
Proceedings of the Third Workshop on Multilingual Surface Realisation (MSR’20), pages 21–29
Barcelona, Spain (Online), December 12, 2020.

21

BME-TUW at SR’20: Lexical grammar induction for surface realization

Gábor Recski1, Ádám Kovács1,2, Kinga Gémes1,2, Judit Ács2, András Kornai3

1TU Wien
firstname.lastname@tuwien.ac.at

2Dept. of Automation and Applied Informatics, Budapest U of Technology
lastname.firstname@aut.bme.hu

3SZTAKI Institute of Computer Science
andras@kornai.com

Abstract

We present a system for mapping Universal Dependency structures to raw text which learns to
restore word order by training an Interpreted Regular Tree Grammar (IRTG) that establishes
a mapping between string and graph operations. The reinflection step is handled by a standard
sequence-to-sequence architecture with a biLSTM encoder and an LSTM decoder with attention.
We modify our 2019 system (Kovács et al., 2019) with a new grammar induction mechanism
that allows IRTG rules to operate on lemmata in addition to part-of-speech tags and ensures that
each word and its dependents are reordered using the most specific set of learned patterns. We
also introduce a hierarchical approach to word order restoration that independently determines
the word order of each clause in a sentence before arranging them with respect to the main
clause, thereby improving overall readability and also making the IRTG parsing task tractable.
We participated in the 2020 Surface Realization Shared task, subtrack T1a (shallow, closed).
Human evaluation shows we achieve significant improvements on two of the three out-of-domain
datasets compared to the 2019 system we modified. Both components of our system are available
on GitHub under an MIT license.

1 Introduction

This paper describes our participation in the T1a subtask of the 2020 Surface Realization Shared Task
(Mille et al., 2020), which requires systems to map Universal Dependency graphs of lemmata to raw
sentences by reconstructing word forms and word order. We extend the word order restoration com-
ponent of Kovács et al. (2019) by making it sensitive to lemmata in addition to parts-of-speech and by
performing the word order restoration step separately for each clause of a sentence. The paper is struc-
tured as follows: Section 2 briefly describes the data and the task as well as the architecture that we
modify. Section 3 presents our new method for rule generation for creating lexical grammars, Section 4
describes the hierarchical approach for breaking up the word order restoration task into clause-level
subtasks. Section 6 presents a summary of both automatic and human evaluations, Section 7 discusses
potential future work. The IRTG-based system for word order restoration can be downloaded from
https://github.com/adaamko/surface_realization, the inflection system was trained
using the framework under https://github.com/juditacs/deep-morphology. Both com-
ponents are available for download under an MIT license.

This work is licensed under a Creative Commons Attribution 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by/4.0/.

22

2 Background

2.1 SRST

The 2020 Surface Realization Shared Task (Mille et al., 2020) involves mapping Universal Dependency
representations to raw text. The input data in the shallow track consists of UD-annotated sentences for
11 languages, without word order information and without inflected word forms, i.e. they are typed
dependency graphs of lemmata of a sentence. The task is to reproduce the original sentences, which
involves reconstructing word order and inflected word forms. The primary method of evaluation is
human judgments of readability and fidelity of output sentences to the original, but automatic metrics are
also used to measure the similarity between predicted and gold standard sentences.

The system presented in this paper, a substantial extension of the solution of Kovács et al. (2019),
offers a fully rule-based, explainable, and language-independent solution for the word order restoration
component of the shallow surface realization task and uses an independent ML system for reconstructing
word forms. In last year’s evaluation, the top rule-based systems were consistently outperformed by
the best-performing IMS (Yu et al., 2019) and CMU (Du and Black, 2019) systems (see Mille et al.
(2019) for evaluation details). Both of these solutions rely on deep learning models for the word order
restoration component of the task. Still, an important similarity between their approaches and ours is
that they also take the divide-and-conquer approach of determining word order separately for each head
and all its dependents. In future work this will allow detailed comparison between the atomic decisions
of our system and the state-of-the-art (see Section 7 for some proposals).

2.2 IRTGs for surface realization

The system presented in this paper is based on the architecture presented in Kovács et al. (2019), which
involves the induction of an Interpreted Regular Tree Grammar (Koller, 2015) whose rules establish a
mapping between operations of i) a string algebra that concatenates words and phrases of a sentence and
ii) an algebra over graphs that builds UD structures by merging nodes and subgraphs. We briefly outline
the architecture of this system and refer the reader to the original paper for details.

An IRTG rule is a (possibly weighted) rewrite rule of a Regular Tree Grammar that is mapped to an
arbitrary number of named interpretations, each of which are operations of an algebra with the same
arity as the RTG rule. Thereby any particular derivation of an IRTG grammar deterministically maps to
a sequence of operations in each of the interpretation algebras. Parsing an object of one algebra involves
finding the IRTG derivation(s) of the highest likelihood that would generate this object, while decoding
is the subsequent construction of an object in another algebra using this sequence. The word reordering
task is then equivalent to parsing graphs and decoding strings using an IRTG with two interpretations.

UD graphs have the property that the indegree of each node is exactly 1, i.e. each word is the dependent
of exactly one other word in the sentence (this is achieved by introducing the dummy ROOT element that
governs the root word in the sentence). This allows us to straightforwardly model the construction
of UD graphs as a sequence of operations that each connect a word to all its dependents. The word
order restoration task can then be modeled as the correspondence between a sequence of operations in
a graph algebra building such an UD subgraph and the string operations concatenating the words of this
subgraph in a particular order. Since the system operates on POS-tags, not word forms, an example

would be the steps for building the UD subgraph VERB
nsubj−−−→ NOUN, which in a model for English

would be expected to correspond to the concatenation operations yielding the string NOUN VERB. An
IRTG rule encoding this correspondence can be seen in Figure 1: an RTG rule followed by its two
interpretations, i.e. operations in a string algebra and an s-graph algebra as they are to be applied to
the string and s-graph objects corresponding to each of the nonterminals on the right hand side of the
RTG rule. For lack of space we do not describe the operation of the s-graph algebra in detail, but see
the original system description (Kovács et al., 2019) for an overview and Koller and Kuhlmann (2011)
or Courcelle and Engelfriet (2012) for more formal explanations. Grammars are built by inducing IRTG
rules from sentences in the training data, and rule weights correspond to the observed frequencies of

23

individual patterns. Parsing and decoding are performed using the open-source alto library1 (Gontrum
et al., 2017).

VERB -> _nsubj(VERB, NOUN)
[string] *(?2, ?1)
[ud] f_dep1(merge(merge(?1, "(r<root> :nsubj d1<dep1>)"), r_dep1(?2)))

Figure 1: Example of an IRTG rule

Our main contribution is a number of substantial modifications of the grammar induction process of
the above system, which we shall present in detail in Sections 3 and 4. First, the system presented
above does not have access to lemmata and operates on graphs of POS-tags only, therefore it cannot
learn about constructions that are typical of a lexical item but not its grammatical class. Second, its
handling of unseen patterns is rudimentary: if a particular pattern of head POS and set of dependent POS
tags has not been observed in the training data, the system will employ binary branching rules, i.e. the
derivation will attach dependents to the head one-by-one. In the next sections we develop an architecture
for inducing a lexical grammar that relies on lemma-level observations in the training data to cover each
input UD graph with the most specific rules possible.

3 Lexical rule induction

3.1 Motivation
This section will describe our extension of the grammar induction system of Kovács et al. (2019) to in-
clude rules operating on lemmata in addition to those that refer to part-of-speech tags only. In modeling
the construction of UD structures we preserve the fundamental assumption that the directed graphs of
words are built as a series of operations which connect some set of dependents to their common head.
In other words, the first argument of each rule in our grammar corresponds to a node from which outgo-
ing dependency edges are to be added pointing to the nodes corresponding to the remaining arguments.
The rule presented in Figure 1, which establishes an nsubj relation between a pair of words with the
POS-tags VERB and NOUN, is recursive; the nonterminal VERB appearing on both sides of the RTG
rule ensures that an arbitrary number of rules can be applied that connect dependents to the same head.
Thus, all possible derivations of a given UD graph will have in common that for each word they eventu-
ally create the subgraph consisting of that word and all its dependents, but the number of possible RTG
derivations that can generate a subgraph with N + 1 nodes is 2N , while the number of IRTG derivations
are doubly exponential since a rule with arity k can have k! different string interpretations. The com-
plexity of the parsing problem for a given sentence was reduced in the original system by including in
the grammar only those patterns that we have observed in the training data (i.e. a rule such as that in

Figure 1 will be added to our grammar if and only if the subgraph VERB
nsubj−−−→ NOUN was observed in

the training data without additional edges outgoing from the verb head), a constraint that would most
likely cause data sparsity issues if we were to extend the process from POS-tags to word forms without
fundamental modifications.

Our new approach to grammar induction differs from that of Kovács et al. (2019) in multiple ways.
First, by including rules that can take lemmas instead of POS-tags as some or all of its arguments, the
number of patterns matching a subgraph of N+1 nodes increases from 2N to 3N and the number of IRTG
rules that under our original approach would be included in a grammar pruned for a sentence of average
size would no longer be tractable. On the other hand, we expect that derivations including rules that
operate directly on word forms should generally take precedence as more specific accounts of the same
phenomenon. This expectation is in part based on the observation in Kovács et al. (2019) that choosing
shorter derivations, i.e. those using fewer rules with higher arity to generate the same graph actually
yields better results on the word order restoration task by virtue of being more specific. An example for
this was the sentence I really enjoyed reading it in the en ewt-ud-dev dataset. For the corresponding

1https://github.com/coli-saar/alto

24

PRON
nsubj←−−−− VERB

PRON
nsubj←−−−− enjoy

He
nsubj←−−−− VERB

He
nsubj←−−−− enjoy

VERB
obj−−→ it

VERB
obj−−→ PRON

enjoy
obj−−→ PRON

enjoy
obj−−→ it

PRON
nsubj←−−−− VERB

obj−−→ PRON

PRON
nsubj←−−−− VERB

obj−−→ it

PRON
nsubj←−−−− enjoy

obj−−→ PRON

He
nsubj←−−−− VERB

obj−−→ PRON

PRON
nsubj←−−−− enjoy

obj−−→ it

He
nsubj←−−−− VERB

obj−−→ it

He
nsubj←−−−− enjoy

obj−−→ PRON

He
nsubj←−−−− enjoy

obj−−→ it

Figure 2: Subgraphs generated for the sentence He enjoyed it

UD graph the most likely (and correct) derivation included a rule connecting four dependents of the root
verb simultaneously and constructing the sequence of POS-tags PRP RB VBD VBG, corresponding
to the word order I really enjoyed reading. The next-best parse would have constructed the sentece I
enjoyed really reading it using a separate rule to attach the edge VBD advmod−−−−−→ RB that yields the word
order enjoy really. When extending the grammar induction process to lemmata, we expect that such a
rule could be overridden by a more specific one for adding enjoy advmod−−−−−→ really that yields the correct
word order based on what we observed in the training data. Indeed, not only does our final system
yield the correct word order for this sentence, it does so using a rule that explicitly maps the subgraph

I
nsubj←−−− enjoy advmod−−−−−→ really to the string I really enjoy, a construction observed five times in the training

data.

3.2 Method
Our method for word order restoration involves a training step for counting all word- and POS-level
subgraphs in the training data along with the corresponding word orders, a grammar construction step
that for each input UD structure creates an IRTG with the most frequent rules corresponding to each of
its subgraphs, and the parsing and decoding of the UD graphs using the constructed IRTG and the alto
library. Our surface realization system performs the last two steps separately for each clause of each
sentence, for details see Section 4. We now describe the three core steps in detail.

The training step involves traversing the UD graphs of all sentences in the training dataset for a given
language. For each word in the graph with at least one dependent we take the subgraph containing
this word and all its dependents, and for each of these we enumerate all its subgraphs that contain the
head and at least one additional node. Finally for each of these subgraphs we generate all possible
combinations such that some of the nodes are represented by their part-of-speech tags and the others by
their lemma. For a head word with N dependents this means enumerating 2 · (3N − 1) subgraphs (since
the head of the structure must be present in the subgraph and it must have at least one edge). Figure 2

shows an example of subgraphs generated for the simple 3-node graph enjoy/VERB
obj−−→ it/PRON. The

total number of unique subgraphs observed in the training data for each language is listed in Table 1. For
each subgraph we then consider the relative order of the nodes in the surface form of the sentence and
increment a counter corresponding to the particular ordering on the particular subgraph. Finally, for each
pattern we sort all observed orderings by frequency.

At the time of performing word order restoration on an UD graph we enumerate all patterns in the
input graph and query the model for the most frequent word order, allowing us to create an IRTG rule
whose two interpretations correspond to the graph operations building the particular pattern and the string
operations concatenating the corresponding words in the order that is most typical of that pattern based on
the training data. The test dataset also specifies the relative order of some elements with respect to their
heads using the lin feature. When such information is present, we use it to skip contradictory orderings
regardless of their observed frequency. Patterns containing more than 4 dependents in addition to the
head are discarded to reduce parsing complexity. We expect this to have negligible effect on parsing
quality because patterns this large are likely the result of superposing subpatterns already inferable from
the data. It is possible, for our method to yield a grammar that does not cover the input UD graph, this

25

Lang Npatt Dmax |V | Dwords Ntok

ar 8.6M 4.8 14K 36.9 224K
en 29.8M 5.0 25K 17.6 352K
es 50.2M 5.5 48K 29.0 827K
fr 37.1M 5.7 34K 24.6 429K
hi 17.2M 5.5 15K 21.1 281K
id 7.0M 5.2 19K 21.8 98K
ja 14.5M 5.6 24K 22.5 160K
ko 8.6M 3.9 119K 12.9 353K
pt 27.2M 5.2 32K 25.7 462K
ru 41.6M 4.7 51K 18.0 946K
zh 14.8M 6.8 20K 24.7 99K

Table 1: Basic figures describing the training datasets: number of unique patterns (Npatt), average num-
ber of nodes in the largest pattern in a sentence (Dmax), number of unique lemmata (|V |), average
number of words in a sentence (Dwords) and total tokens in the training data (Ntok)

would mean that there is a graph edge that hasn’t been observed in the training data even on the POS
level. Since this affects less than 0.2% of all generated grammars across languages, we did not implement
any fallback mechanism and in these few cases our system outputs the original randomized word order
for the given sentence or clause.

Finally, we use the resulting IRTG grammar to parse the UD graph and decode the string constructed
by the most likely derivation. We assign identical probabilities to all rules so that the search for the
most likely parse will yield the derivation with the smallest number of rules. This means that we prefer
rules that connect a larger number of dependents to their head and rules that directly refer to lemmata as
opposed to POS-tags. The presence of frequency counts in our model would allow us to create multiple,
weighted IRTG rules for a single pattern, but exploring the effects of weighting schemes that could in
some cases counteract the general preference for shorter derivations containing more specific rules is left
for future work.

4 Hierarchical surface realization

Our approach to rule induction presented in the previous section yields a large number of rules. The
grammar for an average sentence in the en ewt dataset would contain over 1000 IRTG rules, making
the parsing process prohibitively slow. We reduce the average complexity of the task by cutting UD
graphs along edges that connect clauses of a sentence, thereby splitting them up into smaller graphs for
which our grammar-based approach can be performed separately. The resulting word sequences can
then be arranged relative to each other by performing word order restoration on the UD graph of the
main clause, this time including dependents of the predicate from other clauses and interpreting them as
representing their clauses. We shall now explain this method in detail and illustrate it with an example.

A simple example of an UD graph of multiple clauses, taken from the en ewt-ud test set, is shown
in Figure 3 and corresponds to the sentence Click here to view it. We begin by cutting the graph on
any of the edges that may encode dependency relationships between clauses: acl, advcl, ccomp,

xcomp, conj. In this case, the edge click advcl−−−→ view is found and the graph is split into two new
UD graphs that correspond to the fragments Click here and view it. What follows are three separate runs
of the word order restoration algorithm described in the previous section. The first two receive as their

input the UD graphs click advmod−−−−−→ here and view
obj−−→ it to determine the word order of each fragment.

To arrange them with respect to each other, we run our algorithm on the UD graph click advcl−−−→ view,
the edge connecting the clauses, and interpret the outcome not as an order of the two words but as that
of their respective clauses. This approach also enforces that non-clausal dependents of the root of a
clause group together with respect to each clausal dependent, which we considered an advantage based
on initial experiments with the one-step approach: arguments of a predicate separated by an intervening
clause were the errors that we observed would make longer sentences entirely incomprehensible. Our
algorithm is defined recursively, since a dependent clause may itself have clausal dependents. On a

26

Click here to view it

ROOT

ADVMOD

ADVCL

MARK OBJ

Figure 3: Sample sentence with multiple clauses

sample of 500 English sentences held out from the training dataset, we invoked the core word order
restoration method 1794 times, or about 3.6 times per sentence (a single dependent clause would warrant
3 invocations). Even in such a small sample, we see one example each for recursions of depth 4, 5, and
even 6, the latter caused by the following sentence (roots of clauses are marked by indices corresponding
to depth): Perhaps had we not gone1 into this restaurant believing2 Zahav was going3 to be golden4 as
its name suggests5 (and as the many golden reviews seem5 to attest6), we would have enjoyed0 a decent
little expensive experience.

The reduction in average complexity of the grammars can also be illustrated using the same sample of
500 English sentences: before introducing the hierarchical approach, the 500 IRTG grammars contained
more than 400 000 rules, or over 800 rules per grammar on average, resulting in an average parse time of
over 4 seconds per sentence (excluding the 42 sentences for which parsing did not finish in 60 seconds,
these can be parsed using a simplified grammar, see Section 5 for details). Under the clause-based
approach, 1794 IRTG grammars are built to handle the 500 sentences, these contain less than 200 rules
on average, and parsing time for individual clauses is just above 700 ms, which brings the per sentence
parse time to 2.7 seconds. Note that we did not analyze the runtime of our entire system, these statistics
are based on net parse times reported by the alto library, run on a system with 56 Intel Xeon E5-2697
v3 2.6Ghz CPUs. We expect that the greatest bottleneck in overall performance is the per-sentence
generation of grammars and invocations of alto, but for now we chose to keep this architecture as one
that makes both debugging and introspection relatively straightforward.

5 Overall architecture

Our full solution for the Surface Realization task is a pipeline of the grammar-based word order restora-
tion system presented in Sections 3-4 and the DL-based reinflection model used in Kovács et al. (2019).
For each language we begin by processing all training and test data to build a shared vocabulary for the
given language, mapping lemmata to integers so that they can be represented in alto input and gram-
mar files without the need to transform special characters. After performing the counting of subgraphs
that is the training step of the grammar induction system, the model is kept in memory to efficiently
serve lookup requests through a REST API to one or several instances of our tool performing word or-
der restoration for datasets of the same language. When processing the test UD graphs, the core word
order restoration algorithm is invoked for each subclause, as described in Section 4. The set of depen-
dency edges used to split clauses is configurable and in all our experiments contained the relations acl,
advcl, ccomp, xcomp, and conj. The IRTG rules generated are written to an alto grammar file,
the UD graph is written to a file using the PENMAN notation2, one of the formats handled by alto.
Next, the parser is invoked as a subprocess with a configurable timeout per sentence, set to 120 seconds
in our experiments. In case of a timeout, a new IRTG is generated keeping only those rules that gener-
ate subgraphs with a single edge, i.e. we retry with a much simpler grammar that can only add edges
to the UD graph one-by-one. Under the clause-based approach this affected only 1% of all clauses in
the test datasets. Finally, the linearized sentences are printed in the CoNLLU format and processed by
the LSTM-based reinflection model trained using the parameters in Kovács et al. (2019), and a simple
postprocessing step which uses simple pattern matching to detect URLs in lemmata and replaces their
‘inflected’ forms in the final output with the original URL. We do not perform detokenization, our final

2https://penman.readthedocs.io/en/latest/notation.html

27

output is the sequence of reinflected tokens separated by spaces.

6 Evaluation

The Surface Realization Shared Task uses multiple metrics for both automatic and human evaluation of
system outputs. A complete presentation of all evaluations is available in Mille et al. (2020), here we
present a few figures that are especially relevant to our submission. We participate in the track T1a,
the closed track of the shallow surface realization task (T1). Since our method is entirely language-
independent, we submitted results for all 11 languages and 35 datasets. Besides us, only the IMS team
submitted outputs for languages other than English, Table 2 compare our results with theirs and with the
output of the system we have extended (Kovács et al., 2019) using automatic evaluation metrics. A direct
comparison with last year’s system is not possible because it was trained separately for each dataset while
our setup trained a single model for each language. Still, it is clear that our changes had very different
effects on output quality across languages, which underlines the need for a more systematic analysis of
our performance (see Section 7).

Dataset
BME-TUW 2020 BME-TUW 2019 IMS 2020

BLEU NIST DIST BLEU NIST DIST BLEU NIST DIST

T1 en filtered lines-fix 60.80 12.76 62.73 63.37 12.94 60.94 88.34 14.00 86.51
T1 es filtered lines-fix 61.13 13.03 57.66 16.34 10.50 35.26 87.85 14.09 87.35
T1 fr filtered lines-fix 46.33 11.25 58.82 51.14 11.42 66.53 89.22 13.98 91.64
T1 ko filtered lines-fix 53.61 11.12 62.55 40.90 10.98 49.04 76.57 11.50 80.20
T1 pt filtered lines-fix 42.22 10.64 59.08 11.78 9.26 34.89 83.57 13.57 84.58
T1 ru filtered lines-fix 51.89 12.04 56.67 13.54 10.87 33.07 77.91 12.86 82.37

T1 ar padt-ud-test 26.00 8.29 44.78 26.40 8.29 43.06 69.56 12.63 75.80
T1 en ewt-ud-test 57.25 12.52 65.23 59.22 12.62 62.69 86.16 13.78 88.48
T1 en gum-ud-test 60.77 12.10 62.86 57.57 11.99 56.07 88.89 12.96 91.41
T1 en lines-ud-test 55.98 11.78 61.44 48.78 11.54 52.77 85.05 12.98 85.89
T1 en partut-ud-test 57.96 10.22 58.39 61.37 10.34 61.22 89.72 11.07 90.38
T1 es ancora-ud-test 59.32 13.57 55.66 61.09 13.52 58.15 87.42 14.90 85.66
T1 es gsd-ud-test 54.60 11.6 55.50 53.74 11.44 59.03 84.61 12.86 82.60
T1 fr gsd-ud-test 43.21 10.41 55.48 43.80 10.33 59.35 86.08 12.58 84.64
T1 fr partut-ud-test 52.46 9.05 62.26 49.17 8.99 56.87 87.09 10.56 85.84
T1 fr sequoia-ud-test 45.25 10.56 57.61 46.72 10.55 59.28 87.25 12.65 85.65
T1 hi hdtb-ud-test 57.20 11.98 57.55 63.63 12.26 64.04 84.53 13.32 83.03
T1 id gsd-ud-test 59.16 12.14 59.62 54.22 11.82 55.57 87.53 12.89 86.41
T1 ja gsd-ud-test 50.89 10.08 60.57 49.53 9.99 57.03 89.36 12.53 87.00
T1 ko gsd-ud-test 58.37 12.12 66.14 46.08 11.98 52.10 81.14 12.44 85.49
T1 ko kaist-ud-test 57.05 12.77 62.88 47.23 12.65 50.90 79.96 13.18 84.52
T1 pt bosque-ud-test 39.89 9.89 55.63 39.53 9.77 58.72 82.92 12.40 84.59
T1 pt gsd-ud-test 30.68 8.97 53.49 30.39 8.85 54.93 80.59 13.33 87.86
T1 ru gsd-ud-test 54.28 11.90 53.78 54.58 11.91 52.67 77.43 12.40 78.89
T1 ru syntagrus-ud-test 54.79 14.17 56.72 50.91 13.80 55.6 81.82 15.45 83.02
T1 zh gsd-ud-test 50.58 11.62 54.56 58.72 11.85 59.29 86.36 12.86 83.89
T1 en pud-ud-test 58.67 12.48 61.85 60.42 12.60 59.84 85.37 13.41 85.75
T1 ja pud-ud-test 51.08 10.34 55.77 53.65 10.56 56.72 88.88 13.20 85.67
T1 ru pud-ud-test 46.07 11.26 56.17 10.15 9.64 32.08 69.07 11.85 82.40
T1 en ewt-Pred-HIT-edit 55.50 12.36 62.82 58.07 12.49 60.36 84.72 13.61 86.65
T1 en pud-Pred-LATTICE 54.76 12.27 59.93 53.46 12.29 56.13 79.74 13.16 82.19
T1 es ancora-Pred-HIT 59.70 13.57 56.14 61.26 13.51 58.38 86.97 14.81 86.96
T1 hi hdtb-Pred-HIT 56.83 11.97 57.43 64.27 12.29 64.58 84.42 13.31 83.52
T1 ko kaist-Pred-HIT 56.74 12.77 62.31 46.72 12.63 50.16 81.01 13.22 85.36
T1 pt bosque-Pred-Stanford 41.86 9.89 56.60 40.42 9.73 59.72 84.35 12.40 87.35

Table 2: Automatic evaluation on all languages and datasets. See Mille et al. (2020) for a more detailed
presentation and methodology.

Other participants submitted solutions only for a subset of the 8 English datasets, Table 3 shows results
of human evaluation on the two datasets for which outputs were available from all 2020 participants. It
is clear that according to these figures our system is well behind all other participants. Finally, Table 4
compares our system with the 2019 system that it extends, based on human evaluation on 6 datasets.

28

For each dataset, system outputs were scored on both their readability and their semantic similarity to
the reference sentences. On the Russian and Spanish out-of-domain datasets derived from Wikipedia,
our system significantly outperforms the original submission of Kovács et al. (2019) according to both
metrics.

Team
Meaning Readability

ewt wiki ewt wiki

Ave. Ave. z Ave. Ave. z Ave. Ave. z Ave. Ave. z

HUMAN 75.7 0.417 87.4 0.592
IMS 92.7 0.534 92.3 0.475 73.9 0.374 82.1 0.383
ADAPT 90.7 0.476 91.6 0.441 72.5 0.320 81.5 0.373
Concordia 87.0 0.332 88.7 0.275 70.2 0.270 79.6 0.401
BME 2020 79.3 0.086 81.8 -0.050 58.2 -0.152 60.8 -0.299
BME 2019 77.4 0.024 82.4 -0.074 56.7 -0.208 64.4 -0.181

Table 3: Human evaluation of 2020 submissions on two English datasets of the T1a track. We list
average scores (Ave) and average standardized scores (Ave. z) for both meaning similarity and readability
evaluations, see Mille et al. (2020) for more evaluation details.

Data
Meaning Readability

BME 2020 BME 2019 BME 2020 BME 2019

Ave. Ave. z Ave. Ave. z Ave. Ave. z Ave. Ave. z

en ewt 79.3 0.086 77.4 0.024 58.2 -0.152 56.7 -0.208
en wiki 81.8 -0.050 82.4 -0.074 60.8 -0.299 64.4 -0.181
ru syn 81.2 -0.166 81.3 -0.177 69.7 -0.166 67.3 -0.230
ru wiki 78.2 -0.079 68.2 -0.493 63.2 0.050 37.7 -0.781
es ancora 70.2 -0.276 70.6 -0.271 66.4 -0.401 67.1 -0.378
es wiki 69.8 -0.170 55.5 -0.726 77.2 0.015 62.2 -0.628

Table 4: Human evaluation of our system and the 2019 submission of Kovács et al. (2019) for all datasets.
We list average scores (Ave) and average standardized scores (Ave. z) for both meaning similarity and
readability evaluations. Bold figures indicate a system that significantly outperforms the other on the
given metric. See Mille et al. (2020) for more evaluation details.

7 Conclusion and future work

We have presented a modification of a language-independent Surface Realization system with a fully
rule-based component for word order restoration. Our main contribution is a new mechanism for gener-
ating mappings between graph and string operations using IRTG grammars that choose for a word and
its dependencies the most specific patterns observed in the training data. Unlike the original system, our
solution makes little use of rule weights, their sole function is currently to ensure that shorter derivations
for a UD graph are preferred over longer ones. We believe that our method may be improved by intro-
ducing non-determinism in the generated grammars via some weighting scheme that allows seemingly
non-optimal patterns to be chosen over those that were observed most frequently. Given the large number
of parameters of our system, we also suggest the use of additional, silver-standard training data, which
would be available in virtually unlimited quantities for all languages for which a high quality UD parser
is available. Finally, the most important next step should be the thorough quantitative and qualitative
analysis of the performance gap between our method for word order restoration and that of the state-
of-the-art. Observing and quantifying correct and incorrect decisions of the grammar and updating the
induction mechanism accordingly is what we consider the greatest potential of our rule-based and thus
fully explainable solution.

29

Acknowledgements

We thank our three anynomous reviewers for the many helpful comments and suggestions. Project partly
supported by BRISE-Vienna (UIA04-081), a European Union Urban Innovative Actions project. Á.K.
and A.K. were partially supported by 2018-1.2.1-NKP-00008: Exploring the Mathematical Founda-
tions of Artificial Intelligence. J.Á. was partially supported by the Hungarian Scientific Research Fund
(OTKA), contract number 120145 and by the Hungarian Artificial Intelligence National Laboratory.

References
Bruno Courcelle and Joost Engelfriet. 2012. Graph structure and monadic second-order logic. Cambridge

University Press.

Wenchao Du and Alan W Black. 2019. Learning to order graph elements with application to multilingual surface
realization. In Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR 2019), pages 18–24,
Hong Kong, China, November. Association for Computational Linguistics.

Johannes Gontrum, Jonas Groschwitz, Alexander Koller, and Christoph Teichmann. 2017. Alto: Rapid prototyp-
ing for parsing and translation. In Proceedings of the Software Demonstrations of the 15th Conference of the
European Chapter of the Association for Computational Linguistics, pages 29–32.

Alexander Koller and Marco Kuhlmann. 2011. A generalized view on parsing and translation. In Proceedings of
the 12th International Conference on Parsing Technologies (IWPT), Dublin.

Alexander Koller. 2015. Semantic construction with graph grammars. In Proceedings of the 14th International
Conference on Computational Semantics (IWCS), London.

Ádám Kovács, Evelin Ács, Judit Ács, Andras Kornai, and Gábor Recski. 2019. BME-UW at SRST-2019: Surface
realization with interpreted regular tree grammars. In Proceedings of the 2nd Workshop on Multilingual Surface
Realisation (MSR 2019), pages 35–40, Hong Kong, China. Association for Computational Linguistics.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Graham, and Leo Wanner. 2019. The Second Multilingual Surface
Realisation Shared Task (SR’19): Overview and Evaluation Results. In Proceedings of the 2nd Workshop on
Multilingual Surface Realisation (MSR), 2019 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), Hong Kong, China.

Simon Mille, Anya Belz, Bernd Bohnet, Thiago Castro Ferreira, Yvette Graham, and Leo Wanner. 2020. The third
multilingual surface realisation shared task (SR’20): Overview and evaluation results. In Proceedings of the 3rd
Workshop on Multilingual Surface Realisation (MSR 2020), Dublin, Ireland. Association for Computational
Linguistics.

Xiang Yu, Agnieszka Falenska, Marina Haid, Ngoc Thang Vu, and Jonas Kuhn. 2019. IMSurReal: IMS at the
surface realization shared task 2019. In Proceedings of the 2nd Workshop on Multilingual Surface Realisation
(MSR 2019), pages 50–58, Hong Kong, China, November. Association for Computational Linguistics.

