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Abstract
In this paper, we introduce a multimodal dataset in which subjects are instructing each other how to assemble IKEA furniture. Using the
concept of ‘Chinese Whispers’, an old children’s game, we employ a novel method to avoid implicit experimenter biases. We let subjects
instruct each other on the nature of the task: the process of the furniture assembly. Uncertainty, hesitations, repairs and self-corrections
are naturally introduced in the incremental process of establishing common ground. The corpus consists of 34 interactions, where
each subject first assembles and then instructs. We collected speech, eye-gaze, pointing gestures, and object movements, as well as
subjective interpretations of mutual understanding, collaboration and task recall. The corpus is of particular interest to researchers who
are interested in multimodal signals in situated dialogue, especially in referential communication and the process of language grounding.
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1. Introduction

Recently, a large body of research has focused in develop-
ing robots’ communicative and social skills (Thomaz et al.,
2016). In multiparty settings, robots are going to learn by
observing what task humans perform and how they instruct
each other using a combination of voice, gaze and gestures.
Collaborative robots should through multimodal output be
able to convey their perception and level of understanding
of human actions, and they should be able assess when hu-
mans need further assistance.

Detecting users’ intrinsic states of understanding in human-
robot interactions inevitably becomes a key construct in
the robot’s formulation of subsequent actions. The role of
both the robot and the user is to incrementally and continu-
ously repair common ground (Clark et al., 1991} |Clark and
Krych, 2004). As such, physically situated robots need to
be aware of the recurrently observed user states before plan-
ning future actions. Data-driven approaches are needed,
that model the state of user uncertainty, confusion or hesi-
tation. Robot tutors that provide instructions and guide hu-
mans in daily tasks, need to develop representations of their
user’s affective states and behavioural signals (D’mello et
al., 2008; [Kontogiorgos et al., 2020). If necessary, robot
tutors should adapt their instruction strategies to the user
levels of understanding (Kontogiorgos and Pelikan, 2020),
and design their instructions for the recipient in the interac-
tion (Pelikan and Broth, 2016).

Towards these efforts of modelling human behaviour for
robot tutors, in this paper, we introduce a human-human
guided task corpus. In the corpus, we are particularly inter-
ested in how humans collaborate in referential communica-
tion tasks. We asked subjects to instruct each other how to
assemble IKEA furniture, without providing verbal instruc-
tions. Using the concept of an old children’s game, known
as Chinese whispersﬂ subjects followed a chain of assem-
bly instructions in uncontrolled dialogue, by taking the role
of first the builder and then the instructor. We collected

'also known as ‘broken telephone’ in some countries.

Figure 1: The collaborative assembly task. The instructor
(on the right) guides the builder (on the left) how to assem-
ble an IKEA stool.

multimodal data in speech, eye-gaze and pointing gestures,
as well as actions in furniture piece movements, all auto-
matically extracted using a multisensory setup (Jonell et
al., 2018). These were processed and analysed in a first
attempt to examine the effect of Chinese whispers. Do in-
structors influence subsequent instructors in their choice of
verbal descriptors, in multimodal deictic signals (pointing,
poising, etc.), or in paralinguistic components?

Examining the corpus further, we got interested in how
speakers construct instructions in a collaborative nature,
and how much influenced they are by their listeners’ ex-
pressed signals of uncertainty or hesitations. We extracted
high-dimensional features that represent the listeners’ state
of uncertainty and along with the speakers’ verbal instruc-
tions, we were able to predict with high confidence that the
speaker will repair a previous statement by reformulating
their utterance (Kontogiorgos et al., 2019).

This corpus is of particular interest to researchers inter-
ested in how people, using the least-collaborative effort,
establish, maintain and repair common ground (Clark et
al., 1991} |Clark and Wilkes-Gibbs, 1986). The dataset is
only available for research purposes and not for commercial
use. The data is anonymised, therefore no video or audio is
available, but speech transcripts, eye-gaze and hand gesture
labels, synchronised and represented in high dimensional
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Figure 2: The interactions across all 34 sessions. The
builder (interaction 12: on the right in yellow shirt) from
each session becomes the instructor (interaction 13: on the
left in yellow shirt) in the next session and a new builder is
instructed how to do the task.

features. Because of the fore-mentioned design decision,
this corpus offers the possibility to model social robots’
verbal and non-verbal behaviour in instruction and medi-
ation tasks. To our knowledge, there is no other publicly
available corpus which does the same.

2. Related work

The concept of Chinese whispers has been used in different
domains, although infrequently. There are large opportu-
nities in studying the effects of signal reconstruction after
consequently introducing noise, particularly in collabora-
tive dialogue. A message that is passing through differ-
ent subjects, while developing a worse and worse signal-to-
noise ratio, can ultimately develop no apparent connection
to the originally constructed message (Wardy, 1993). While
each channel is structurally or semantically close to its pre-
vious and next channels, noise is accumulated over time
such that the modified message can potentially change be-
yond recognition from the original. In this corpus, noise is
introduced by each new instructor, however within the lim-
its of the guided assembly, allowing for consistency across
different instructors.

Several multimodal corpora have been created over the last
decade, using multisensory input, such as the ones de-
scribed in (Carletta, 2007), (Mostefa et al., 2007), (Oer-
tel et al., 2014), (Hung and Chittaranjan, 2010), (Oertel et
al., 2013), (Stefanov and Beskow, 2016)), (Kontogiorgos et
al., 2018a). (Carletta, 2007) and (Mostefa et al., 2007)) de-
scribe corpora collected in meetings, (Hung and Chittaran-
jan, 2010) and (Stefanov and Beskow, 2016 [Kontogiorgos
et al., 2018al) are examples of task-based scenarions such as
games, and (Oertel et al., 2014)) in job interviewing. (Oer-
tel et al., 2013) in contrast to the corpora listed, gathers

Figure 3: Instructors were given visual guides on furniture
assembly without any verbal or textual instructions on what
piece they should describe next. Image as shown in the
IKEA ‘Bekvdm’ stool catalogue.

data from multi-party interactions ‘in-the-wild’, rather than
constricted in-lab interactions.

An interesting corpus similar to the one presented here
(Schreitter and Krenn, 2016)) presents data with task-
oriented dialogue and multimodal task descriptors, in dif-
ferent settings of guided tasks. Our design decision in in-
troducing the chain effect was influenced by (Schreitter and
Krenn, 2016). That corpus however, attempts to avoid the
effect of Chinese whispers by occasionally introducing cal-
ibration sessions with an experimenter.

(Stefanov and Beskow, 2016)) in their corpus, study the vi-
sual focus of attention of groups of participants, similarly
to (Kontogiorgos et al., 2018a)) in task-oriented dialogues.
Both corpora include recorded groups of three participants
while they engage in a task on a screen, but also in open-
world dialogue (Bohus and Horvitz, 2009). Analyses on the
contribution of different predictors and methods developed
to predict listeners’ visual focus of attention in multiparty
interactions was developed based on these two corpora in
(Stefanov et al., 2019).

3. Licence

The data are licensed under Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International (CC BY-
NC-SA 4.0). This licence allows to use the data free of
charge for non-commercial purposes and no corporate use.
You may modify the data as long as you keep the attribution
to the original in all the files, publish your work under the
same licence and cite this paper.

4. Data Collection

4.1. Task

Subjects were instructed to assemble furniture. The task
was to assemble a stool from IKEA as shown in Figure

744



Bl Participants were sitting across each other and a table
between them had all furniture pieces necessary for the as-
sembly (Figure d). The experiment setup also included ad-
ditional pieces not used in the assembly, for distraction. To
ensure variability in object descriptors, and further create
instances of uncertainty, the setup included pieces similar
to each other with variability in shape, size, colour, and lo-
cation from the builder’s perspective. To make each piece
unique we created different patterns on the pieces using
black and white tape. Each participant did the task twice,
first as a builder, and then as an instructor (Figure @])

In order to control for consistency in the referential com-
munication task, but also leave space for ‘noise’ in the in-
structions, we used the concept of Chinese whispers. We
started by teaching the first instructor how to do the task
(researcher at KTH Royal Institute of Technology), and
then asked him to introduce the task to the first builder par-
ticipant. The builder then in the next session took the role
of the instructor. By deciding to promote a chain effect in
the assembly means we had little control over how the task
would be performed. At the end of each task, the experi-
menters disassembled the IKEA stool and prepared for the
next assembly. The assembly objects were therefore the
same in every interaction and the builders were not aware
of what they were about to build, or had previously seen
the assembled stool. Additionally, the instructor was given
a cheat sheet with a picture of the stool to indicate the order
of their assembly.

During the assembly one of the experimenters was present,
in the same room, facilitating the study but without par-
ticipating in the assembly. The facilitator had knowledge
of the assembly task and was present at all sessions. She
pressed a button to play audio feedback on the task succes-
sion - signalling if the furniture was assembled as intended.
The role was to ensure that the instructions are followed, to
keep consistency in the assembly, but without interventions
in the task or dialogue, leaving space for misunderstanding
instructions and uncertainty, both natural consequences of
the conversation. Subjects were informed that the facilita-
tor would not interfere or help in any way in the assembly.

4.2. Dialogue
An illustration of uncertainty handling in instructions from

a dialogue transcript (P20). The speaker continuously re-
formulates until they have established common ground.

INSTRUCTOR: So the first one you should take
BUILDER: mhm

INSTRUCTOR: is the frame

BUILDER: (Looks at table, moves hands)
INSTRUCTOR: But the one with the stripes
BUILDER: okay

BUILDER: (Looks towards left part of table)
INSTRUCTOR: The black one

BUILDER: (Looks at object)

INSTRUCTOR: With the stripes

BUILDER: (Reaches for object)
INSTRUCTOR: Perfect

Builder

\ Instructor

—
Figure 4: Subjects were sitting across each other to build
the furniture and were wearing sensory equipment.

Due to the nature of the guided task, subjects are not able
to establish grounding (Clark and Schaefer, 1989) until they
have completed each step and carry on further in the task.
All participants were instructing for the first time, which
led to collaborative instructions, and naturally eliciting un-
controlled situations of uncertainty from the collaborators.

4.3. Participants

Data was collected from 34 participants. The facilitator was
present in all 34 interactions, and was always the same ex-
perimenter. The mean age of the participants was 25.5 (SD
3.5) in range (21-39); 11 reported female and 23 male, and
the majority of them were students or researchers at KTH
Royal Institute of Technology in Stockholm, Sweden. All
participants were fluent in English, with a mean 6.5 in scale
1-7 of self-reported English literacy. Participants reported
little to no interference of sensory equipment in the task
(eye-tracking glasses, microphone, gloves with motion cap-
ture markers) with 2.2 (in scale 1-7) in an equipment inter-
ference questionnaire item. All participants were experi-
enced with digital technology (mean 6 in scale 1-7), and
20 our of 34 had interacted with a robot before (most com-
mon were Furhat, Yumi, Nao, Baxter, and Pepper). Par-
ticipants also reported relatively experienced in assembling
IKEA furniture (mean 4.6 in scale 1-7).

4.4. Procedure

Each session followed the same structure: The experi-
menter welcomed the builder and introduced them to the
instructor, and thereafter introduced the experimental setup
and helped them wear the sensory equipment. The instruc-
tor then (builder participant from previous session) started
instructing the current builder how to assemble the furni-
ture. At the end of the task, both builder and instructor
filled up questionnaires on their experience from the task,
in separate rooms. During the interaction we collected a fu-
sion of multimodal data; a variety of input modalities that
we combined to get information on participants’ states and
intentions. The very first instructor and last builder of the
study was the same person, that helped starting and fin-
ishing the Chinese whisper chain. All participants signed
a consent form for audio and video recording permissions
and the ability to publish the results of the study. They were
reimbursed with a cinema ticket.
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Item Builder

Instructor

Task coordination . N
when you were working together?

Task contribution
Focus (self)
Focus (other)

Understanding It was easy to understand the instructor.

Engagement (self) How engaged were you during the task?

Engagement (other) | How engaged was the instructor during the task?

Task recall How well do you remember the task if you were asked to do it again?
Task difficulty Was the task easy or difficult to build?

How difficult did you find it to coordinate your behaviour with the instructor

How much did the instructor contribute to the completeness of the task?
I remained focused on the instructor throughout our interaction.
The instructor remained focused on me throughout our interaction.

How difficult did you find it to coordinate your behaviour with the builder
when you were working together?

How much did the builder contribute to the completeness of the task?

I remained focused on the builder throughout our interaction.

The builder remained focused on me throughout our interaction.

The builder understood me.

How engaged were you during the task?

How engaged was the builder during the task?

How well do you remember the task if you were asked to do it again?
‘Was the task easy or difficult to instruct?

Table 1: Questionnaire items for builder and instructor (all in Likert 1-7 scale).

4.5. Corpus

The corpus consists of a total of 34 interactions. All record-
ings (mean length of assembly task: 3.8 minutes) contain
data from various sensors capturing motion, eye gaze, ges-
tures, and audio streams. Information on the aggregated
and processed anonymised data from the corpus is avail-
able at the following webpage: |https://www.kth.
se/profile/diko/page/material.

4.6. Sensory data

Participants were wearing a pair of gloves with reflective
markers and eye tracking glasses (Tobiﬂ Glasses 2) which
also had reflective markers on them. The room was sur-
rounded with 17 motion capture cameras positioned in such
a way that both gloves and glasses are always visible to the
cameras. The participants were also wearing a close-talking
microphone with input volume adjusted so that only their
own voice is captured (Figure ).

4.6.1. Motion capture

We used an OptiTrack motion capture systerrﬂ to collect
motion data from the subjects and the furniture pieces. The
17 motion capture cameras collected motion from reflective
markers on 50 frames per second (manually adjusted to be
in the same frame rate to the eye tracking glasses). To iden-
tify rigid objects in the 3d space we placed 4 markers per
object of interest (glasses, gloves) and 6 per furniture piece,
and captured position (X, y, z) and rotation (X, y, z, w) for
each rigid object.

4.6.2. Eye gaze

In order to capture eye gaze in 3D space, we used the To-
bii eye tracking glasses, so that we can accurately identify
the gaze trajectory in space from the glasses’ perspective.
Combining the eye tracking data with the head motion (as
captured by the motion capture system), we extracted eye-
gaze data in 3d space using a real-time multisensory archi-
tecture (Jonell et al., 2018)). Gaze samples were collected
on 50 frames per second and the data was captured by track-
ing the subjects’ pupil movements and a video from their
point of reference. The facilitator was also wearing eye
tracking glasses, however no gloves or microphone as she
did not interfere in the assembly task or instructions.

4.6.3. Audio and video

Each participant’s voice was recorded using channel sep-
arated close-talking microphones and transcribed in real-
time using automatic speech recognition from the IBM

nttp://www.tobiipro.com/
*http://optitrack.com/

Watson service fl There were two video cameras on a dis-
tance recording the interaction from different angles that
we used for qualitative and conversational analyses.

4.6.4. Data processing

We used a real-time multisensory architecture (Jonell et al.,
2018) to capture and sync all sensory data input and pro-
cess to higher dimensional features represented in data such
as proportional gaze to the conversational partner (builder
or instructor) or gaze to any of the objects, and similarly,
pointing to any of the objects available, as well as current
words spoken, separated by keywords with timing informa-
tion per word boundary.

The sensors we used required calibration in order to suc-
cessfully capture motion and eye movements. We cali-
brated all 17 cameras positioning at the beginning of all
recordings, while the eye tracking glasses required calibra-
tion on each recording per subject separately.

4.7. Subjective measures

At the end of each session, we gave both participants a
questionnaire to measure their impression on the task and
how collaborative were their efforts in the assembly (Table
[[). Questionnaire items included: perceived coordination,
task contribution, the focus of attention, mutual understand-
ing, engagement, task recall, and task difficulty.

5. Analysis

5.1. Chinese whisper effect

The builder often reused the instructor’s descriptive fea-
tures, lexical choices, and deictic behaviour in their own
subsequent instructions. Out of 55 descriptive words, 20
occurred in more than four sessions. Chi-square tests re-
vealed that 6 of these words were repeated in at least three
consecutive sessions, e.g. ‘dots’ and ‘stick’: [‘dots’:x? =
8.84,p = .002], [‘stick’:x? = 13.84,p < .001]. Simi-
larly, terms that described shapes of objects occurred in at
least three consecutive sessions e.g. ‘stripes’ and ‘circles’:
[*stripes’:x? = 6.05p = .013], [‘circles’:x? = 11.09,p <
.001].

Many words were reused in long chains across sessions be-
fore being replaced by others. We found the same chain ef-
fect for pointing during the verbal descriptions. By using a
chain of builders turning into instructors across 34 sessions,
we could analyse the ‘stickiness’ of descriptive words. For
example, words like ‘rod’, ‘thing’ and ‘plank’ were never

*https://www.ibm.com/watson
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Figure 5: Self-reported measures in task experience from
the builder and instructors’ point of view. Error bars indi-
cate standard error of the mean (n=34).

Item Builder Mean | Builder SD | Instructor Mean | Instructor SD
Task coordination 58 1.6 5.7 1.4
Task contribution 6.3 0.9 6.3 0.9
Focus (self) 6.0 1.1 6.5 0.6
Focus (other) 6.1 1.2 6.2 0.9
Understanding 6.2 0.9 6.3 0.8
Engagement (self) 6.1 0.9 6.5 0.6
Engagement (other) | 6.2 1.0 6.6 0.6
Task recall 59 1.2 6.0 1.3
Task difficulty 6.3 0.8 5.7 1.3

Table 2: Questionnaire data on participants’ experience
from the task. Mean and standard deviations (N=34).

picked up by builders, while referring language strategies
such as indicating the object location, or using certain lex-
ical forms were often passed on. Some words were often
reintroduced, indicating that they might be the most obvi-
ous way to describe the assembly objects. Thus, the chain
effect seems to be an appropriate way to get a composition
of lexical variations and conceptual pacts among subjects
and across assembly sessions.

5.2. Subjective measures

Using the self-reported questionnaire items, we report the
means and standard deviations for each of the items in
perceived coordination, task contribution, focus of atten-
tion, mutual understanding, engagement, task recall, and
task difficulty in Table [2] and Figure [5] The measures are
grouped together to indicate differences between builders
and instructors.

One-way ANOVAs on the role of the participant (builder
or instructor) showed a significant effect on the focus (self)
measure: F(1,67) =4.571; p = .036, and a marginally sig-
nificant effect on the task difficulty measure: F(1,67) =
3.882; p =.053. Builders thought they were less focused on
the instructor (as they were focused on the task), than what
the instructors thought about themselves being focused on
the builder. But builders also thought the task was more
difficult than what the instructors thought it was. No other
significant effects were found.

5.3. Effect of modalities on reference resolution

In previous work (Kontogiorgos et al., 2018b), we used the
current corpus to analyse which modalities, or a combina-
tion thereof, carry the most informative cues for resolving
referring expressions in the collaborative task. The study
was designed with two goals: (i) identify the most salient
object of attention during each step of the assembly task,

and (ii) bring insight in the reliability of each of the verbal
and non-verbal cues that a human observer uses to identify
errors. The saliency of an object was defined as the propor-
tion of gaze fixations or pointing gestures during a referring
expression. In other words, the longer the object is looked
at or pointed at, the more probable it is to be the target ob-
ject of the current interaction segment.

We trained a binary-choice SVM classifier with radial-
basis-function kernel that combined the instructor’s speech
with gaze, head, and pointing gestures of both the instruc-
tor and the builder for identifying the saliency of each ob-
ject. On a 5-fold cross-validation, we evaluated the perfor-
mance of the classifier by calculating the mean ranking of
objects’ saliencies from the probabilistic output of the clas-
sifier (the higher the confidence of the classification, the
higher the rank). Out of all combinations, the most effec-
tive results were shown on the classifier trained only on the
instructor’s speech and head movements at 88%, closely
followed by instructor’s speech with gaze fixations at 85%,
while the unimodal classifiers performed at the 58-66% ac-
curacy rate. Such results showed that while a multimodal
approach significantly outperforms unimodal, the noisiness
of non-verbal cues, if not handled properly, can decrease
the effectiveness of the prediction.

5.4. Estimating listener uncertainty

In another application of this corpus we investigated lis-
tener signals to estimate uncertainty (Kontogiorgos et al.,
2019). Using automatically extracted non-verbal cues from
the builder’s gaze and pointing gestures, we aimed to pre-
dict if the instructor will reformulate their utterances. In-
structor repairs and reformulations were time-segmented
manually to indicate intrinsic builder signals such as the
ones of uncertainty and hesitation. Our assumption was that
in the continuous effort to establish grounding, speakers re-
formulate messages, if necessary, as shown in listeners sig-
nals of uncertainty. Using the manually time-segmented in-
struction units, we asked human annotators to indicate if the
listener looked uncertain during the speaker instructions.

We also trained a Random Forest classifier to classify the
same instruction units into two classes of uncertainty and
non-uncertainty. Our results showed that a RF classifier,
based on non-verbal cues, outperformed human annotators
with mean accuracy 79% and 72% respectively. These find-
ings indicated that using listener signals is a fundamental
construct in speakers’ decisions to reformulate their utter-
ances. During the building task, conversational partners es-
tablish common ground using pragmatic feedback; both the
speaker and the listener reformulate their references until
they feel they are understood.

6. Discussion

In this paper, we presented a multimodal dataset collected
in a collaborative task, where one participant instructed an-
other how to assemble an IKEA stool. The dataset con-
tains speech, eye-gaze and pointing gestures along with ob-
ject movements. The corpus is of particular interest to re-
searchers who focus on behavioural analyses of interaction.
It is also interesting to researchers that build data-driven
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models of multimodal human behaviour in situated dia-
logue, particularly in applications of language grounding,
disambiguation of referring expressions and intent recogni-
tion for human-robot interactions.

The ‘Chinese Whispers’ approach that we employed, in or-
der to avoid introducing implicit experimenter biases into
participants’ behaviour, can be of interest for further exam-
ination. More specifically, how does the carried out effect
propagate across the pair of participants, which behavioural
patterns are more likely to be replicated, and how does this
ripple effect disappear or reinforce itself with time?

We also found differences in how builders and instruc-
tors perceived allocating their focus towards each other.
Builders seemed to be focusing more on the task rather
than the instructor and also thought their task was difficult
in comparison to the instructors. The instructors however,
thought they focused more on the builders, as they have to
supervise their assembly efforts and ensure builders are fol-
lowing correctly their instructions. They also thought the
task was easier when instructing, rather than when assem-
bling. This is not surprising, as in task-oriented dialogues,
conversational partners’ focus changes throughout the in-
teraction between each other and the task. We also found
that both builder and instructor, thought they contributed
equally to task completeness, showing that the roles of per-
forming the task and guiding the task are equally important.

While we made an attempt to not introduce biases in ver-
bal descriptions of furniture objects, it may be possible that
the stimuli presented to subjects heavily affect their word
selections. There was little variability in objects, outside of
the context of the assembly task. As such, it is likely that
any chain effects found may not generalise across differ-
ent domains of tasks, or where referential communication
is not relevant.

Another limitation of the presented corpus is the result of
the restricted, task-oriented dialogue of collaborative as-
sembly. Even though participants were free to use any ver-
bal or non-verbal cues to interact, the assembly task with
predefined sequence of steps and distribution of rigid par-
ticipant roles, may have constricted the interaction in such a
way, that it will be unclear whether models developed based
on this dataset may be generalised to open-ended conver-
sational types of interactions. Nevertheless, the intrusive-
ness of the sensors that we used for data collection, namely
eye tracking glasses and motion tracking gloves, might also
have influenced participants’ non-verbal behaviour, even if
they attribute no interference to the task. Similarly, the
presence of an experimenter in the room may have affected
subjects’ behaviours as well.

7. Conclusion

On a final note, we believe the presented dataset, estab-
lishes a valuable contribution to the research community,
and we have shown how the dataset can be used both in
cases when subjects establish common ground, but also in
cases when common ground is not satisfied, but continu-
ously awaited. The presented dataset has implications to
the design of artificial agents expected to guide humans

or teach them how to do certain tasks. We encourage
other researchers to further explore this experimental de-
sign, and nevertheless the effects of Chinese Whispers in
human communication and human-machine interactions.

Acknowledgements

This work was supported by the Swedish Foundation for
Strategic Research project FACT (GMT14-0082). We
would like to thank all the participants that took part in
the study, and Per Fallgren for taking part in data collec-
tion. We would also like to thank Simon Alexandersson
for helping in processing motion capture and eye-tracking
data. Finally, we would like to thank Hannah Pelikan for
transcribing and analysing parts of the corpus.

References

Bohus, D. and Horvitz, E. (2009). Open-world dialog:
Challenges, directions, and prototype. In Proceedings of
1JCAI’2009 Workshop on Knowledge and Reasoning in
Practical Dialogue Systems.

Carletta, J. (2007). Unleashing the killer corpus: experi-
ences in creating the multi-everything ami meeting cor-
pus. Language Resources and Evaluation, 41(2):181-
190.

Clark, H. H. and Krych, M. A. (2004). Speaking while
monitoring addressees for understanding. Journal of
memory and language, 50(1):62-81.

Clark, H. H. and Schaefer, E. F. (1989). Contributing to
discourse. Cognitive science, 13(2):259-294.

Clark, H. H. and Wilkes-Gibbs, D. (1986). Referring as a
collaborative process. Cognition, 22(1):1-39.

Clark, H. H., Brennan, S. E., et al. (1991). Grounding in
communication. Perspectives on socially shared cogni-
tion, 13(1991):127-149.

D’mello, S. K., Craig, S. D., Witherspoon, A., Mcdaniel,
B., and Graesser, A. (2008). Automatic detection of
learner’s affect from conversational cues. User modeling
and user-adapted interaction, 18(1-2):45-80.

Hung, H. and Chittaranjan, G. (2010). The idiap wolf cor-
pus: exploring group behaviour in a competitive role-
playing game. In Proceedings of the 18th ACM interna-
tional conference on Multimedia, pages 879-882. ACM.

Jonell, P., Bystedt, M., Fallgren, P., Kontogiorgos, D.,
Lopes, J., Malisz, Z., Mascarenhas, S., Oertel, C., Raveh,
E., and Shore, T. (2018). FARMI: A Framework for
Recording Multimodal Interactions. In Language Re-
sources and Evaluation Conference LREC 2018.

Kontogiorgos, D. and Pelikan, H. (2020). Towards adap-
tive and least-collaborative-effort social robots. In Inter-
national Conference on Human Robot Interaction (HRI).

Kontogiorgos, D., Avramova, V., Alexandersson, S., Jonell,
P, Oertel, C., Beskow, J., Skantze, G., and Gustafsson, J.
(2018a). A multimodal corpus for mutual gaze and joint
attention in multiparty situated interaction. In LREC.

Kontogiorgos, D., Sibirtseva, E., Pereira, A., Skantze, G.,
and Gustafson, J. (2018b). Multimodal reference reso-
lution in collaborative assembly tasks. In Proceedings of
the 4th International Workshop on Multimodal Analyses
Enabling Artificial Agents in Human-Machine Interac-
tion, pages 38—42. ACM.

748



Kontogiorgos, D., Pereira, A., and Gustafson, J. (2019).
Estimating uncertainty in task-oriented dialogue. In
2019 International Conference on Multimodal Interac-
tion, pages 414-418. ACM.

Kontogiorgos, D., Abelho Pereira, A. T., Sahindal, B., van
Waveren, S., and Gustafson, J. (2020). Behavioural re-
sponses to robot conversational failures. In International
Conference on Human Robot Interaction (HRI).

Mostefa, D., Moreau, N., Choukri, K., Potamianos, G.,
Chu, S. M., Tyagi, A., Casas, J. R., Turmo, J., Cristofore-
tti, L., Tobia, F., et al. (2007). The chil audiovisual cor-
pus for lecture and meeting analysis inside smart rooms.
Language Resources and Evaluation, 41(3-4):389-407.

Oertel, C., Cummins, F., Edlund, J., Wagner, P., and Camp-
bell, N. (2013). D64: A corpus of richly recorded con-
versational interaction. Journal on Multimodal User In-
terfaces, 7(1-2):19-28.

Oertel, C., Funes Mora, K. A., Sheikhi, S., Odobez, J.-M.,
and Gustafson, J. (2014). Who will get the grant?: A
multimodal corpus for the analysis of conversational be-
haviours in group interviews. In Proceedings of the 2014
Workshop on Understanding and Modeling Multiparty,
Multimodal Interactions, pages 27-32. ACM.

Pelikan, H. R. and Broth, M. (2016). Why that nao? how
humans adapt to a conventional humanoid robot in tak-
ing turns-at-talk. In Proceedings of the 2016 CHI Con-
ference on Human Factors in Computing Systems, pages
4921-4932.

Schreitter, S. and Krenn, B. (2016). The ofai multi-modal
task description corpus. In Proceedings of the Tenth
International Conference on Language Resources and
Evaluation (LREC’16), pages 1408-1414.

Stefanov, K. and Beskow, J. (2016). A multi-party multi-
modal dataset for focus of visual attention in human-
human and human-robot interaction. In Proceedings of
the 10th edition of the Language Resources and Evalua-
tion Conference (LREC 2016, 23-28 of May. ELRA.

Stefanov, K., Salvi, G., Kontogiorgos, D., Kjellstrém, H.,
and Beskow, J. (2019). Modeling of human visual atten-
tion in multiparty open-world dialogues. ACM Transac-
tions on Human-Robot Interaction (THRI), 8(2):8.

Thomaz, A., Hoffman, G., Cakmak, M., et al. (2016).
Computational human-robot interaction. Foundations
and Trends®) in Robotics, 4(2-3):105-223.

Wardy, R. (1993). Chinese whispers. The Cambridge
Classical Journal, 38:149-170.

749



	Introduction
	Related work
	Licence
	Data Collection
	Task
	Dialogue
	Participants
	Procedure
	Corpus
	Sensory data
	Motion capture
	Eye gaze
	Audio and video
	Data processing

	Subjective measures

	Analysis
	Chinese whisper effect
	Subjective measures
	Effect of modalities on reference resolution
	Estimating listener uncertainty

	Discussion
	Conclusion

