
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 7244–7251
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

7244

 DeepNLPF: A Framework for Integrating Third-Party NLP Tools

Francisco Rodrigues
1
, Rinaldo Lima

2
, William Domingues

3
, Robson Fidalgo

1
,

Adrian Chifu
3
, Bernard Espinasse

3
, Sébastien Fournier

3

1
Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil

2
Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, Brazil

3
LIS UMR CNRS 7020, Aix-Marseille Université/Université de Toulon, France

rinaldo.jose@ufrpe.br, {fasr, rdnf}@cin.ufpe.br

{william.domingues, adrian.chifu, bernard.espinasse, sebastien.fournier}@lis-lab.fr

Abstract
Natural Language Processing (NLP) of textual data is usually broken down into a sequence of several subtasks, where the output of
one the subtasks becomes the input to the following one, which constitutes an NLP pipeline. Many third-party NLP tools are
currently available, each performing distinct NLP subtasks. However, it is difficult to integrate several NLP toolkits into a pipeline
due to many problems, including different input/output representations or formats, distinct programming languages, and tokenization
issues. This paper presents DeepNLPF, a framework that enables easy integration of third-party NLP tools, allowing the user to
preprocess natural language texts at lexical, syntactic, and semantic levels. The proposed framework also provides an API for
complete pipeline customization including the definition of input/output formats, integration plugin management, transparent
multiprocessing execution strategies, corpus-level statistics, and database persistence. Furthermore, the DeepNLPF user-friendly GUI
allows its use even by a non-expert NLP user. We conducted runtime performance analysis showing that DeepNLPF not only easily
integrates existent NLP toolkits but also reduces significant runtime processing compared to executing the same NLP pipeline in a
sequential manner.

Keywords: Natural Language Processing, NLP tools integration, Framework

1. Introduction

The automatic processing of natural language texts has
been increasingly employed in many text mining
applications, such as information extraction, automatic
summarization, sentiment analysis, etc. Usually this
processing is broken down into subtasks where the output
of one the subtasks becomes the input to the following
one, which constitutes a pipeline. Many freely available
Natural Language Processing (NLP) tools for many
languages have already been proposed in the literature.
Such tools usually provide distinct and even
complementary subtasks that would be of great interest if
the user could easily integrate them first. However, the
use of these tools, their integration according to a specific
pipeline may raise many issues including different input
and output representation formats, programming
languages, tokenization conflicts, to name a few.
Moreover, most of the NLP subtasks at a higher level
(semantic parsing) usually require a lot of computation
resources, thus it is essential to optimize their execution
taking advantage of modern CPU-based architectures
allowing multiprocessing or parallelism.

In this paper we present DeepNLPF, a framework that
promotes an easy integration of third-party NLP tools
allowing the preprocessing of natural language texts at
lexical, syntactic, and semantic levels.

The proposed framework also provides an API for
complete pipeline customization including the definition
of input/output formats, integration plugin management,
transparent multiprocessing execution strategies, corpus-
level statistics, and database persistence. Furthermore, the
friendly user interface of DeepNLPF allows its
deployment and use even by a non-expert user.

A preliminary evaluation of DeepNLPF has been
performed on a reference corpus which showed that
DeepNLPF can not only easily integrate existent NLP
toolkits, but also reduce a significant amount of runtime
processing compared to executing the same NLP pipeline
in a sequential manner.

DeepNLPF is freely available and a dedicated wiki
(https://deepnlpf.github.io/site) provides all the
documentation on how to install, to use, and to customize
NLP pipelines.

This paper is structured as follows. Section 2 presents and
compares several NLP toolkits. In Section 3 the general
architecture of DeepNLPF, as well as its main
components are presented. Section 4 discusses strategies
for deploying and running DeepNLPF on multiprocessor
architectures, while Section 5 reports experiments that
evaluate these strategies. Finally, we conclude by
presenting some perspectives for future development.

2. Related Work

2.1 GeoTxt

Karimzadeh et al (2019) propose GeoTxt, an NLP toolkit

for recognizing and geolocating place names (toponyms)

in natural texts. GeoTxt provides six Named Entity

Recognition (NER) algorithms and a search engine to

index, classify, and retrieve toponyms. It was developed

in Java using the Play Framework which enables not only

its use as endpoints, but also via an interactive GUI. User

applications can query GeoTxt services using HTTP GET

or POST requests and receive the answer as a GeoJSON

FeatureCollection object, created to facilitate data

storage, analysis, and visualization. However, Geotxt

does not cover other types of typical NLP analysis

required by downstream text mining applications, neither

mailto:sebastien.fournier%7d@lis-lab.fr
https://deepnlpf.github.io/site

7245

provides a way to integrate other tools into its pipeline. In

addition, it seems that GeoTxt does not provide a means

to control parallel or multiprocessing tasks.

2.2 CLAMP

Soysal et al (2017) propose the CLAMP
1
 (Clinical

Language Annotation Modeling and Processing), a Java
desktop application specialized in NLP-based analysis of
text from the biomedical domain. According to the
authors, with existing biomedical NLP systems, such as
MetaMap, end users often need to adapt existing systems
to their selected tasks, which may require significant NLP
skills. That's the reason why CLAMP offers a user-
friendly GUI that helps users to quickly build customized
NLP pipelines.
On the other hand, CLAMP does not provide direct
support for integrating external tools developed in other
programming languages than Java.

2.3 Jigg

Noji and Miyao (2016) propose the Jigg Framework, an
NLP framework for integrating distinct NLP tools. It
allows the user to build a pipeline by choosing the tools at
each step via a command-line interface. Annotations are
made by a Scala XML object. According to the authors,
Jigg is a set of NLP components developed by several
contributing groups. Jigg is an open NLP system allowing
the user to add a new tool to the pipeline by writing a
wrapper according to its API. However, Jigg does not
allow multiprocessing execution since it only executes
one document at a time on a single machine.

2.4 xTAS

De Rooij et al. (2012) offer a set of open source web
services called xTAS

2
, developed at the University of

Amsterdam. The main goal of xTas is to allow users to
perform a variety of NLP tasks as quickly as possible,
without having to worry about the database, storage or
caching the results. It is designed to integrate existing
open source and/or proprietary analysis algorithms using
a scalable distributed architecture. To use xTAS, the user
must communicate with the tool using the web service
that can be included in his application as a library written
in Python language. xTAS uses MongoDB

3
 to store

documents and results, and the Celery
4
 Framework to

distribute analyses to processing nodes, allowing on-
demand document processing. xTAS is a robust NLP tool
for corpus processing, but it does provide a more
advanced semantic-based analysis of the input texts.

2.5 GATE

GATE
5
 (General Architecture for Text Engineering)

(Cunningham, 2002) is a Java suite of NLP tools
developed at the University of Sheffield and used by
several communities in NLP. GATE is both a framework
and a graphical development environment that allows
users to develop and deploy language engineering
components and resources. GATE is also considered an

1
 https://clamp.uth.edu

2
 http://xtas.net

3
 https://www.mongodb.com

4
 http://www.celeryproject.org

5
 https//gate.ac.uk/

ecosystem, because the architecture defines the
organization of a language engineering system, the
assignment of responsibilities to the various components,
and ensures that component integrations meet the system
requirements. As a development environment, GATE
helps to minimize the time spent for creating or
modifying existing systems, providing a development
mechanism for new modules. GATE has been employed
in many NLP-based downstream applications. However,
due to its complexity, and specialized output format based
on inline annotations representations, it is difficult for
non-NLP expert users.

2.6 FreeLing

FreeLing
6
 (Padro and Stanilovsky, 2012) is an open-

source language analysis toolbox and was built in C++. It
provides APIs in Python and Java for text processing and
annotation capabilities to NLP application developers. Its
architecture consists of a simple two-layer client-server
approach: a linguistic service layer that provides analysis
services (morphological analysis, tagging, parsing, among
others), and an application layer which, acting as a client,
requests the desired services from the analyzers. A major
advantage of Freeling is its speed, also providing API
library services in Java, Perl, and Python languages. The
internal architecture of the system is based on two kinds
of objects: linguistic data objects and processing objects.
Freeling does not support the integration of other third-
party NLP tools in its pipeline.

2.7 Analysis of Related Work

In what follows, we provide a qualitative comparative
evaluation of the different systems previously presented
according to the following criteria: (i) dependence and
independence on the domain covered, (ii) the main NLP
tasks supported, (ii) the external NLP tools integrated into
the system, (ii) whether the NLP pipeline can be
customized by the user, (iv) whether the system has a
RESTFul API, (v) whether it provides a GUI, (vi)
whether it allows optimized processing strategies
(parallelism in a cluster environment), (vii) whether the
system has a database, (viii) whether it provides corpus-
level statistics, and finally, (ix) the type of system
architecture.

According to Table 1, regarding domain-dependency,
only the CLAMP system (Soyal et al., 2017) is domain
dependent, other systems are domain-independent.
Concerning the linguistic analyses supported, few
systems support semantic-level analysis.

Regarding the customization of an analysis pipeline,
except for GeoTxt and FreeLing systems, the other
systems do not allow the integration of new components
to its analysis pipeline. For the RESTFul API, CLAMP,
Jigg and FreeLing systems, do not provide it, which
hinders the development of Web client applications.

The Jigg, xTAS and Freeling systems do not provide a
GUI, which makes their use more difficult for some kind
of users. Regarding processing strategies, GeoTxt and
Jigg systems allow some level of optimization by using
the parallel computing strategy required to process large
collections of texts.

6
 http://nlp.lsi.upc.edu/freeling/

https://clamp.uth.edu/
http://xtas.net/
https://www.mongodb.com/
http://www.celeryproject.org/
https://gate.ac.uk/
http://nlp.lsi.upc.edu/freeling/

7246

Regarding the use of databases, CLAMP, Jigg, and
FreeLing systems do not have secondary storage
strategies using the database, which hinders performance.

Finally, concerning the information about corpus
statistics, none of the systems selected has such
functionality.

Table 1 summarizes the main characteristics of each
studied system and the proposed framework DeepNLPF,
according to aforementioned criteria. Besides these
comparison criteria, we can also add the criteria of the
data output format. Few NLP systems support multiple
data output formats. Most of them offer the user with only
one alternative. Therefore, when another format is
required, the developer must create a parser to convert it
into the desired format.

Table 1: NLP toolkits comparison.

DeepNLPF has some advantages compared to majority of
related work selected in Tab. 1 including: (i) a richer set
of default NLP tools and, consequently, more NLP tasks
already available to the user; (ii) a very friendly user GUI
allowing non-NLP expert to used it in downstream
applications; (iii) it provides corpus statistics and
customizable API in Python, an easy to learn and
powerful programming language.

3. DeepNLPF Framework

In this section, we present DeepNLPF, a framework for
enabling an easy integration of third-party NLP tools. Our
main contribution consists in providing both simple API-
based and GUI-based natural language processing
services concerning several levels of linguistic
annotations, including lexical, syntactic, and semantic
metadata produced by integrated NLP third-party tools.
Furthermore, in its default setting, DeepNLPF already
integrates many existing NLP tools including CoreNLP,
CogComp, spaCy, SEMAFOR, and PySWD. Another
distinguishing DeepNLPF feature is that it provides an
easy API for integrating new third-party tools even when
such tools are in different programming languages and
input and output formats. Finally, DeepNLPF was
designed to take profit of the full capacity of user's
resources (memory and mainly multi-core CPU
architectures) in order to speed up the processing of
textual datasets written in English. In the rest of this
section, we present the general architecture of
DeepNLPF, as well as its main components.

3.1 DeepNLPF Functional Architecture

DeepNLPF is a grey box (Jorgensen and Hangos, 1995)
type framework, which means that the user does not need
to know the details of its implementation in order to
exploit it in his/her applications. The DeepNLPF
architecture is based on five major components (Fig. 1):
 Pipeline: As the backbone of the proposed framework,

it ensures the orchestration of all operations needed to
execute a customized pipeline analysis of the input
dataset. It also provides support for the integration of
other components.

 Plugins: this component ensures the integration of
several NLP tools, and delegates the analysis
responsibility to all subcomponents wrappers that
access external (third-party) NLP tools. The integration
is achieved by combining a set of wrappers, each one in
charge of a specific analysis in the entire pipeline.

 Models: this component interacts with the data in the
internal database. It allows access to the corpus, system
logs, annotations, statistics, among other generated
metadata.

 Templates: this component manages both the schemas
that define the output file formats of the dataset
annotations.

 Statistics: this component performs statistical analyses
of the input datasets.

Figure 1: Main DeepNLPF components.

7247

3.2 Pipeline Component

This is the main component in DeepNLPF architecture
because it allows both the customization and execution of
NLP tasks. It also contains all the control logic to
synchronizing multithreads and parallelism of the NLP
tools and their individual analysis (lexical, syntactical,
and semantic). In addition, this component persists
linguistic annotations in the database. Fig. 2 shows the
class diagram of the Pipeline component.

The current version of the DeepNLPF already integrates
the following third-party NLP tools: Stanford CoreNLP,
SpaCy, CogComp, SEMAFOR, and PyWSD. In
DeepNLPF, NLP analyses are separated into the
following levels lexical, syntactic, and semantic. Fig. 3
illustrates the entire default pipeline.

At the beginning of the pipeline, it is necessary to extract
the sentences from the corpus and structure them, e.g.,
converting a plain text document to a second one
containing one sentence per line. The sentences are then
cleaned, i.e., symbols and extra spaces are first removed.
Then the document is tokenized by default using the
Stanford CoreNLP tokenizer. This first step is responsible
to unify the sentence representation as a unique
(canonical) tokenized representation of the sentence
among all the integrated tools in DeepNLPF. As a result,
the same number of tokens is passed to the other NLP
tools which avoid the issue of having the same sentences
with distinct numbers of tokens proposed by the selected
NLP tools. Other analysis can be performed just after the
tokenization; such as spell checking.

Figure 2: Classes of the pipeline component.

Next, the following NLP subtasks (at three level) are
performed by the default DeepNLPF pipeline:

 Lexical level which provides the following analyses
from (i) Stanford CoreNLP: tokenization, sentence
splitting, POS tagging, lemmatization, NER and true
case; (ii) SpaCy: POS tag, word shape, label, is_alpha,
is_title, and like_num; (iii) CogComp: mapping to NER
ontonotes; (iv) GATE: mapping to NER with gazetteers;
and (v) Custom: morph type.

 Syntactical level performs the following syntactic
analyses using the Stanford CoreNLP: constituent
parsing, dependency parsing, coreference resolution,
and shallow parsing (chunking analysis).

 Semantic level is based on the following NLP tools (i)
SEMAFOR: frame-based semantic parsing; (ii)
CogComp: Semantic Role Labelling (SRL): verb,

preposition, and Noun; and (iii) PyWSD : word sense
disambiguation.

For unambiguous WSD words (mainly nouns and verbs),
the pipeline also integrates annotations that maps the
word sense id to external semantic resources including
WordNet, WordNet Domain, and aSUMO which provide
detailed and more accurate information about the senses
of a word.

DeepNLPF also allows the user to deepen the analysis by,
for instance, adding a discourse-based analysis, according
to the user's project needs.

After completing all the steps described above, each tool
produces a document with its annotations, containing its
analysis at sentences level. Finally, DeepNLPF retrieves
those annotations and integrates them into a single
annotation document according to a structured model
defined for each linguistic annotation level by the user.

Fig. 3: DeepNLPF default pipeline.

3.3 Plugins Component

In many complex downstream NLP applications (such as
Relationship Extraction, Sentiment Analysis, etc.) it is
necessary to perform various linguistic analyses from
diverse NLP tools, commonly developed in different
languages, and distinct settings (input/output formats,
parameters, etc.). In order to integrate such heterogeneous
NLP tools into a single NLP pipeline, one of the most
successful strategies is based on the use of plugins
(Cunningham, 2002).

In DeepNLPF, the Plugin component (Fig. 4) is in charge
of such a task. More concretely, all user-built plugins in
DeepNLPF must implement all of the abstract methods of
the IPlugin interface. Thus, the integration of a new third-
party NLP tool requires a new plugin to be inserted in a
new directory named with the name of the NLP tool to be
integrated. This label then is used throughout the pipeline
in the sequence.

In addition, this directory should also contains the
following elements: the file __init__.py which is a
wrapper that provides the functionalities of the NLP tool
to be integrated, and the manifest.json file which contains
all the information necessary for DeepNLPF to manage
the new NLP tool to be integrated.

7248

3.4 Models Component

This component allows the user to employ a database for
corpus storage, language annotations, corpus statistics,
and system logs. The main interest of using a database is
the speed of access to the data of the corpus to be
processed. Moreover, it allows the user to focus on the
application under construction, not wasting time creating
strategies for data storage (De Rooij et al., 2012). The
DeepNLPF database model was implemented in
MongoDB

7
 (document-oriented) NoSQL system. The

schema of the DeepNLPF database is shown in Fig. 5.

To add a new "corpus" document to the database, it is
necessary to define a document structure in JSON format,
containing the following fields: "name" for the corpus
name (mandatory field); "description" which denotes a
brief description of the corpus (optional); "sentences"
denoting the sentences of the corpus and, finally,
date_time, denoting date and time when the document
was created. This component also includes other
functionalities to facilitate parsing texts in many formats,
including TXT, XML, and JSON. The Pandas library
provides the main services to deal with these types of data
storage formats.

Figure 4: The classes of the plug-in components.

3.5 Templates Component

DeepNLPF offers an annotation scheme based on a
hybrid model, capable of encapsulating and organizing
annotations by linguistic level (lexical, syntactic, and
semantic), in JSON format. All language analysis tasks
performed by the NLP tools integrated into DeepNLPF
provide JSON annotations by default.

Thus, the Model component retrieves these annotations
and maps them with the formats defined by the template
model, structuring in this manner all the analyses by
linguistic level. When the user needs the annotation in
another file format, such as XML, the user needs to
indicate that to the Templates component that analyzes
the JSON file and converts it to the desired output format.

7
 https://www.mongodb.com/

3.6 Statistics Component

This component generates corpus-level statistics,
including the total number of sentences in the corpus, the
minimum and maximum number of tokens per sentence,
the average number of words per sentence, the word
frequency, and the frequency of POS tagging labels.
Other customized statistics can be generated according to
the user's needs. For example, the user can add a new
method in the Statistics component to generate basic
statistics concerning the frequency of bigrams and/or
trigrams contained in the corpus. This component also
allows the user to visualize data statistics interactively
using the Python-based Plotly8 visualization library
including frequency distribution of the number of words
per sentence, the frequency distribution of POS tags, and
corpus-level word clouds.

Figure 5: Diagram of the DeepNLPF database.

4. Multi-processing in DeepNLPF

This section presents different strategies for using
DeepNLPF which takes advantage of modern
multiprocessing and parallel computer architectures. Due
to its sequential processing nature, a given NLP pipeline
can take a considerable amount of time to process all the
input collection of documents. Consequently, it is
advisable to use an effective parallelism and/or a
multiprocessing strategy.

4.1 Multi-process Strategy

In the case of a complex pipeline defined by the user, i.e.,
composed of many types of analysis performed by
different NLP tools, DeepNLPF takes profit of multi-core
computer architecture to process all pipeline analyses in
parallel. For that, DeepNLPF automatically identifies the
number of cores in the CPU processor(s) and distributes
each NLP tool in an asynchronous process, optimizing the
execution of the individual pipeline subtasks. DeepNLPF
implements its multiprocessing strategy using the Pathos
Framework

9
, a framework used for heterogeneous

computation (McKerns et al., 2011). Pathos mainly
provides the communication mechanisms to configure
and initiate parallel calculations via heterogeneous
resources. Fig. 6 illustrates the multiprocessing execution
of DeepNLPF using the Pathos Framework.

8
 https://plotly.com/python/

9
https://pypi.org/project/pathos/

https://www.mongodb.com/
https://plotly.com/python/

7249

4.2 Using DeepNLPF via RESTful API

DeepNLPF can also be used via its RESTFul API. It

allows the user to make service requests via Web, GET

and POST technologies. This service makes it possible to

build NLP applications that will have more flexible

Internet services (Masse, 2011). The RESTFul API was

built using the Microframework Flask
10

. To exploit it, the

user has to run the service (python run.py) and then, in a

client application, execute the requests via POST or GET,

passing the correct settings with the Postman tool.

Fig. 6: Deployment and multiprocessing execution of

DeepNLPF with Pathos library.

5. Experimental Evaluation

This section discusses the results of two experiments that
aim at comparing the runtime performance of the NLP
tools and DeepNLPF for performing a pipeline analysis
on a single CPU-based multi-core machine. More
precisely, both experiments have the objective of
answering the following experimental question:

Is there a significant difference in runtime performance
when the pipeline analysis performed by the third-party
NLP tools are executed individually (by their own)
compared to the same pipeline analysis when they are
instantiated and executed by DeepNLPF?

To answer the above question, we will consider two
distinct assessment scenarios:
Scenario 1: the pipeline analysis is divided into three
linguistic levels (lexical, syntactic, and semantic) and
evaluated at each level for each NLP tool at a time.
Scenario 2: a full pipeline analysis is performed at once.

5.1 Running Time Evaluation on a Single

Multicore Machine

The Profiling technique (Eyerman and Eeckhout, 2008)
which identifies the most resource-intensive points in a
given running application was used for measuring the
running execution time of DeepNLPF and the NLP tools
evaluated in this section. Furthermore, a dynamic analysis
was performed that measures the execution time of the
main modules and all its components. This profiling
technique has the advantage of indicating the most
consuming subroutines for adopting later optimization
strategies. It should be mentioned that both the working
memory (RAM) and swapping usage were not studied
due to the complexity of third-party NLP tools.

10

http://flask.pocoo.or

For this quantitative evaluation, the SemEval 2010
11

reference dataset was used. This dataset contains 8000
sentences with (Dataset III): 135,886 tokens from
sentences composed by at least 4 tokens, and at most 95
tokens (average 17 tokens/per sentence).

We also generated two smaller datasets from the SemEval
2010 dataset containing 1,000 (Dataset I) and 4,000
(dataset II) sentences, respectively. The computer
hardware configuration used in all the experiments
reported in this section has the following hardware/OS
configuration: 16 GB of RAM, Intel Core i5-6200U
processor at 2.30 GHz with 4 (4 cores), a 120GB SSD
hard disk, running the Linux Ubuntu 19.04 (64 bits) OS.

All the tools were launched from a Python wrapper using
the cProfile module, performing a dynamic analysis
measuring the execution time of the program and all its
components.

Scenario 1: Individual NLP tools analysis at a time.

The goal of this experiment is to assess the processing
time that each NLP tool at the three linguistic level
(lexical, syntactic, and semantic) required to process the
three partitions of the SemEval 2010 dataset.

The lexical level is formed by the following two
pipelines: spaCy pipeline (pos, shape, label, is_alpha,
is_title, and like_num), and CogComp pipeline (NER
ontonotes). Table 2 shows the achieved results.

For the syntactic level, two other pipelines were studied:
Stanford CoreNLP pipeline (constituent parsing,
dependency parsing, and coreference resolution), and
CogComp pipeline (shallow parsing - chunking).

For the semantic level, three pipelines were evaluated:
SEMAFOR pipeline (frame-based semantic analysis),
CogComp pipeline (SRL Noun, SRL Verb and SRL
Prep), and PyWSD pipeline (WSD). Table 2 summarizes
the results obtained on the SemEval 2010 dataset (Dataset
I-1000, Dataset II 4000, Dataset III - 8,000).

Tools

Runtime(s)

Dataset I

(1000)

Dataset II

(4000)

Dataset III

(8000)

Lexical Pipeline

Stanford CoreNLP 73.6 206.0 379.0

spaCy 15.3 46.9 93.3

CogComp 286.0 1,370.0 2,280.0

Syntactic Pipeline

Stanford CoreNLP 234.0 714.0 1,330.0

CogComp 242.0 1,170.0 2,040.0

Semantic Pipeline

SEMAFOR 84.1 234.0 466.0

PyWSD 1,170.0 4,390.0 9,210.0

CogComp 1,000.0 4,070.0 8,220.0

Table 2: Runtimes of individual NLP tools.
As it can be seen in Tab. 2, CoreNLP, spaCy, and
SEMAFOR pipelines have a notable linear correlation
between the number of sentences and the time required to
execute them. Not surprisingly, the CogComp and
PyWSD tools took the longest running time to process the
input dataset. However, both tools were run online and
not locally. A local execution requires a lot of computing

11

 https://www.cs.york.ac.uk/semeval2010W SI/datasets.html

https://www.cs.york.ac.uk/semeval2010W%20SI/datasets.html

7250

resources (actually more than 32 GB RAM), due to the
size of the models loaded in memory and it could not be
evaluated here.

Discussion. Figures 7, 8 and 9 show the runtime results
obtained by each NLP tool at the linguistic lexical,
syntactic, and semantic levels, respectively.

At the lexical level, the pipelines executed are: CoreNLP
―default‖ pipeline (tokenization, pos, lemma and ner),
spaCy ―default‖ pipeline (pos, shape, label, is_alpha,
is_title, and like_num), and CogComp ―default‖ pipeline
(NER ontonotes). Figure 7 displays the line graphs of the
processing time of the NLP tools. More precisely, the
dotted lines represent the NLP tools executed individually
whereas the solid lines denote the same NLP tools
executed individually, but under the control of the
DeepNLPF optimization strategies. It can be seen that for
spaCy, there is almost an overlap of the lines, which
indicates that DeepNLPF has not improved the
performance of this tool. This means that spaCy already
takes into account optimization aspects in its
implementation, such as multithread processing. In this
scenario, DeepNLPF was not able to improve spaCy
performance. However, for the CoreNLP tool, there is a
significant performance improvement when using
DeepNLPF. For the CogComp online version, there is
still a slight improvement, considering the fact that the
online version of CogComp runs in a cluster environment.
Nevertheless, the lag for Internet data transfer has to be
considered.

At the syntactic level, the pipelines executed were:
CoreNLP ―default‖ pipeline (parsing, dependency
parsing. and coreference resolution), and CogComp
―default‖ pipeline (shallow analysis). Figure 8 shows
another significant improvement in the pipeline
performance with DeepNLPF.

At the semantic level, the executed pipelines were:
SEMAFOR ―default‖ pipeline (semantic frame analysis),
CogComp ―default‖ pipeline (SRL Nom, SRL Verb and
SRL Prep) and PyWSD ―default‖ pipeline (WSD). As
shown in Figure 9, for the SEMAFOR pipeline, there is
no performance gain with DeepNLPF, while compared to
CogComp pipeline, DeepNLPF gains about 2,500
seconds, and for the PyWSD pipeline there is a significant
difference in running time.
These results show that the parallelism processing
strategies implemented into DeepNLPF significantly
shorten running time of the majority of the integrated
third-party NLP tools.

Scenario 2: Full pipeline analysis executed at once. In
this scenario, each NLP tool was executed individually,
one after the other, and the total of the running times of
each tool is calculated. The results presented in Table 3
show that the pipeline processing time of each of the
dataset is proportional (almost linear) to the number of
sentences in the datasets. Tab. 4 shows the runtime of the
same pipelines in Tab. 3 but with those pipelines within
DeepNLPF, i.e., the NLP tools in Tab. 3 were integrated
into DeepNLPF by means of the proposed plugins.

Fig. 7: NLP tools vs DeepNLPF runtime (lexical analysis)

Fig. 8: NLP tools vs DeepNLPF runtime (syntactic analysis).

The objective of this experiment is two-fold: to check
whether the integration of third-party tools work correctly
through the DeepNLPF plugins, and to verify whether
DeepNLPF parallel processing strategies can reduce
processing time. Indeed, as the last row of the Tab. 4
shows, DeepNLPF was much more efficient thanks to its
multiprocessing/parallel processing strategies, practically
reducing processing time by 60%.

To further improve DeepNLPF performance, an
implementation of multiprocessing strategies based on the
distribution of processes/threads on a cluster environment
with several machines is our ongoing work.

7251

Fig. 9: NLP tools vs. DeepNLPF runtime (semantic analysis).

Full Pipeline

Tools Pipeline

Dataset

I

Dataset

II

Dataset

III

Stanford

CoreNLP

tokenize, ssplit, pos,

lemma, ner, parse,
depparse, truecase,

coref 270.0 776.0 1,630.0

SpaCy

pos, shape, label,
is_alpha, is_title,

like_num 12.3 46.3 91.2

SEMAFOR

frame-based

semantic parsing 87.3 243.0 448.0

CogComp

srl nom, verb, prep,

shallow parse, ner,
ontonotes 1,050.0 5,110.0 9,350.0

PyWSD wsd 1,020.0 3,760.0 7,360.0

Total Runtime(s) 2.439.6 9,935.3 18,879.2

Table 3: Full pipeline runtime on the 3 datasets.

Full Pipeline

Tools

Runtime (s)

Dataset I Dataset II Dataset III

Stanford CoreNLP,

SpaCy, SEMAFOR,

PyWSD 2,439.6 9,935.3 18,879.2

Stanford CoreNLP,

SpaCy, SEMAFOR,

PyWSD

(DeepNLPF) 824.0 3,250.0 6,320.0

Table 4. Comparison of the sequential processing time of the

NLP tools with the parallel processing in DeepNLPF.

6. Conclusion

We presented DeepNLPF, a grey box type framework for
integrating third-party NLP tools. It provides a default set
of integrated state-of-the-art NLP tools that annotates
natural language texts with lexical, syntactic, and
semantic linguistic-based metadata.

DeepNLPF provides a user-friendly interface, allowing
non-NLP experts users to easily specify their NLP-based
pipelines. Furthermore, DeepNLPF provides an optimized
version of typical NLP pipelines that can be executed in
multi-core processor machines, taking advantage of the
available hardware resources for processing large datasets
in less time.

DeepNLPF organizes its operations around a database to
store both data and metadata: dataset information,
analyses, annotations, dataset statistics, and system logs.

A first evaluation of DeepNLPF has been performed on a
dataset adopting distinct multiprocessing/parallelism
strategies. The obtained results are promising. We are
currently testing an improved DeepNLPF version on a
cluster computing architecture using larger datasets.

DeepNLPF is freely available and a dedicated wiki
(https://deepnlpf.github.io/site) provides all the
documentation on how to install, use, and customize NLP
pipelines.

7. Acknowledgements

The authors would like to thank the Coordination for the

Improvement of Higher Education Personnel

(CAPES/Brazil) for financial support.

8. References

Cunningham H. (2002). GATE, a General Architecture
for Text Engineering. Comp. and the Humanities 36:
223–254, 2002.

De Rooij O., Vishneuski A., De Rijke M. (2012).
TAS_Text Analysis in a Timely Manner. DIR2012
2012 Gent, Belgium

Eyerman S., Eeckhout L. (2008). System-level
performance metrics for multiprogram workloads.
IEEE micro, [S.l.], v.28, n.3, p.42–53, 2008.

Jorgensen, S. Bay; Hangos, Katalin M. Grey box
modelling for control: qualitative models as a unifying
framework. International Journal of adaptive control
and signal processing, v. 9, n. 6, p. 547-562, 1995

 a i adeh , uang , ane jee , allg n ,
Hardisty F., Pezanowski S., Mitra P. and MacEachren
A.M. (2013). GeoTxt: A Web API to Leverage Place
References in Text . ACM- GIR'13, November 05
2013, Orlando, FL, USA

Masse M. (2011). REST API Design Rulebook:
Designing Consistent RESTful Web Service Interfaces
(English Edition). O'Reilly Media.

McKerns and Aivazis M.A.G. (2010). Pathos: a
framework for heterogeneous computing. See
http://trac. mystic. cacr. caltech. edu/project/pathos,
[S.l.], 2010.

McKerns M.M., Strand L., Sullivan T., Fang A., Aivazis
M.A.G. (2011). Building a Framework for Predictive
Science, Proc. Of the 10th Python In Science
Conference (SCIPY 2011).

Noji H., Miyao Y. (2016). Jigg_A Framework for an Easy
Natural Language Processing Pipeline. Proceedings of
the 54th Annual Meeting of the Assoc. for Comp.
Linguistics—System Demonstrations, pages 103–108,

Padro L., Stanilovsky E. (2012). FreeLing 3.0: Towards
Wider Multilinguality. Proceedings of the Eighth
International Conference on Language Resources and
Evaluation (LREC'12)

Soysal E., Wang J., Jiang M., Wu Y., Pakhomov S. Liu
H.,3 and Xu H. (2017). CLAMP – a toolkit for
efficiently building customized clinical natural
language processing pipelines. Journal of the American
Medical Informatics Association, 25(3), 2018, 331–
336.

https://deepnlpf.github.io/site
https://learning.oreilly.com/library/publisher/oreilly-media-inc/?utm_medium=referral&utm_campaign=publisher&utm_source=oreilly&utm_content=catalog&utm_content=catalog
https://www.aclweb.org/anthology/volumes/L12-1/
https://www.aclweb.org/anthology/volumes/L12-1/
https://www.aclweb.org/anthology/volumes/L12-1/

