Proceedings of 1st Workshop on Language Technologies for Historical and Ancient Languages, pages 114—118
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11-16 May 2020
(© European Language Resources Association (ELRA), licensed under CC-BY-NC

JHUBC’s Submission to LT4HALA EvalL.atin 2020

Winston Wu, Garrett Nicolai
Johns Hopkins University, University of British Columbia
Baltimore, USA, Vancouver, Canada
wswu@jhu.edu, garrett.nicolailubc.ca

Abstract
We describe the JHUBC submission to the Evalatin Shared task on lemmatization and part-of-speech tagging for Latin. We view
the task as a special case of morphological inflection, and adopt and modify a state-of-the-art system from this task. We modify
a hard-attentional character-based encoder-decoder to produce lemmas and POS tags with separate decoders, and to incorporate
contextual tagging cues. We observe that although the contextual cues both POS tagging and lemmatization with a single en-
coder, the dual decoder approach fails to leverage them efficiently. While our results show that the dual decoder approach fails
to encode data as successfully as the single encoder, our simple context incorporation method does lead to modest improvements.
Furthermore, the implementation of student-forcing, which approximates a test-time environment during training time, is also bene-
ficial. Error analysis reveals that the majority of the mistakes made by our system are due to a confusion of affixes across parts-of-speech.
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1. Introduction

In this paper, we describe our system as participants in the
EvalLatin Shared Task on lemmatization and part-of-speech
(POS) tagging of Latin (Sprugnoli et al., 2020). Latin repre-
sents an interesting challenge for POS taggers — unlike En-
glish, its substantial inflectional morphology leads to sig-
nificant data sparsity, resulting in large numbers of out-of-
vocabulary (OOV) words for type-based taggers. Addition-
ally, its word order is much more fluid than languages like
English, handicapping n-gram taggers such as HMMs that
rely on language modeling to produce tag sequences.

We consider lemmatization to be a special case of morpho-
logical reinflection (Cotterell et al., 2017), which takes as
input one inflected form of a word and produces another,
given the desired morpho-syntactic description (MSD) of
the output form. Likewise, POS-tagging is a special case of
morphological tagging but with a greatly reduced tagset.
Beginning with the state-of-the-art neural morphological
generator of [Makarov and Clematide (2018)), we make sev-
eral small modifications to both its input representation and
its learning algorithm to transform it from a context-free
generator into a contextual tagger. These modifications are
described in Section [2.| We also experiment with a neural
machine translation system with no modifications.

Our results indicate that out-of-the-box tools already per-
form at a very high level for Latin, but that small boosts
in performance can be observed through simple modifica-
tions and ensembling of different learning algorithms. We
discuss our results in more detail in Section[3]

2. System Description

Since 2016, SIGMORPHON has hosted a series of Shared
Tasks in morphological inflection (Cotterell et al., 2016j
Cotterell et al., 2017 |Cotterell et al., 2018; |[McCarthy et
al., 2019). Increasingly, the tasks have become dominated
by neural encoder-decoder architectures with heavy copy-
biasing. Originally borrowed from the neural machine
translation (NMT) community (Bahdanau et al., 2014), the
systems have converged around hard-attentional transduc-
ers over edit actions (Aharoni and Goldberg, 2017)).

Inflection Generation: Input

lego 3;SG;IND;PRS

Output
legit

This task: Input: Ut legit scriptum ...

ut lego scriptum ...
SCONJ VERB NOUN ...

Figure 1: The difference between inflection generation and
contextual tagging.

2.1. System 1: Seq-to-seq morphological analysis

As our starting point, we take the system of [Makarov and
Clematide (2018), the highest performing system in the
2018 shared task. Note, however, that the inflection task
is quite different from this one. In the 2018 task, partic-
ipants were provided with an input lemma and MSD and
were required to produce an inflected word out of context.
Our task is in many ways the exact opposite: given a word
in context, we must produce a lemma and a POS tag. Fig-
ure [Tlillustrates this difference.

Our first task is to convert the initial system from a gener-
ator to a lemmatizer. This step is trivial: we simply spec-
ify the MSD for every input word as “LEMMA”, produc-
ing a context-free lemmatizer. We expand to a context-free
morphological analyzer by appending the POS to the end
of the output — where the initial system would produce
“lego” given legit LEMMA, our system now produces
“lego+VERB”. We refer to this system in future sections
as the single-decoder without context (SDNC).

We introduce context into the system through a modi-
fication to the MSD, appending the two previous POS
tags to the MSD. Given the example sequence in Fig-
ure the input for “scriptum” would be scriptum
LEMMA; -2 :SCONJ; —1:VERB. We refer to this system
as the single-decoder with context (SDC).

During training, it is common to feed the gold POS tags
into the system as context, but at test time, the system must
rely on its own predictions and may fall prey to overfitting,
as it has trouble recovering from an incorrectly-predicted
tag. To help mitigate this issue, we also introduce a sys-
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Figure 2: On the left - the single decoder architecture of Makarov et al.; On the right, the dual decoder architecture we
introduce. Some connections have been removed to avoid clutter.

tem that learns via student-forcing, where the tags on the
MSD are not the gold POS tags, but rather the predictions
produced by the decoder. We refer to this system as the
single-decoder with student forcing (SDSF).

Our most significant modification to the baseline system
involves altering the architecture to produce lemmas and
tags separately. By separating the decoders, we simplify the
task of each decoder, allowing each decoder to specialize
in its particular task. Each decoder has its own attention
mechanism that allows it to focus on the parts of the input
most significant to its task. The architecture is illustrated in
Figure 2]

In both the single and dual decoder models, a bidi-
rectional LSTM encoder reads in the input sequence
(legit LEMMA -2:<s> —1:<SCONJ>) character-
by—characte]ﬂ In the single decoder, a hard attention
mechanism feeds a decoder that generates edit actions
(either “copy”, “step”, or “insert-z”"), before producing the
final output: 1ego+VERB. The dual decoder produces the
lemma in the same way, but uses a second decoder with a
global attention mechanism to produce a single POS tag.

2.2. System 2: Neural Machine Translation

Our second system submission is meant to serve as a strong
baseline to compare with System 1. Treating the lemma-
tization and POS tagging tasks as a sequence prediction
problem, we employ an off-the-shelf neural machine trans-
lation toolkit OpenNMT (Klein et al., 2017) with modifi-
cations to the data preprocessing. For both tasks, the input
is the Latin word with its previous and next words in the
sentence (including sentence boundary tokens). We train
a SentencePiece (Kudo and Richardson, 2018) model with
a vocabulary size of 8000 and apply it on both the input
and output for lemmatization, and only the input for POS
tagging. An example is shown in Table[I]

2.3. Ensembling

In addition to producing multiple individual systems, we
ensemble each system, using a linear combination of each

'"MSDs are atomic.

Input: _cum _dolore .infidelitatis
Output (lemma):  dolor
Output (POS): NOUN

Table 1: Data format for System 2 after processing with
SentencePiece.

system’s confidence scores from the decodeﬂ To aid the
ensemble, we produce 10-best lists for each system, which
requires a small modification to the beam search: each de-
coder produces a 10-best list of hypotheses, which are then
combined with a linear combination of their confidence
scores, with ties going to the prediction with the higher
lemma score.

3. Experimental setup

We train our models on a 90% balanced subset of the pro-
vided training data, reserving 10% of the sentences in each
document as a validation set. We train the single- and dual-
decoder models identically. The encoders and decoders
consists of a single layer with 200 hidden units, an embed-
ding size of 100 for actions and characters, and 20 for POS
tags. We train with a batch size of 32, using AdaDelta, a
ReLU non-linearity function, and 50% dropout. All mod-
els are trained for a maximum of 60 epochs, with patience
of 10 epochs.

For the NMT system, we use the default parameters of
OpenNMT, which include a 2 layer encoder and decoder
with 500 hidden units and an embedding size of 500. There
is no difference in architectures for the lemmatization and
POS tagging tasks. We train with a batch size of 64 using
Adam, with 30% dropout, with a patience of 3 epochs.

4. Results

We now present the official test results of our systems in
the three sub-tasks: classical, cross-genre, and cross-time.
Our official submissions correspond to the Ensemble and

2An incompatibility with OpenNMT’s decoder prevents us
from including the NMT system in the ensemble.
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NMT baseline. The classical task presents test data by the
same authors as were used in training, and consists of let-
ters, speeches, and treatises. The cross-genre task tests on
the Odes of Horace, also written in classical Latin but of
a different genre (lyric poetry), while the cross-time task
evaluates on a treatise by St. Thomas Aquinas written in
the Ecclesiastical Latin of the 13" century.

System Setting Lemma | POS
Single No Context | 94.32 | 93.38
Dual No Context | 93.94 | 93.20
Single Teacher 9436 | 93.87
Dual Teacher 93.61 | 92.73
Single Student 94.59 93.8
Dual Student 93.45 92.74
Ensemble - 94.76 | 94.15
NMT - 94.22 | 92.98

Table 2: Test Accuracy on Classical Task

System Setting Lemma | POS
Single No Context | 83.98 | 87.00
Dual No Context | 82.47 | 86.51
Single Teacher 84.67 | 87.53
Dual Teacher 82.42 | 86.39
Single Student 84.74 | 87.92
Dual Student 82.32 | 86.85
Ensemble - 85.49 | 88.40
NMT - 82.69 | 82.93

Table 3: Test Accuracy on Cross-Genre Task

System Setting Lemma | POS
Single No Context | 85.38 | 80.32
Dual No Context | 84.87 78.5
Single Teacher 85.77 | 82.49
Dual Teacher 85.36 | 80.06
Single Student 85.81 | 81.58
Dual Student 84.26 | 78.21
Ensemble - 85.75 | 80.78
NMT - 83.76 | 82.62

Table 4: Test Accuracy on Cross-Time Task

We observe that for all three sub-tasks, the single-encoder
model outperforms our dual-decoder extension, for both
lemmatization and POS-Tagging. It may be that lemma-
tization and POS-tagging provide complementary informa-
tion that benefits a joint decoder, and splitting the decoders
shifts much of the joint learning to the encoder, which is
not able to learn a sufficient representation to accomodate
the separate decoding mechanisms.

Encouragingly, the contextual information appears to have
been captured by the encoder. POS-tagging and lemmatiza-
tion both benefit from knowing the POS-tag of the previous
POS tags in the sentence. We provide some discussion of
this phenomenon in Section[5.| We also observe that lemma-
tization benefits slightly from a student-forcing scenario.

356 63
12037 114 9
140 4099 91

2437

Table 5: POS Confusion Matrix: open classes (y=gold)

Not surprisingly, ensembling multiple systems leads to
small gains over any individual system. The sole exception
occurs in the Cross-Time track, which sees the ensemble
struggle to surpass the individual systems. We hypothe-
size that the low overall accuracy on this track harms the
ensemble, as models produce hypotheses more consistent
with classical Latin. A system that produces a correct me-
dieval analysis is out-voted by the other systems.

5. Discussion

We now begin a detailed discussion of the types of errors
made by our systems. As a test case, we consider the clas-
sical track; the types of errors encountered here are simply
exacerbated in the other tracks.

We first consider the open classes of words: nouns, verbs,
and adjectives. These classes demonstrate prolific inflec-
tional morphology, and account for 82.3% of the lemmati-
zation errors of our ensembled system. Of the remaining
errors, 73% of false lemmatizations concern subordinating
conjunctions or pronouns. Pronouns and conjunctions are
regularly tagged as adverbs — they are incorrectly tagged
as such nearly 10% of the time. All told, more than 90%
of our system’s errors can be attributed to either the open
classes, or to closed words incorrectly tagged and lemma-
tized as such.

Table [5] shows the errors that our system makes on the
open classes. Unsurprisingly, there is much confusion be-
tween auxiliary and main verbs. Given that these are of-
ten the finite form of a verb, the results suggest that our
character-based model is heavily attending to the affixes
of the word for POS-tagging. Likewise, we observe this
phenomenon between common nouns, proper nouns, and
adjectives, which must agree grammatically and often de-
cline similarly. Perhaps the biggest surprise comes from the
confusion between verbs and nouns/adjectives, which have
very different inflectional systems, but account for nearly a
quarter of all open-class errors.

Closer inspection reveals that nominal-verbal confusion
comes about from incorrect affix-boundary identification.
For example, the noun evocatis should be lemmatized as
evocati, but is instead tagged as a verb, and lemmatized as
evoco. The -atis ending is a common verbal suffix denot-
ing the 2"¢ person plural, and indeed, the noun evocati “a
veteran soldier called back to service” is derived from the
verb evoco “to call out/summon” and in dictionaries is often
listed as a subentry of evoco. In the other direction, meritum
should be analyzed as a conjugation of the verb mereor, but
is instead analysed as the noun meritum. -tum is a common
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RP 19 0 0
cC 5 15 0 0
NUM 0 2 12 0
INT 0 0 0 0
X 0 0 0 0 0 0

Table 6: POS Confusion Matrix: closed classes (y=gold)

nominal suffix, and meritum is the perfect passive participle
of mereor, which itself belongs to a rare class of deponent
verbs. We see that many of our verb misclassifications oc-
cur when the verb is inflected as a participle, which in Latin
resemble and decline as ordinary adjectives.

Table[6] shows similar statistics for the closed classes. Out-
side of the aforementioned errors, we see some confusion
between conjuctions and pronouns and adpositions, as well
as between determiners and numbers. The latter is un-
derstandable, as the word unus and its inflections can be
both determiner or number. For the former, many subor-
dinating conjunctions share a suffix with relative pronouns
(qui, quae, quod) and interrogative pronouns (quis, quod)
and their inflections. One commonly misclassified word
is quod, which can be translated as “because” (SCONJ) or
“which” (PRON) depending on the context. Several sub-
ordinating conjunctions also function as adpositions de-
pending on context, including cum, which is translated as
“when” (SCONJ) or “with” (ADP). Accurately determin-
ing the function and translation of these words often re-
quires first analyzing the verb, which may appear many
words later in the sentence. A larger context window may
allow our systems to more accurately analyze such words.

5.1. System variants

We next investigate the types of errors that are corrected by
our system variants. As the single decoder dominates the
dual decoder, we will focus our investigation on its variants
in the classical task. When we add context to the model, we
note a 7.5% relative error reduction on POS tagging. Many
of the correct POS tags occur in the closed word classes.
As hinted above, several common Latin function words
such as ante “before”, cum “with/when”, and the inflections
of unus are ambiguous with respect to the part of speech.
Ante, for example, can be an adverb, meaning “ago”, such
as in the sentence: multis ante mensibus in senatu dixit . . .
— “He said many months ago in the senate ...” However,
it occasionally also operates as an adposition, as in English
- volui si possem etiam ante Kalendas lanuarias prodesse
rei publicae — “1 wished, if I could, to be useful to the state
even before the first of January.” Often, ante is used in its
adverbial form when it follows an adjective or adverb, but
as an adposition when it follows a verb. Knowing the prior
contextual parts of speech can help disambiguate it, such as
in the test sentence: venisti paulo ante in senatum — “You
came a little while ago into the senate” — where the non-
contextual model predicts an adposition, but the contextual
system corrects it to an adverb.

The teacher-forcing model is heavily dependent on the
quality of the contextual tags. At test time, the tags pro-
duced by the system will occasionally be incorrect, cas-

cading to incorrect lemmatization and subsequent tagging.
Contrary to the POS analysis, we see that it is the open word
classes that benefit most from the student-forcing. POS
accuracy stays stable, but the relative lemmatization error
drops by 4%. The lemmatization model learns to rely less
on the previous POS tags, which may now be incorrect, and
to focus more on the shape of the word; nouns and verbs,
in particular, seem to benefit the most from this model.
Consider the form speret, which is the 3™ person singular
present active subjunctive of the verb spero “to hope”. Un-
der the teacher forcing model, it is lemmatized as “*speo”,
likely following the deletion rule of other verbs like “no-
cere — noceo”. In this particular POS context, “ere — eo”
is much more common than “eret — ro” — the subjunctive
is simply rarer than the indicative — so the model uses the
contextually conditioned transition. Under the student forc-
ing paradigm, the model makes less use of the POS context
for lemmatization, and is able to correct the error.

Finally, we take a look at the dual decoder and why it fails
with respect to the single decoder model. Comparing sim-
ilar systems, we note that the dual decoder and single de-
coder are nearest in accuracy when no context is consid-
ered, and that adding context and noise degrades the dual
decoder even as it improves the single encoder. We investi-
gate some possible reasons why in this section.

The dual decoder fails to correctly apply contextual cues
much more often than the single decoder model. For ex-
ample, when quod is used as a pronoun, it should be lem-
matized as qui. However, when used as a conjunction, it
should remain as quod. The single decoder correctly iden-
tifies this difference, but the dual decoder invariably lem-
matizes quod to the majority class qui. It would appear that
although both decoders share an encoder and an embed-
ding space, the lemmatizing decoder disregards contextual
information for lemmas.

For part-of-speech tagging, somewhat surprisingly, the dual
decoder also fails to leverage contextual information, even
degrading as context is fed into the system. We are at a
loss to describe such a phenomenon, and the errors de-
scribe no clear pattern. It is possible that the encoder is not
strong enough to embed complementary information such
that separate decoders can leverage it in different ways. In
the future, we will investigate increasing the representa-
tional power of the encoder in the dual-decoder model.

6. Conclusion

We have described and analyzed the JHUBC submission
to the 2020 EvaLlatin Shared Task on Lemmatization and
POS-Tagging. Viewing the task as an extension of morpho-
logical analysis, we adapted a strong morphological gener-
ator to the tasks, with a high level of success — contextual
cues can be fed to the tagger via an extended tag vocabu-
lary, and student-forcing can help the system recover from
errors at test time. Our best systems perform well across a
series of related tasks, and we feel that our system provides
a strong, intuitive system for future comparison.
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