to the word order and word
forms, functional words, morphological features and other kinds of information are removed or changed
in the UD structure to make it more similar to a semantic representation (called deep syntax).

Diverse approaches have been applied on this shared task in previous editions, being mainly divided in
inflection generation and word ordering tasks (Mille et al., 2019). Besides, there is a trend to use neural
models for the same tasks.

Recently, pre-trained language models have become standard in a variety of Natural Language Pro-
cessing (NLP) tasks (Peters et al., 2018; Devlin et al., 2019; Radford et al., 2019), including sentence-
level classification, sequence tagging and question answering. These models can be pre-trained on large
corpora of available unannotated text, and then fine-tuned for specific tasks on smaller amounts of su-
pervised data, relying on the induced language model structure to facilitate generalisation beyond the
annotations.

These pre-trained models have been widely used in text-to-text generation tasks such as text simpli-
fication, automatic summarisation, and machine translation, obtaining good results and outperforming
the current state of the art. However, there are few initiatives for the data-to-text generation task. Lately,
Mager et al. (2020) used GPT-2 for fine-tuning AMR-to-text generation task, showing improvements and
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1Available at https://universaldependencies.org/
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that current pre-trained models can handle these representations even if the knowledge is not explicitly
structured.

In this context, this paper presents the description of the system submitted by the NILC team to the
track 2 of the Surface Realisation Shared Task 2020 (Track 2 - SR’20) (Mille et al., 2020). Our proposal
is an End-to-End approach inspired by the work of Mager et al. (2020). We explore some strategies to
sequentially represent UD structures and to fine-tune GPT-2 (Radford et al., 2019) on the pre-processed
dataset2.

2 Track 2 Dataset - SR’20

The dataset for the Track 2 is composed by UD structures and their corresponding sentences. The UD
structure is similar to a dependency tree, however, some information are modified:

• word order is removed by randomised scrambling;

• words are replaced by their lemmas;

• some prepositions and conjunctions (that can be inferred from other lexical units or from the syn-
tactic structure) are removed;

• determiners and auxiliaries are replaced (when needed) by attribute/value pairs;

• edge labels were generalised into predicate argument labels in the PropBank/NomBank fashion;

• morphological information coming from the syntactic structure or from agreement is removed;

• only coarse-grained Part-of-Speech tags are kept.

Figure 1 and 2 show the CoNLL and graphic representation for the sentence “Two of them were being
run by 2 officials of the Ministry of the Interior!”. In Figure 1, we may see “idX” and “original id”
attributes, where ”X” can be a number. This attributes are related to the track 1 and the original ids
(positions) of the tokens in the sentence and are removed from the test set.

Figure 1: Deep track example (“Two of them were being run by 2 officials of the Ministry of the Inte-
rior!”) in CoNLL format.

Figure 2: Representation of the example in graphic format.

2The corresponding source code is available at https://github.com/msobrevillac/
pretrained-amr-to-text
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Finally, the dataset contains subsets from different domains. For English (our target language in this
task), there are 4 files in the training and development (dev) set each, and 7 files for the test set from the
previous edition (Mille et al., 2019) and 1 file for the test set in this edition.

3 System Description

In first edition of this shared task, we submit a system in which we use a data augmentation strategy
(Sobrevilla Cabezudo and Pardo, 2018) to deal with the track 1. However, for this edition, we focus on
the track 2 and use only resources allowed by the shared task (closed sub-track). Differently from most
of the work found in the literature, we propose an End-to-End approach, jointly learning the inflection
generation and word ordering tasks.

3.1 GPT-2 for UD structures

Inspired by the work of Mager et al. (2020), we use GPT-2 and fine-tune on the joint distribution of
UD structure and text. Given a tokenized sentence w1wN and the sequential UD structure a1...aM , we
maximize the joint probability.

pGPT−2(w, a) =

N∏
j=1

pGPT−2(wj |w1:j−1, u1:M )

M∏
i=1

pGPT−2(ui|u1:i−1)

(1)

A special separator token is added to mark the end of the sequential UD structure. Relations that should
not be interpreted literally are assigned tokens from the GPT-2 unused token list (adding a “:” to mark
the token as a relation). Furthermore, in the case of morphological information, values in feature name-
value pairs are considered common tokens and feature names are considered relations. For example, in
Figure 1, the token “run” has “Tense=Pres” as a feature name-value pair. This way, “Pres” is considered
a common token and “Tense” a relation. At test time, we provide the UD structure as context as in
conventional conditional text generation.

It is worth noting that we explore different ways to build the sequential (linearised) UD structure,
and all these sequential versions are derived from the PENMAN notation. We explore the following
linearised versions:

(A) PENMAN format: this format is the same one used in Abstract Meaning Representation (AMR);

(B) PENMAN format without morphological relations: the same format, but removing all morphologi-
cal relations (and others in the same column), such as “Tense” and “Aspect”, among others;

(C) PENMAN format without morphological relations and parentheses;

(D) PENMAN format without parentheses: the same as the first one but removing the parentheses;

(E) PENMAN format without relations: the same as the first one but removing all the relations;

(F) PENMAN format without relations and parentheses: the same as the first one but removing all the
relations and parentheses.

Figure 3 shows three representations for the example in Figure 1: (A) PENMAN notation, (B) PEN-
MAN notation without morphological relations, and (C) PENMAN notation without morphological re-
lations and parentheses. It is interesting to add that the parentheses in PENMAN notation provide infor-
mation about the graph structure of the input.



53

Figure 3: Sequential UD structures for the sentence “Two of them were being run by 2 officials of
the Ministry of the Interior!”. (A) PENMAN notation, (B) PENMAN notation without morphological
relations, and (C) PENMAN notation without morphological relations and parentheses.

3.2 Settings
We use the small GPT-2 model provided by HuggingFace (Wolf et al., 2019)3. The model is trained on
the joint of all training subsets. The fine-tuning is executed in 7 epochs (as the model converges at this
time), using a batch size of 8, the AdamW optimizer with a learning rate of 6.25e-5, a max length of 350
in the source and target, and freezing the embeddings. For the decoding, we use a beam size of 15.

At test time, we get tokenised sentences. We then post-process them by using the Moses detokeniser4.

4 Results and Discussion

The automatic performance of the diverse proposals at the shared task is computed by the following
measures:

• BLEU (Papineni et al., 2002): precision metric that computes the geometric mean of the n-gram
precisions between the generated and reference texts, adding a brevity penalty for shorter sentences
(we use the smoothed version and report results for n = 1, 2, 3, and 4);

• NIST (Doddington, 2002): related n-gram similarity metric weighted in favor of less frequent n-
grams, which are taken to be more informative;

• Normalized edit distance (DIST): inverse, normalized, character-based string-edit distance that
starts by computing the minimum number of character insertions, deletions and substitutions (all
at cost 1) required to turn the system output into the (single) reference text;

• BertScore (Zhang et al., 2020): leverages the pre-trained contextual embeddings from BERT and
matches words in candidate and reference sentences by cosine similarity.

Table 1 shows the results of the different linearised versions (described in Section 3.1 of the UD
structures on the development set). The results are the ones obtained on the join of all dev subsets
provided by the shared-task.

In general, morphological relations do not seem to be necessary as the performance improves when
these are removed (B in Table 1). However, a possible noise in this analysis could be generated by

3We use only the small GPT-2 version as we could not execute this on our current server.
4We use the perl code available at https://github.com/moses-smt/mosesdecoder/tree/master/

scripts/tokenizer
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the input length since including morphological relations (linearised version A in Table 1) could make
the input length larger and the max length parameter could delete some important tokens, resulting in a
lower performance in comparison with linearised version B.

To make the analysis of omitting morphological relations clearer, we may see versions C (without
parentheses and morphological relations) and D (without parentheses). Both versions contain fewer
tokens (in relation to A and B versions) and one may see that disregarding morphological relations
produces improvements (results in version C are better than in D).

Another point to note is that parentheses are the most important tokens as they represent the structure
of the input. Therefore, removing them from the input leads to a significant drop in the performance
(D). Furthermore, this drop is bigger than the one obtained by leaving out all the relations (E), showing
that parentheses could encode some information about the relations among the nodes. Finally, the results
of the F version could suggest that, although parentheses encode some information about the relations,
there are more information that is not encoded, making the use of relations (in general) necessary.

Linearised version BLEU NIST BertScore
(A) 39.28 9.65 0.9390
(B) 42.52 10.29 0.9413
(C) 36.67 9.82 0.9350
(D) 35.89 9.59 0.9347
(E) 38.00 9.97 0.9354
(F) 27.61 8.83 0.9228

Table 1: Results with different inputs on the dev set.

Table 2 shows the results of the automatic evaluation on several test sets. The model that we use to get
these results is the one that got the best results in the dev set. In general, Table 2 shows that all values are
close to the average (except for the test set presented in this edition). This could suggest that GPT-2 can
keep a similar performance across the domains, i.e., it can generalise well. Finally, our approach got a
performance lower than other approaches for the same track. However, we expect that these differences
could be reduced if we use a bigger model such as medium or large GPT-2 (similar to the results of
Mager et al. (2020)).

Table 3 shows the results of the human evaluation on two test sets predefined by the organizing com-
mittee. Specifically, Direct Assessment (Graham et al., 2017) is applied to conduct this evaluation.
Candidate outputs are presented to human assessors, who rate their (i) meaning similarity (relative to a
human-authored reference sentence) and (ii) readability (no reference sentence) on a 0-100 rating scale.
The metric used for ranking the different systems is the average standardised score (avg. z in Table 3.
We may see that our approach still have problems representing the correct reference as this gets the worst
performance according to the meaning similarity (last cluster). However, when readability is evaluated,

BLEU NIST DIST BertScore
2020 en filtered lines-fix 39.68 9.31 57.56 0.9317

2019

en pud 42.60 9.68 59.85 0.9382
en ewt-Pred-HIT-edit 43.15 9.64 62.20 0.9392
en pud-Pred-LATTICE 42.64 9.59 60.43 0.9368
en ewt 45.19 9.96 64.83 0.9411
en gum 40.94 9.00 60.42 0.9399
en lines 41.04 9.09 61.18 0.9381
en partut 43.41 8.24 59.74 0.9438

Average 42.33 9.31 60.78 0.9386

Table 2: Results of our system on the test set.
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Meaning Similarity Readability
Test set Team Sub-track Avg. Avg. z n N Test set Team Sub-track Avg. Avg. z n N

English (EWT)

IMS 20b 85.1 0.272 1,667 1,927

English (EWT)

Concordia 20a 71.8 0.321 806 908
IMS 20a 84.7 0.259 1,701 1,942 Ours 20a 68.6 0.185 823 947
Concordia 20a 84.7 0.245 1,675 1,897 IMS 20b 67.3 0.159 807 936
IMS 19 82.7 0.201 1,692 1,920 IMS 20a 65.8 0.109 753 866
Ours 20a 75.6 -0.079 1,657 1,892 IMS 19 63.6 0.027 808 923

English (Wiki)

IMS 20b 87.3 0.157 700 1,016

English (Wiki)

Concordia 20a 80.6 0.37 952 1,283
IMS 20a 85.6 0.057 755 1,078 Ours 20a 75.4 0.213 930 1,273
IMS 19 85.5 0.025 698 1,023 IMS 20b 70.2 0.055 932 1,256
Concordia 20a 84.7 -0.029 715 1,036 IMS 20a 69 -0.03 963 1,284
RALI 19 76 -0.463 720 1,044 IMS 19 67.3 -0.095 932 1,233
Ours 20a 76.6 -0.491 721 1,088 RALI 19 56.1 -0.562 940 1,329

Table 3: Results of the human evaluation for the track 2. Meaning Similarity and Readability are com-
puted. Avg. is the average 0-100% received by systems. Avg. z is the corresponding average standardised
scores. “n” is the total number of distinct test sentences assessed, and N is the total number of human
judgments. The results are sorted by avg. z. and horizontal lines indicate clusters, such that systems in a
cluster all significantly outperform all the systems in lower ranked clusters.

we obtain the second best results (second cluster), even compared with approaches in the open subtrack
(20b) in which all kinds of resources are allowed.

These results are expected as the automatic evaluation shows a low performance for our approach and
it is reflected in the meaning similarity evaluation, while GPT-2 is a robust language model and knows
how to build coherent sentences (we have to stress that readability is evaluated without references).
More experiments could be done in order to explore how to get improvements in meaning similarity.
Experiments performed by Mager et al. (2020) show that the performance improves significantly when
a bigger version of GPT-2 is used. Besides, we may see that the performance varies widely according to
the linearisation strategy, which would be an interesting research line to explore in the future.

5 Conclusion and Future Work

This paper describes the application of a pre-trained model, the GPT-2, to the UD-to-text generation task
in the context of the Surface Realisation shared task. Results show that the way as the UD structures are
linearised is important for the model in this task. Thus, an interesting research line for future work could
be investigating other ways to represent/linearise UD structures and to introduce the knowledge about
structure in this kind of model. As future work, we also plan to apply this approach to other languages
and use a bigger version of GPT-2.
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