
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 7187–7193
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

7187

PyVallex: A Processing System for Valency Lexicon Data

Jonathan Verner1,2, Anna Vernerová1

1: Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics
2: Charles University, Faculty of Arts, Department of Logic

1: Malostranské náměstı́ 25, 118 00 Prague 1, Czech Republic; 2: Celetná 20, 110 00 Prague 1, Czech Republic
jonathan@temno.eu, vernerova@ufal.mff.cuni.cz

Abstract
We present PyVallex, a Python-based system for presenting, searching/filtering, editing/extending and automatic processing of machine-
readable lexicon data originally available in a text-based format. The system consists of several components: a parser for the specific
lexicon format used in several valency lexicons, a data-validation framework, a regular expression based search engine, a map-reduce
style framework for querying the lexicon data and a web-based interface integrating complex search and some basic editing capabilities.
PyVallex provides most of the typical functionalities of a Dictionary Writing System (DWS), such as multiple presentation modes for
the underlying lexical database, automatic evaluation of consistency tests, and a mechanism of merging updates coming from multiple
sources. The editing functionality is currently limited to the client-side interface and edits of existing lexical entries, but additional
script-based operations on the database are also possible. The code is published under the open source MIT license and is also available
in the form of a Python module for integrating into other software.
Keywords: dictionary management, lexicographic software, electronic dictionaries, valency lexicons

1. When The Old Tools No Longer Suffice
In the early 2000s researchers at the Institute of Formal and
Applied Linguistics in Prague (then the Center for Com-
putational Linguistics) started developing the valency lex-
icon Vallex aiming to validate the existing valency the-
ory of the Functional Generative Description (Panevová,
1974; Panevová, 1975; Panevová, 1980; Panevová and Sk-
oumalová, 1992) and to pursue further syntactic research
(Lopatková et al., 2002). Early on, a lexicon named PDT-
Vallex was forked from Vallex and used for maintaining
consistency of the tectogrammatical annotation of the data
in the Prague Dependency Treebank 2.0 (Hajič et al., 2006;
Hajič and Honetschläger, 2003). The PDT-Vallex was fully
integrated with the tree editor and search tool TrEd1 (Pajas
and Štěpánek, 2008) and its native format is now XML-
based. In contrast, the Vallex project still uses the orig-
inal pipeline based on a text-based format converted by
a sequence of scripts to an intermediate representation as
XML-data (Žabokrtský, 2005) and final presentations as
web-pages (with individual lexicon entries stored in html
files) and a PDF/printed lexicon (produced via TeX). The
annotators are reluctant to move away from the text-based
format which they can use with a common text-editor (with
custom syntax highlighting definition files relying on a set
of markup conventions); this situation is not unique to the
Vallex project, e.g. (Benko, 2019). On the other hand, the
set of custom scripts for format conversions, validity check-
ing, and custom search are not well documented and have a
significant maintenance cost. The scripts are written using
tools/languages which are not as widely popular today as
they were when the project started (perl, awk, xslt), mak-
ing it hard for new team members to actively take part in
further development. This is particularly problematic when
need for a significant new functionality arises. A case in
point is the ability to validate link-type attributes for which
the old pipeline has no efficient mechanism. In recent years

1https://ufal.mff.cuni.cz/tred/

we have seen a sharp rise in the number of internal links
between different lexical units within Vallex when phe-
nomena such as lexical-semantic alternations and light verb
constructions became the central topics of our research. It
has now become necessary to monitor changes in the data
and check that they do not break the links or produce incon-
sistencies. This validation requirement now also extends to
cross-lexicon links since Vallex now has three additional
sister projects, all linking back to its data: NomVallex, a
lexicon of deverbal nouns; RU-Vallex, a lexicon of Russian
verbs; and PL-Vallex, a lexicon of Polish verbs. Integrat-
ing such cross-lexicon link validation into the old pipeline
seems close to impossible.

2. Motivation & Design
As noted above, the main motivation for designing a sys-
tem from scratch was that the mostly unstructured nature of
the previous system made it difficult to add new function-
ality and maintain the system. The design of the system
did not allow for easy integration into other tools which
was compounded by almost non-existing documentation.
On the other hand, the older system provided significant
functionality which the new system needed to replicate. An
additional strict requirement was that annotators could con-
tinue working as they were used to, in other words, using
the text-based data format and Subversion revision system,
for creating new entries as well as editing old ones.
The above considerations lead to the following design goals
for the new system:

Modularity To make adding new functionality easier, the
system should be structured into components, each with a
well defined public interface (API). The components should
only communicate with each other through this API. This
allows any new functionality to modify only the relevant
parts of the system and thus lowers the barrier for new
contributors—a developer does not need to have precise
knowledge of the whole system to add/modify functionality
to/of a single component.

https://ufal.mff.cuni.cz/tred/


7188

Extensibility The system should provide as much as pos-
sible of the functionality already present in the older sys-
tem, and moreover be designed from the start to be flex-
ible and easily extensible. In particular, it should have a
well-defined data-model and provide an interface to allow
accessing the data from other programs (either through a
library interface or, e.g., a REST API).

Maintainability The design should aim to minimize the
maintenance cost of the system. In particular the system
should be well documented, the components should be cov-
ered by an automated test suite and the code style should be
as uniform as possible and follow best practices.

While many of the needed functionalities could be
achieved through existing Dictionary Writing Systems
(WDS; the concept is discussed e.g. in (Abel, 2012)), these
systems were ruled out by the requirement that annotators
be allowed to continue using their current workflows.
Given the above, we have decided to implement the sys-
tem in the Python 3 programming language. Its advan-
tage over Perl (the main language of the previous system)
is that it provides much better language support for struc-
tured programming. It is also becoming much more pop-
ular in the NLP community, which makes it more likely
that new contributors will be able to work with the code.
Although Python (as is the case also for Perl) is a weakly
typed language, we have opted to enforce the use of type
hints via the mypy static type checker (The MyPy project,
2019) run before every commit. This makes the code ef-
fectively strongly-typed. In the interest of maintainability,
we also enforce a uniform coding style through the use of a
commit-hook which runs autopep (Hattori et al., 2019) on
the committed code.
We expect that most annotators will learn to use se-
lected features of PyVallex over time, especially the
search/filtering functions, tabular output and editing of ex-
isting lexical units. The old system of custom-made scripts
will be used alongside PyVallex for some time, until all of
its functionalities are fully implemented and tested.

3. Data Layer
A valency lexicon consists of a collection of Lexemes. A
Lexeme represents a group of related lexical units that share
the same lemma or (as in the case of Vallex, NomVallex,
and other lexicons) a group of derivationally related lem-
mas. Each lexical unit corresponds to a single meaning
of these lemmas. Each lexical unit can be annotated with
a number linguistic properties, e.g. semantic (a gloss of
the given meaning, indication of primary and metaphori-
cal meanings), syntactic (does the given lexical unit enter
syntactic structures such as passive, reflexive and recipro-
cal constructions?), and features specific to valency lexi-
cons (the valency frame and annotation of individual va-
lency complementations with a functor, obligatoriness and
a list of possible forms of expressions; indication of control,
i.e. for a given lexical unit realizing one of its complemen-
tations through an infinitive, indicate which other valency
complementation is referentially identical with the subject
of this infinitive).
The data layer definition is provided in the

vallex.data structures module2 and consists
of the following classes: Lexicon (representing a
collection of lexemes), Lexeme (representing a single
lexeme), LexicalUnit (representing a lexical unit, i.e.
a single meaning), Attrib (representing a linguistically
relevant property of a lexical unit). The Attrib class
also has several specializations: Frame (representing the
valency frame, represented as a list of complementations),
Lemma (representing the lemma or set of lemmas), and
SpecVal (representing the changes between the valency
of two related units, e.g. a verb and a deverbal noun or a
verb and its translation to another language). It is expected
that further specializations will be defined to deal with
particular properties.
Each of the above classes can store textual comments
(which can be used to explain the reasoning behind a spe-
cific annotation, mark the data element as work in progress,
etc) and they all provide a method to convert the data into a
JSON representable structure.

4. Core components
The core of the system consists of a parser module which
takes care of parsing the data and constructing the data-
layer—an in-memory representation of the data; a search
module which provides query capabilities; a script mod-
ule which provides a framework for running data validation
and batch processing scripts; and an output module which
converts the in-memory representation into various output
formats. Each of these components is implemented in a
python submodule of the main vallex module and the
components are mostly independent of each other.

4.1. The parser
The parse module takes care of parsing the specialized for-
mat (Figure 1) used by annotators when creating the lexicon
data. The format is designed to be easily editable in any text
editor and concise enough to facilitate manual creation.
The parser itself is split into a tokenizer function producing
a stream of tokens and several parse methods. The methods
take care of constructing the Lexeme, LexicalUnit and
Attrib classes. It is designed in such a way that adding a
specialized parser for a newly introduced property is just a
matter of writing a single function which is given the body
of the attribute and returns an instance of (a descendant of)
the Attrib class. To integrate the function into the parser,
it is enough to decorate it with a provided Python decorator.

4.2. Search
The search module provides query capabilities to the sys-
tem.

4.2.1. Queries
A query is a collection of conditions and the result of the
query is a set of lexical units each of which meets all of
the conditions of the query3. Each condition consists of

2For historical reasons, the main package is called vallex
although most of the functionality is not specific to the ’Vallex’
lexicon.

3Experience seems to suggest that disjunctive conditions are
not used very much. A limited spectrum of negative conditions



7189

: id: blu-v-brát-vzı́t-1
˜ impf: brát (si) pf: vzı́t (si)
+ ACT(1;obl) PAT(4;obl) ORIG(od+2;opt)

LOC(;typ) DIR1(;typ) RCMP(za+4;typ)
-synon: impf: přijı́mat; zı́skávat

pf: přijmout; zı́skat
-example: impf: brát si od někoho mzdu

pf: vzal si od něj penı́ze za práci
-note: volné si

mohli brát na odměnách.COMPL
měsı́čně 26 až 40 tisı́c korun

-recipr: ACT-ORIG
-diat: no_poss_result no_recipient

pf: deagent: penı́ze navı́c se
musı́ odněkud vzı́t

passive
impf: deagent
passive za práci se bere mzda

Figure 1: Sample lexical unit in the textual format (simpli-
fied)

a selector and a pattern. For each lexical unit the selec-
tor is passed to a match key values function which
constructs a list of strings. A lexical unit satisfies the
condition if at least one of the strings matches the pat-
tern, which is a regular expression. The selector is a dot-
separated list of strings. The standard implementation of
the match key values function interprets the first el-
ement of the selector as an attribute name which it re-
trieves. It then passes the rest of the selector to the at-
tribute’s match key values function to construct the
list of strings to be matched against. The standard imple-
mentation of the attribute’s match key values method
returns the attribute’s textual representation if the selector
is empty, its source form if the selector is ’src’ and oth-
erwise treats the selector as a path through the attributes
structure treated as a tree. It resolves the path and returns
the value present in the relevant node. For example a query
consisting of the single condition

example.pf=.*od.*

would match the lexical unit shown in Figure 1 whose
example attribute has the following structure

{
'impf': [ 'brát si od někoho mzdu'],
'pf': ['vzal si od něj penı́ze za

práci']
}

The selector example.pf would retrieve the example
attribute and from it its pf node which contains the string
vzal si od něj penı́ze za práci. This string
incidentally matches the regular expression .*od.*.
For discoverability purposes, each attribute has a method
which returns a lists of all valid paths inside its structure.
Note that besides the internal structure of attributes output

can be formulated. At the cost of complexity of the query lan-
guage, it would be easy to extend it to also additional types of
queries.

by the parser (Section 4.1.), selectors may also access com-
puted properties and results of tests (Section 4.3.); in par-
ticular, it is possible to formulate a query for all units that
failed a given test, e.g. a query of the form

error.lvc_references=.

would match4 all lexical units that failed the test shown in
Figure 4.

4.2.2. Executing queries
The search module contains a grep method to execute
queries. It additionally contains a filter method which
allows pruning each lexical unit in the result set so that it
contains only the properties/attributes a user is interested
in. Another method is provided to compute various his-
tograms. The histogram method takes three arguments:
the first argument is a collection of lexical units over which
the histogram is computed. The second argument is a selec-
tor which produces a list of strings from each lexical unit in
the same way as is done when evaluating queries. The last
argument is a regular expression which extracts the values
to be counted from each string from the list. Figure 2 shows
how the UI displays the results of computing the histogram
for the frame.functor selector with the trivial pattern
(.*).

4.3. Scripts
The script module (vallex.scripts) provides a frame-
work for running simple procedures over the valency lexi-
con data. The scripts are loaded by the framework from
a configurable directory. Each file in this directory is a
Python source file containing the definitions of the proce-
dures. The system currently recognizes five kinds of proce-
dures: test, transform, compute and map/reduce.

Test The test procedures are used to implement data vali-
dation for the lexicon. Each test function receives a lexical
unit as its argument.5 It checks whether the unit satisfies
the test and raises an appropriate exception if it doesn’t.
The framework iterates over all lexical units passing them
in turn to each test procedure and collecting the results. The
results are saved in the in-memory representation and can
then be displayed to the user (Figure 3). The results are also
annotated with the docstring of the test-procedure which
can be used to provide human readable explanation of the
failed result. An example data validation test is provided in
Figure 4.

Transform The transform procedures can be used to im-
plement one-time lexicon-wide changes, e.g. renaming an
attribute. They receive a lexical unit which they can modify
and return.

4The pattern consists of a single dot so it matches any unit with
a non-empty value of error.lvc references .

5Actually, there are four sub-types differing in what argument
is passed — a collection of lexicons, a single lexicon, a single
lexeme or a lexical unit; for simplicity here and also in the para-
graphs dedicated to other types of procedures we discuss only the
sub-type receiving a lexical unit.



7190

Figure 2: The web-based UI showing a histogram of the
frame functors

Figure 3: The web-based UI showing the result of a data-
validation run on a lexical unit.

@requires('lumap')
def test_lu_lvc_references(lu, lumap):
"""

In attributes with links, each link
should point to an existing lu.

"""
failures = []
lvc_variants = [k for k in lu.attribs.keys()

if k.startswith('lvc')]
if not lvc_variants:

raise TestDoesNotApply
applies = False
for attrib in lvc_variants:

if not \
isinstance(lu.attribs[attrib]._data,

dict):
continue

refs = lu.attribs[attrib]._data['ids']
if refs:
applies = True
for ref in refs:

if not ref._id.startswith('@') \
and ref._id not in lumap:
failures.append(str(ref._id))

if failures:
raise TestFailed("The following \

references not found in db: "
+','.join(failures))

Figure 4: An example of a data-validation procedure

Compute The compute procedures are similar to the
transform procedures, but are used to implement dynami-
cally computed properties which are not saved back to the
lexicon on disk.

Map/Reduce The map/reduce procedures are used to
perform more complicated analyses of the lexicon for
which a simple search/histogram does not suffice. Each
map/reduce procedure consists of a pair of functions: a
mapper and an (optional) reducer. Each mapper receives a
lexical unit as an argument and uses a framework-provided
emit function to emit a collection of (key, value)
pairs. The framework iterates over all lexical-units pass-
ing them to the mapper functions and collecting the result-
ing pairs. It then groups them by the key component and
passes the groups to the reducer which can do further pro-
cessing. A default reducer which just counts the number of
values for a given key is provided by the framework and is
used when no specialized reducer is provided by the user.
Note that, although map/reduce is now commonly associ-
ated with parallel processing, here all the mappers and re-
ducers are run sequentially—while running them in parallel
would be possible, the small size of the data does not jus-
tify the additional complexity of parallel processing. We
use map/reduce only as a familiar paradigm for structuring
analysis code.

4.4. Output
The output module provides tools to export lexicon data in
various formats. In addition to built-in JSON output (which
is implemented in the data-layer), new formats can be de-



7191

fined using Jinja2 (Ronacher, 2019) templates. Currently
only a single txt format is provided which outputs the in-
memory representation in the same format that the anno-
tators use. This can be used to check the fidelity of the
in-memory representation (by comparing it with the origi-
nal source) and for normalizing the sources. In the future
other formats may be added, e.g., one of the XML-based
internationally recognized formats such as XML:TEI or the
RDF/XML serialization of the OntoLex-Lemon model.

5. The UI Layer
Although the PyVallex system provides a command line UI
for performing searches, computing histograms and run-
ning batch scripts, it is expected that most of its users will
prefer a nicer graphical user interface. We have decided to
provide the GUI as a web-based interface. This has sev-
eral advantages. First, it allows the system to be installed
on a server and be accessible to users without forcing them
to acquire the needed datasets or requiring them to main-
tain the installation. Moreover, web-based technologies are
very common and basing the UI on them considerably low-
ers the barrier for new contributors/maintainers. It is ex-
pected that even a person without a detailed knowledge of
the system would be able to contribute simple modifica-
tions to the UI in a short amount of time. Finally, using a
webview widget provided by the Qt library (Qt Company,
2019), we can implement a simple local client based on the
same code-base.

5.1. Implementation
The server-backend is a simple Python WSGI (Eby, 2010)
application written in the Bottle.py (Hellkamp, 2019) mi-
croframework. It uses an SQLite database (Hipp, 2018) to
store a JSON representation of the in-memory data6 and
exposes a REST-based api which is consumed by the front
end. The front end is a Javascript application written using
the Vue framework (You and others, 2019) together with
the Vuetify component library (Leider and others, 2019)
to provide a familiar Polymer-style interface (Google, Inc.,
2015).

5.2. User Features
5.2.1. Searching
By default, all lexemes in the lexicon are displayed in al-
phabetical order. However, the GUI provides an interface
for formulating queries (Section 4.2.1.); to improve user ex-
perience, all existing selectors are listed in a drop-down list
(Figure 5). To clarify the meaning of selectors, a help string
may be provided; the user may also click on the key icon
next to any lexical unit and see a full listing of the selector–
value pairs for the given unit.

5.2.2. View modes
Currently, two view modes are provided for lexical units: in
the Source View mode, the complete portion of the source
file that corresponds to the given lexical unit is run through
a simple regex-based syntax highlighter that mimics the
function of the text editor known to the annotators. On

6The database is used solely as a method to allow safe concur-
rent access to the data.

Figure 5: The search field

Figure 6: The display of a lexical unit (Source View)

the other hand, the Default View mode is based on a tem-
plate that can access the complete output of the parser (Sec-
tion 4.1.) as well as computed properties not present in the
source files (Section 4.3.) and the full formatting capabili-
ties of the Vue.js framework. A particularly useful feature
of the Default View is the fact that linked lexical units (such
as source verbs of deverbal nouns or translation equivalents
in case of our Russian and Polish lexicons) can be displayed
in a pop-up with a single click. The two views can be com-
pared in Figures 6 and 7.
The filter method (Section 4.2.2.) may be triggered
from the settings menu as a selection of attributes to be dis-
played. A simple interface for showing various histograms
is also available (ibid.).

5.2.3. Basic Editing
Because of the assumption that the web-based GUI will not
replace the existing annotation pipeline (text files stored in



7192

Figure 7: The display of a lexical unit (Default View)

a Subversion repository), the current implementation does
not provide editing functionality in the web-based interface.
Nonetheless, a simple component for editing a single (pre-
existing) lexical unit is available in the local client-side Qt-
based GUI, so that annotators may quickly correct minor
issues encountered while searching the data; the client ini-
tially reads data from the working copy of the Subversion
repository and stores a JSON representation of this data in
an SQLite database for safe concurrent access. The user
can open an editor view (see Figure 8) and do some edits.
When the editor view is closed, the system first checks that
the state of the entry in the database has not changed since
opening the editor, then parses the new textual form of the
lexical unit and replaces the whole unit in the database, also
updating its in-memory representation. In case the unit has
changed since the editing window was opened, the user is
warned and no changes are stored. Upon request, the con-
tents of the SQLite database can be output in the textual
form back to the subversion repository the data was origi-
nally read from (making sure that any files changed in the
meantime are backed up; see Section 4.4.); it is the users’
responsibility to commit the changes, resolve conflicts etc.

6. Future work
Some features of our old pipeline, e.g. XML and PDF out-
put, have yet to be implemented in PyVallex. PyVallex is
currently only available in source code form7, although we
plan to publish it as pre-built package in the PyPi pack-
age repository. The client-side Qt-based GUI is now dis-
tributed as a Windows and a Unix standalone executable
which should, in principle, be runnable on multiple ver-
sions of the operating systems. Although this has some ad-
vantages (simplicity, easy updates), it has a significant per-
formance cost—the single file is basically a self-extracting
archive which must unpack itself every time the program is

7https://gitlab.com/Verner/pyvallex

Figure 8: A simple editor

run. This choice should be revisited once we gather more
user feedback.
While the client-side Qt-based GUI allows for basic edit-
ing, it would be nice to incorporate this into the web-
based UI. This will require some form of user authentica-
tion/authorization to be implemented. Eventually, the edit-
ing capabilities could be extended to allow for more com-
prehensive edits (including creating new lexemes/lexical
units). This would allow some annotators to use the Py-
Vallex system as the main or only tool to create or edit lex-
icons, and external users to efficiently submit feedback on
individual lexical units as well as suggest extensions of the
lexicon.
Finally, the modular architecture of PyVallex which allows
programmatic access to the data in a structured way makes
it an ideal tool for script-based examination of multiple re-
visions of the same data. We therefore plan to implement
additional tests for guarding the internal and mutual con-
sistency of the annotation present in all four sister-projects
that use the Vallex format: Vallex, NomVallex, RU-Vallex
and PL-Vallex.

6.1. Extending PyVallex for other projects
A recent survey of lexicographic practices in Europe has
found that most projects use an in-house DWS rather than
an off-the-shelf solution (Kallas et al., 2019). Even though
PyVallex is not primarily a DWS, it can be viewed as just
another addition towards this trend. One of the arguments
for an in-house solution was the fact that the lexicographers
on our teams are happy with the current setup: the main
source of truth about the lexicon data are files in the text-
based Vallex format, shared between annotators in a Sub-
version repository. In contrast to XML-based formats such
as XML:TEI (TEI Consortium, 2020) and the RDF/XML
serialization of the OntoLex-Lemon model (Bosque-Gil et
al., 2019), our format is compact and practical for direct
and daily use by humans; moreover, it is easy to inspect
changes in the data with general-purpose diff tools. This
means that in order to build upon pre-existing software for
the presentation, querying and editing of our lexicographic
data, we would have to write custom conversion scripts
to and from the native format of those tools, and create
a pipeline allowing for continuous integration of changes

https://gitlab.com/Verner/pyvallex


7193

coming from the Subversion repository. However, once we
have a parser for our format, it is natural to use the resulting
internal representation of the data as the input for queries,
scripts, and output functions. In short, the PyVallex frame-
work is a result of the wish to enable developers to write a
parser and then reuse the resulting representation for multi-
ple purposes. Although most of the current development of
PyVallex concentrates on the Vallex-specific functions, the
general framework is ready to work with other data models
as well. We thank the anonymous referees for pointing out
that as a first step towards adoption of PyVallex by other
projects, we could implement parsers and output functions
for internationally recognized lexicon exchange formats. In
fact, we could go even further and make sure that the inter-
nal representation of lexicon data in PyVallex reflects the
OntoLex-Lemon model.

7. Acknowledgements
The research reported in this paper has been supported by
the projects No. 18-03984S (Between Reciprocity and Re-
flexivity: The Case of Czech Reciprocal Constructions) and
No. 19-16633S (Valency of Non-verbal Predicates) of the
Czech Science Foundation (GAČR) and partially also by
the LINDAT/CLARIN project of the Ministry of Educa-
tion, Youth and Sports of the Czech Republic (project No.
LM2015071).
The first author was also supported by Charles University
Research Centre program No. UNCE/SCI/022 and by the
Progres grant Q14. Krize racionality a modernı́ myšlenı́.
This work has been using language resources stored and
distributed by the LINDAT-CLARIN project of the Min-
istry of Education, Youth and Sports of the Czech Republic,
project No. LM2015071.
We thank the anonymous referees for their valuable sug-
gestions, and in particular the second referee for his very
detailed report.

8. Bibliographical References
Abel, A., (2012). Dictionary Writing Systems and Beyond.

Oxford University Press, Oxford.
Benko, V. (2019). LexiCorp: Corpus approach to presenta-

tion of lexicographic data. In Proceedings of eLex 2019.
Bosque-Gil, J., Gracia, J., et al. (2019). The OntoLex

Lemon lexicography module. Technical report.
Eby, P. J. (2010). Python Web Server Gateway Interface

v1.0.1. Python Enhancement Proposals, PEP 3333.
Google, Inc. (2015). Polymer project. https://www.
polymer-project.org/.

Hajič, J., Panevová, J., Hajičová, E., Sgall, P., Pajas, P.,
Štěpánek, J., Havelka, J., Mikulová, M., Žabokrtský,
Z., Ševčı́ková-Razı́mová, M., and Urešová, Z. (2006).
Prague Dependency Treebank 2.0 (PDT 2.0). LIN-
DAT/CLARIN digital library at the Institute of Formal
and Applied Linguistics (ÚFAL), Faculty of Mathemat-
ics and Physics, Charles University.

Hajič, J. and Honetschläger, V. (2003). Annotation lex-
icons: Using the valency lexicon for tectogrammatical
annotation. The Prague Bulletin of Mathematical Lin-
guistics (PBML), 79–80:61–86.

Hattori, H., Myint, S., and Wendling, B. (2019). Autopep8
1.4.4 (2019-11-30). https://pypi.python.org/
pypi/autopep8/.

Hellkamp, M. (2019). Bottle: Python Web framework.
https://bottlepy.org/docs/dev/.

Hipp, D. R. (2018). SQLite. https://www.sqlite.
org/.

Kallas, J., Koeva, S., Langemets, M., Tiberius, C., and
Kosem, I. (2019). Lexicographic practices in Europe:
Results of the ELEXIS Survey on user needs. Electronic
lexicography in the 21st century (eLex 2019): Smart lex-
icography, page 144.

Leider, J. et al. (2019). Vuetify.js. https://
vuetifyjs.com/en/.

Lopatková, M., Žabokrtský, Z., Skwarska, K., and
Benešová, V. (2002). Tektogramaticky anotovaný
valenčnı́ slovnı́k českých sloves. Technical Report TR-
2002-15, ÚFAL/CKL MFF UK, Praha.

Pajas, P. and Štěpánek, J. (2008). Recent advances in a
feature-rich framework for treebank annotation. In Do-
nia Scott et al., editors, The 22nd International Confer-
ence on Computational Linguistics - Proceedings of the
Conference, volume 2, pages 673–680, Manchester, UK.
The Coling 2008 Organizing Committee.

Panevová, J. and Skoumalová, H. (1992). Surface and deep
cases. In Proceedings of the 14th conference on Compu-
tational linguistics, COLING’92, volume 3, pages 885–
889, Nantes, France, august. Association for Computa-
tional Linguistics.

Panevová, J. (1974). On verbal frames in Functional Gen-
erative Description, Part I. Prague Bulletin of Mathemat-
ical Linguistics, 22:3–40.

Panevová, J. (1975). On verbal frames in Functional Gen-
erative Description, Part II. Prague Bulletin of Mathe-
matical Linguistics, 23:17–37.

Panevová, J. (1980). Formy a funkce ve stavbě české věty,
volume 13 of Studie a práce lingvistické. Academia,
Praha.

Qt Company. (2019). Qt 5.12.1 (2019-11-30). https:
//www.qt.io/.

Ronacher, A. (2019). Jinja 2.10.3 (2019-11-30). https:
//palletsprojects.com/p/jinja/.

TEI Consortium. (2020). TEI P5: Guidelines for electronic
text encoding and interchange 4.0.0. Technical report.

The MyPy project. (2019). Mypy 0.750 (2019-11-30).
http://www.mypy-lang.org.

You, E. et al. (2019). Vue.js. https://vuejs.org/.
Žabokrtský, Z. (2005). Valency Lexicon of Czech Verbs.

Ph.D. thesis, Charles University in Prague, Praha.

https://www.polymer-project.org/
https://www.polymer-project.org/
https://pypi.python.org/pypi/autopep8/
https://pypi.python.org/pypi/autopep8/
https://bottlepy.org/docs/dev/
https://www.sqlite.org/
https://www.sqlite.org/
https://vuetifyjs.com/en/
https://vuetifyjs.com/en/
https://www.qt.io/
https://www.qt.io/
https://palletsprojects.com/p/jinja/
https://palletsprojects.com/p/jinja/
http://www.mypy-lang.org
https://vuejs.org/

	When The Old Tools No Longer Suffice
	Motivation & Design
	Data Layer
	Core components
	The parser
	Search
	Queries
	Executing queries

	Scripts
	Output

	The UI Layer
	Implementation
	User Features
	Searching
	View modes
	Basic Editing


	Future work
	Extending PyVallex for other projects

	Acknowledgements
	Bibliographical References

