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Abstract
Traditional text complexity assessment usually takes into account only syntactic and lexical text complexity. The task of automatic
assessment of conceptual text complexity, important for maintaining reader’s interest and text adaptation for struggling readers, has only
been proposed recently. In this paper, we present CoCo - a tool for automatic assessment of conceptual text complexity, based on using
the current state-of-the-art unsupervised approach. We make the code and API freely available for research purposes, and describe the
code and the possibility for its personalization and adaptation in details. We compare the current implementation with the state of the
art, discussing the influence of the choice of entity linker on the performances of the tool. Finally, we present results obtained on two
widely used text simplification corpora, discussing the full potential of the tool.
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1. Introduction
To actively engage readers in the text they are reading and
maintain their interest in the topic, texts needs to be on an
adequate level for the reader in terms of its lexical, syntac-
tic, as well as its conceptual complexity (McNamara et al.,
2006). Lexical complexity refers to lexical choices used in
the text, e.g. the frequency of words in everyday life, rich-
ness of vocabulary, use of some specific terminology or for-
eign words, etc. Syntactic complexity refers to the length of
the sentences and their syntactic structures, e.g. the number
of subordinate or coordinate clauses, use of passive voice,
unusual sentence structures, depth of the syntactic tree, etc.
Conceptual complexity refers to the model of reading com-
prehension proposed by Kintsch and van Dijk (1978). Ac-
cording to this model, the reader needs to understand both
individual propositions and concepts in the text, as well as
their relations, in order to make a coherent story and fully
understand the text. Text difficulty could thus be seen as
the amount of gaps in the text coherence, and the effort re-
quired by the reader to repair them by inference making
(Arfé et al., 2017).
Assessment of text complexity has a long history in edu-
cation and psycholinguistic research (DuBay, 2004). It is
used to assess the reading level required by the students
to understand the materials in the schoolbooks, complex-
ity of army manuals, or complexity of documents available
for general public, such as healthcare documents for ex-
ample. Only in the second half of the last century, over
200 readability formulae were proposed with the aim of
measuring text complexity (DuBay, 2004). Despite many
criticisms of their simplicity (DuBay, 2004), some of them
gained high popularity, e.g. the Flesch Reading Ease score
(Flesch, 1949), Flesch-Kincaid readability formulae (Kin-
caid et al., 1975), SMOG formula (McLaughlin, 1969), or
Fog readability formulae (Gunning, 1952), due to their high
correlation with variables shown to be indicative of reading
difficulty (Bormuth, 1966) and their easy automatic com-
putation.1

1Freely available through style package in Linux.

Recently, we have witnessed a growing number of commer-
cial tools for assessing text complexity, e.g. TextEvaluator2,
Lexile Analyzer3, and many others. All those tools claim to
capture text complexity along several dimensions, but those
dimensions focus only on text layout, vocabulary, and syn-
tactic structures. None of them tries to assess the cognitive
effort required from the reader to understand the concepts
mentioned in a text and connect them in a coherent way.
The same criticism stands for readability formulae that can
be computed automatically.
To bridge this gap, Štajner and Hulpuş (2018) proposed
the task of automatic assessment of conceptual text com-
plexity, defining it as the amount of background knowledge
necessary to understand how the mentioned concepts are
interconnected. They explored the possibility of using DB-
pedia (DBpedia, 2014) as a proxy to background knowl-
edge for this task. A year later, an unsupervised method for
tracking conceptual complexity of texts using the spreading
activation over DBpedia knowledge graphs was proposed
(Hulpus, et al., 2019). The unsupervised method outper-
formed the previously proposed supervised method show-
ing excellent results when tested in two different automatic
text assessment scenarios: (1) finding conceptually simpler
of the two versions of the same news story; and (2) ranking
the five versions of the same news story according to their
conceptual complexity (Hulpus, et al., 2019).
Given that such framework offers many possibilities for
further explorations and adaptations to particular user/re-
search needs, but is, at the same time, very difficult to build
from scratch, we here offer the full implementation with
some additional functionalities, both as an API and as the
full code (Section 3). The entity linker used in the origi-
nally proposed framework (Hulpus, et al., 2019) is not freely
available. Therefore, in the current implementation, we
use DBpedia Spotlight (Daiber et al., 2013) which is freely
available for several languages (DBpediaSpotlight, 2019).
At the same time, this enable us to explore how much the

2https://www.ets.org/c/23491/
3https://lexile.com

https://www.ets.org/c/23491/
https://lexile.com
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choice of the entity linker has on the final results of concep-
tual complexity (Section 4). The current implementation is
offered in such a way that it is easy to replace the currently
used entity linker (DBpedia Spotlight) with any other (see
Section 3). To further emphasise the importance and capa-
bilities of this tool, we show how it can be used to detect if
conceptual simplification is present in a given text simplifi-
cation corpus (Section 5).
The contributions of our current work can be summarized
as follows:

• We open source CoCo - the first automatic system
which measures conceptual complexity of texts (Sec-
tion 3);

• We offer CoCo via API endpoints, and as a full code
with modular architecture (Section 3);

• We discuss in details all the parameters of CoCo, em-
phasising on how they can be adjusted to adapt the sys-
tem to different target audiences and/or research pur-
poses (Section 2);

• We evaluate our implementation comparing it to the
state of the art (Section 4);

• We show that the choice of the entity linker can sig-
nificantly influence the results, however still achiev-
ing high performance on the benchmark dataset (Sec-
tion 4);

• We run the current implementation on two text sim-
plification corpora, showing how CoCo can be used to
detect if the corpus contains conceptual simplification
(Section 5).

2. Spreading Activation Framework for
Tracking Conceptual Complexity of Texts

The main idea behind the proposed framework (Hulpus, et
al., 2019) is that concepts are activated in working memory
during reading process. DBpedia knowledge graph is used
as a proxy to long-term memory over which spreading ac-
tivation processes run and bring concepts into the working
memory. The framework assumes that text is processed
sequentially. During that process, each mention of a DBpe-
dia concept in a text triggers a tide of spreading activation
over the DBpedia knowledge graph. At the same time, the
activation of the concepts which are already in the working
memory decreases as reading progresses, modelling thus a
forgetting process which naturally happens during read-
ing. However, if the same concepts, or their related con-
cepts (related in DBpedia knowledge graph), are encoun-
tered in text, the activation of those concepts (and their re-
lated concepts) in working memory increases. The cumu-
lative activation (CA) of the mentioned concepts is tracked
at different points in time: at the encounter (AE), at the end
of sentences (AEoS) and at the end of paragraphs (AEoP).
Those values are then used to estimate the conceptual com-
plexity of texts. The hypothesis is that a higher activation
of text concepts in working memory indicates more acces-
sible texts (already activated concepts in working memory
are easier to understand and interconnect). As it has been

shown that AEoS has the best correlation with the Newsela
complexity levels (Hulpus, et al., 2019), in the demo we
present, the conceptual complexity (CoCo) value is based
on AEoS only.
A number of parameters allows further specifications of
processes that happen in long-term memory, and in work-
ing memory. Here we give just some brief intuitions behind
each of them, which are necessary to understand parame-
ters of the CoCo tool, and its full potential for adaptation
to different tasks and reading populations. For a detailed
description of spreading activation framework for tracking
conceptual complexity of texts, we refer readers to the orig-
inal paper (Hulpus, et al., 2019).

2.1. Long-term Memory Parameters
The spreading activation happens over DBpedia knowledge
graph which is used as a proxy for the long-term memory. It
follows the rules common to all spreading activation mod-
els in literature. During sequential reading process, when a
mention of a concept is encountered in the text, that concept
becomes active in the long-term memory with an activation
value of 1.0 and it fires spreading its activation to its neigh-
bours in the knowledge graph (long-term memory), which
can then further fire and activate their neighbours as long as
some preset conditions are met. Those multiple iterations
(firings of newly activated nodes) that all come from a sin-
gle mention of a concept in text are called pulses (p). In the
proposed framework, four parameters control the spreading
activation process in the long-term memory:

• distance decay parameter (α)

• firing threshold (β)

• exclusivity (exc)

• popularity (pop)

The first two parameters, distance decay parameter α and
firing threshold β are used to compute the value of the out-
put function which defines how much activation is output
by a concept at pulse p + 1, given its activation at pulse p.
Distance decay parameter (α) reduces the activation go-
ing out of each node exponentially with respect to p. Firing
threshold (β) is the minimum activation that a node needs
to have in the pulse p in order to be able to fire. Those
two parameters offer a possibility for personalization of the
approach according to the memory capacity of the reader.
Lower values of α and higher values of β increase the num-
ber of nodes activated in each pulse p, corresponding thus
to higher memory capacity of the reader.
The other two parameters, exclusivity (exc) and popularity
(pop) are used to compute the value of the input function,
which defines how much activation flows into a node from
its firing neighbours. Together they define the accessibil-
ity of the target concept, given the source concept, based
on how strong is the semantic relation between them, and
on how familiar the target concept is to the reader. Each
of the two parameters can be either turned on, or turned
off, during the conceptual complexity computation. Exclu-
sivity (Hulpuş et al., 2015) measures the strength of the
semantic relatedness between two nodes in a knowledge
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graph, and has been proved to be particularly effective for
computing semantic relatedness (Zhu and Iglesias, 2017).
Imagine, for instance, the following example. In a knowl-
edge graph, we have the nodes John Smith, US, and Donald
Trump. The nodes John Smith and US are connected with
the relation is a citizen of, while the nodes Donald Trump
and US are connected with the relation is the president of.
In such a scenario, the exclusivity of the relation between
the nodes Donald Trump and US will be much higher
than the exclusivity of the relation between the nodes John
Smith and US, as in the full knowledge graph, the relation
is the president of is much less common than the relation
is a citizen of. In other words, the stronger the exclusiv-
ity of the relation between the two nodes, the higher their
semantic relatedness. In terms of conceptual complexity
assessment, higher exclusivity of the relation between the
two nodes indicates lower level of cognitive effort needed
to infer the connection between the two concepts. Popu-
larity of a given concept is calculated as the normalized
node degree in the knowledge graph. It is used as a proxy
for the reader’s familiarity with the mentioned concept. In
terms of conceptual complexity, the higher the popularity/-
familiarity of the concept, the lesser the cognitive effort for
the reader to recognize it and put it in the right place when
connecting the encountered concepts in a coherent story,
the step necessary for fully understanding the text.
To avoid to possibility to enter in a never-ending loop in
which, for one mention read in the text, concepts recur-
sively activate each other and activation constantly spreads
throughout the knowledge graph, the proposed framework
puts a condition that each node/concept can only fire once
(at the first pulse in which its activation is over the threshold
β). After that, it becomes burnt and cannot fire again even
if it, during further pulses, accumulates activation higher
than β.

2.2. Working Memory Parameters
Before reading starts, the working memory is considered
to be empty. During reading, two processes happen simul-
taneously in the working memory: bringing the concepts
from the long-term memory, and forgetting process.
The concepts activated in the long-term memory through
the spreading activation process described above are
brought into working memory with an activation value
computed according to one of the two possible functions:
φ1 or φA. The function φA brings the activated concepts
into working memory with the activation value equal to that
obtained through the spreading activation process which
happened in the long-term memory. The function φ1,
in contrast, brings every concept that was activated in the
long-term memory, giving it the same activation value of 1,
regardless of its activation value in the long-term memory
at that point. The function φ1 is a simplified version of the
function φA which only cares about whether the concept is
activated in the long-term memory or not, and does not care
about the value of its activation. In other words, the func-
tion φ1 partially neutralizes the impact of the knowledge
graph features, once the concept is brought in the working
memory.
The forgetting process is controlled by three parameters:

• decay at the end of word/token (γw);

• decay at the end of sentence (γs);

• decay at the end of paragraph (γs).

The combination of the three forgetting parameters allows
to personalization according to ‘reading buffer’ of each
reader. Those parameters allow to separately control how
much forgetting happens at the end of each word, each sen-
tence, and each paragraph. For those readers that only have
problem with the capacity of their short-term memory, i.e.
the amount of the text/words read, the other two parame-
ters (γs and γp) can be set to 1. For those readers who
have problems with the structural organization of the text,
but not with the capacity of their short-term memory, the
first parameter (γw) can be set to 1, and the other two set
to lower value depending on how much the sentence orga-
nization, or paragraph organization, influences the reader’s
understanding of a given text.

3. Implementation and Code
Our implementation is designed as an HTTP API hav-
ing two endpoints: one for text complexity assessment,
and another one for comparing the complexity of two
given texts. The code, together with data and running
instructions, are provided at: https://github.com/
ioanahulpus/cocospa. The architecture of the sys-
tem consists of three services: (1) a Redis4 instance, (2) a
DBpedia Spotlight instance, and (3) our conceptual com-
plexity HTTP endpoint. Redis is used as a cache to store
the activations under different thresholds for all the entities
that are found over the input texts. It makes the process-
ing faster for future inputs. We provide such a cache to
be downloaded as a resource from the repository. DBpedia
Spotlight, is the entity linker serving a configurable HTTP
endpoint with which our complexity calculator communi-
cates. We maintain a separation between the linker and
our code, to be able to easily test the conceptual complex-
ity estimator with other entity linkers only by implement-
ing the necessary connector class. Finally, our spreading
activation-based conceptual complexity calculator requires
the knowledge graph in the form of a DBpedia dump com-
patible with Neo4j5 graph platform and a standard dump of
DBpedia in HDT6 format. We provide both files in our re-
lease,7 together with a script that downloads and configures
the necessary paths to execute the application services.
Furthermore, we provide docker containers for each service
and instructions on how to run the containerized applica-
tion. We believe that the usage of docker containers facili-
tates code compilation, distribution and the maintenance of
third-party dependencies and therefore it becomes an im-
portant mean to reproduce our research over time and on
different platforms.

4https://redis.io/
5https://neo4j.com/
6http://www.rdfhdt.org/
7https://github.com/ioanahulpus/cocospa/

releases/tag/Data

https://github.com/ioanahulpus/cocospa
https://github.com/ioanahulpus/cocospa
https://redis.io/
https://neo4j.com/
http://www.rdfhdt.org/
https://github.com/ioanahulpus/cocospa/releases/tag/Data
https://github.com/ioanahulpus/cocospa/releases/tag/Data
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3.1. API Endpoints
The HTTP API, together with the swagger documen-
tation of the endpoints, the corresponding input types,
and the potential responses run by default on port
8080. We currently support two endpoints: /compare
and /complexity which can be tested with our pub-
lic demo hosted at: http://demaq3.informatik.
uni-mannheim.de:8080/swagger-ui.html.
Both endpoints expect a HTTP POST message with a json
payload and the header ’Content-Type: application/json’.
The content of the message uses the following configura-
tion inspired by the long-term memory and working mem-
ory parameters:

• graphDecay - α

• firingThreshold - β

• useExclusivity - exc (binary)

• usePopularity - pop (binary)

• tokenDecay - γw

• sentenceDecay - γs

• paragraphDecay - γs

• phiTo1 - φ1 if true; else φA (binary)

In addition, we added a parameter to control the entity
linker recall, returning entities that have a confidence score
above linkerThreshold, and a parameter to store the text to
be analyzed. The following is a cURL example of calling
the /complexity endpoint.

curl -X POST --header ’Content-Type:
application/json’ -d ’

{
"firingThreshold": 0.01,
"graphDecay": 0.25,
"linkerThreshold": 0.35,
"paragraphDecay": 0.5,
"phiTo1": true,
"sentenceDecay": 0.7,
"tokenDecay": 0.85,
"useExclusivity": true,
"usePopularity": true,
"text": "..."

}’ http://demaq3.informatik.uni-mannheim.de
:8080/complexity

For an easy use of the demo, we provide those that achieved
best correlations with the Newsela levels (Hulpus, et al.,
2019) as the default parameters (see the example above).
Therefore, the only required parameter is the text itself.
To have an easy method of comparing two texts, we have
added an extra endpoint named /compare that takes exactly
the same configuration parameters with text1 and text2 in-
stead of text and returns a comparison json with the result.

3.2. Complexity Assessment Endpoint
The HTTP endpoint for /complexity assessment responds
with a number that represents the complexity score, e.g.
for the text conference in Marseille the response is:

{”complexityScore” : 1}. The response values range
freely above or below 1 with larger values indicating texts
that are more complex than others. In some situations, the
system cannot compute the complexity score. This happens
either because no entities have been found, or because the
activation values of the entities did not reach the required
threshold. In those cases, the returned value is −1. For
example, the text pay on Amazon, with default parameters,
will produce a−1 complexity score. In this situation, it can
be helpful to have a local instance of our service running
in order to look at the logs which contain the actual DBpe-
dia Spotlight entities and the activation values at different
levels in the text:

{ "text":"pay on Amazon",
"confidence":"0.35",
"Resources":[{

"URI":"http://dbpedia.org/resource
/Amazon.com",

"surfaceForm":"Amazon",
"similarityScore":"0.919"

}]
}

For this particular example, if the entity linker threshold is
below 0.35, the linker only returns Amazon.com as an en-
tity, but that is not enough to assess the complexity score. If
the entity linker threshold value is decreased to 0.2 in the re-
quest message, DBpedia Spotlight increases the recall and
returns an entity linked to surface form pay. In our experi-
ments we set the threshold to 0.35 provided as a default by
the authors (Daiber et al., 2013). Alternatively, it is possi-
ble to directly check the public DBspotlight demo 8 and set
the appropriate threshold to observe in greater detail which
entities are linked in the text with each threshold.

3.3. Complexity Comparison Endpoint
The second endpoint is an extension of the first and has the
sole purpose to facilitate the comparison of two texts. For a
request of this type:

{
"linkerThreshold": 0.2,
"text1": "pay on Amazon",
"text2": "ride on the Amazon"

}

The response is a json that shows the complexity scores of
the texts and a message resulting from the comparison. In
this instance, because the context is short, the word Ama-
zon is linked to the company. Other entities are found re-
lated to the surface forms of pay (Pay television) and ride
(List of amusement rides). Therefore, it is expected that
the activation values related to amusement rides and the
company are lower than the activation values related to pay-
ments and Amazon, making the second text more concep-
tually complex than the first one.

{
"text1ComplexityScore": 1,
"text2ComplexityScore": 1.176,

8https://www.dbpedia-spotlight.org/demo/

http://demaq3.informatik.uni-mannheim.de:8080/swagger-ui.html
http://demaq3.informatik.uni-mannheim.de:8080/swagger-ui.html
https://www.dbpedia-spotlight.org/demo/
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System 0-1 0-2 0-3 0-4 1-2 1-3 1-4 2-3 2-4 3-4 any

Original (Hulpus, et al., 2019) .61 .89 .98 1 .92 .97 .99 .90 .97 .88 .91
Current implementation .65 .84 .94 .96 .83 .93 .95 .83 .90 .80 .86

Table 1: The accuracy of binary classification according to the conceptual complexity (CoCo) scores for ten different level
pairs. Comparison of the original implementation with the current one (different entity linker used).

"comparison": "text2 is more complex than
text1"

}

Messages in the comparison field show whether the texts
are similar in their conceptual complexity and whether the
score could be computed or not according to the spreading
activation framework.
In the repository, in addition to the dataset and instructions
on how to run the API, we provide some simple python
tools that can be used to call the API on arbitrary texts using
the command line. The scripts can be used to test different
parameters and to reproduce our results on Wikipedia and
Newsela corpora (Section 4).

4. Evaluation
To evaluate CoCo, we use one of the tasks described in the
original paper (Hulpus, et al., 2019). As the originally used
entity linker, KanDis (Hulpuş et al., 2015), is not publicly
available, we used DBpedia Spotlight entity linker instead.

4.1. Task
The task consists in predicting the conceptually simpler of
the two versions of the same news story, based solely on the
value of conceptual complexity score assigned by CoCo.
We use the same 200 original news stories from Newsela
(Newsela level 0) and, for each of them, the four corre-
sponding simpler versions (Newsela levels 1-4) as those in
the original paper (Hulpus, et al., 2019). This results in a
total of 1000 texts. Given this is an unsupervised task, it
leaves us with 200 test instances for each of the ten Newsela
level pairs, e.g. 0-1, 0-2, 0-3, 0-4, 1-2, 1-3. We use the same
dataset and evaluation measure (accuracy) as in the original
paper (Hulpus, et al., 2019) so that we can directly compare
the two implementations that differ only in the choice of the
entity linker.

4.2. Entity Linker
In the current implementation, we used DBpedia Spotlight
entity linker instead of the originally used KanDis entity
linker (Hulpuş et al., 2015) to link the texts to DBpedia,
as KanDis is not freely available and DBpedia Spotlight is.
In linking the entities/concepts (common nouns and named
entities) to DBpedia, KanDis showed comparatively good
results at linking both types of entities (disambiguation ac-
curacy between 0.88 and 0.89 on news items). To minimize
the effect of wrong linking, the outliers, i.e. entities that
have very weak semantic relatedness (Hulpuş et al., 2015)
to other entities in the text, are removed.9 This strategy

9For more details on KanDis performances we refer the reader
to the original paper (Hulpuş et al., 2015).

should eliminate some of the wrongly linked concepts and
corner cases, and might be one of the reasons why using
KanDis gives better results than using DBpedia Spotlight
on our task (Table 1). Another reason might be the lower
disambiguation accuracy of the current implementation of
DBpedia Spotlight that we use, between 0.72 and 0.85 de-
pending on the version and test corpus (Daiber et al., 2013).

4.3. Results
As the results in Table 1 show, the current implementation
that uses DBpedia Spotlight instead of KanDis for entity
linking step, on average achieves a 5% lower accuracy on
the unsupervised binary task than the original implementa-
tion (Hulpus, et al., 2019). However, it achieves a 4% better
accuracy on the binary classification between original arti-
cles and their first level of simplification (0-1). This could,
however, also be the effect of the entity linker threshold
(currently set to 0.35). We did not do an extensive search
for the best entity linker threshold for this specific task. In-
stead, we used the value provided as default by the authors
of the software, and that has been used in literature before
(Daiber et al., 2013; Manrique et al., 2018).
Significantly lower accuracy scores in binary classification
among the most complex Newsela levels (Levels 0 and 1)
should not be taken as a bad sign for our tool. On the con-
trary, they just reflect the fact that in the first simplification
step, human editors mostly apply lexical and syntactic sim-
plification, while conceptual simplification becomes more
important at later stages of simplification, as indicated by
Hulpuş et al. (2019).
In the pairwise comparison of CoCo values across different
Newsela levels, in both implementations, there is a statis-
tically significant difference at a 0.001 significance level
(paired t-test).

5. Detection of Conceptual Simplification
In this section, we show how the tool can be used for detect-
ing the presence of conceptual simplification in a corpus.

5.1. Datasets
We use two different simplification corpora: the Newsela
corpus (Newsela, 2016) described in more details by Xu
et al. (2015), and the English Wikipedia - Simple English
Wikipedia (Coster and Kauchak, 2011), described in more
details by Coster and Kauchak (2011). Simplification of the
news articles in Newsela is aimed at children and language
learners, and has the goal of maintaining reader’s interest
in text. Furthermore, simplification is performed by train
human editors under strict quality control. Due to those,
texts in Newsela are simplified not only at the lexical and
syntactic levels, but also at the conceptual level. Articles
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Statistic Newsela EW-SEW
0 1 2 3 4 Original Simple

Mean 2.39 2.16 1.79 1.46 1.23 1.25 1.30
Stdev 0.81 0.69 0.58 0.44 0.37 0.75 0.76
Max 8.42 5.88 4.31 4.79 4.12 15.5 15.8

Table 2: The average conceptual complexity (CoCo) scores on Newsela and EW-SEW corpora (lower scores indicate
conceptually simpler texts).

Feature Statistic Newsela EW-SEW
0 1 2 3 4 Original Simple

Sentence length
Mean 21.71 18.71 15.69 12.87 10.37 25.19 16.68
Stdev 3.34 1.61 1.30 1.31 1.36 4.48 4.52
Max 35.84 24.20 19.91 17.63 13.96 59.0 50.6

Lexical richness
Mean 1027 904 850 731 584 3270 380
Stdev 364 161 146 132 168 3088 582
Max 3364 1854 1747 1741 1587 22335 5884

Table 3: The average sentence length and the average lexical richness on Newsela and EW-SEW corpora (lower scores
indicate conceptually simpler texts).

in Simple Wikipedia, in contrast, are not written by trained
human editors, do not go through any quality control, and
are not aimed at any target population in particular, but
rather for everyone. The main Simple English Wikipedia
page instructs authors to write articles using simple English
words (basic English words) and to write short sentences
with simple syntactic structures.10 It does not mention how
the articles should be structured, how complex should be
the concepts used, or how difficult the inferences that reader
needs to make in order to understand the text should be. In
other words, we can expect Simple English Wikipedia to be
lexically and syntactically simpler than the original English
Wikipedia, but not necessarily conceptually simpler.
After removing articles for which at least one version re-
ceived -1 for conceptual complexity (due to reasons men-
tioned in Section 3), we ended up with a total of 1880 orig-
inal Newsela articles (and, for each of them, the four corre-
sponding simplified versions), and a total of 1504 original
Wikipedia articles (and, for each of them, the correspond-
ing Simple English Wikipedia article).

5.2. Results
The statistics of the conceptual complexity computed on
both corpora are presented in Table 2. The distributions of
the CoCo scores are plotted in Figure 1.
As expected, one can notice the differences in the dis-
tribution of conceptual complexity scores across the five
Newsela complexity levels in terms of mean value, stan-
dard deviation, and maximum observed CoCo value. While
the distribution of the CoCo scores is widely spread among
the original articles (Level 0), during manual simplifica-
tion, it becomes more uniform and lower on average. In

10https://simple.wikipedia.org/wiki/
Wikipedia:How_to_write_Simple_English_pages

(a) EW-SEW.

(b) Newsela.

Figure 1: Distribution of conceptual complexity (CoCo)
scores on Newsela and EW-SEW corpora.

the English Wikipedia - Simple English Wikipedia (EW-
SEW) corpus, in contrast, we do not see any significant
differences in the distribution of the conceptual complex-
ity scores across the original Wikipedia vs. Simple English

https://simple.wikipedia.org/wiki/Wikipedia:How_to_write_Simple_English_pages
https://simple.wikipedia.org/wiki/Wikipedia:How_to_write_Simple_English_pages
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(a) ASL in EW-SEW.
(b) Lexical richness in EW-SEW.

(c) ASL in Newsela. (d) Lexical richness in Newsela.

Figure 2: Distribution of average sentence length (ASL) and lexical richness on EW-SEW and Newsela corpora.

Wikipedia articles. Those results prove our hypotheses that
in Simple English Wikipedia, no conceptual simplification
is used, unlike in the case of the Newsela articles.
Furthermore, if we wish to choose the conceptually simpler
article in each pair of EW-SEW articles according to their
CoCo scores (similar to the experiments performed on the
Newsela articles, presented in Table 1), we end up with the
accuracy of 0.49. This finding again supports the hypoth-
esis that articles in Simple English Wikipedia are not nec-
essarily conceptually simpler than their counterparts in the
original English Wikipedia.
If, in contrast, we compute the statistics for the average sen-
tence length and the average lexical richness (the number
of unique lemmas)11 for the Newsela and Wikipedia arti-
cles on different complexity levels (Table 3), we see that
both simplification types – the one applied in Newsela, and
the one applied in Wikipedia – include sentence shorten-
ing (one of the main features of syntactic simplification),
and decreasing the number of unique lemmas used (one of
the main features of lexical simplification). However, we
see that the maximum values for both features, as well as
their standard deviations, are significantly higher in Simple

11We count the number of types using the WordNet lemma-
tized form extracted from each POS-tagged token using the Per-
ceptronTagger and the resources available in NLTK (Bird et al.,
2009; Fellbaum, 2010). The Wikipedia corpus is already tok-
enized and split into sentences, therefore the average sentence
length on Wikipedia articles is easily extracted. However, on
Newsela corpus, we used the punkt sentence spliter and tokenizer
available in NLTK to compute the average sentence length.

English Wikipedia than in any of the Newsela levels (Ta-
ble 3 and Figure 2), indicating the absence of quality con-
trol in simplicity of articles in Simple English Wikipedia, as
pointed out by a number of previous studies, e.g. (Amancio
and Specia, 2014; Xu et al., 2015; Štajner et al., 2015).

6. Conclusions and Outlook
Automatic assessment of text complexity plays an impor-
tant role in education and in making written information
accessible to wider populations. While many research and
commercial tools have been proposed so far for automat-
ically measuring lexical and syntactic text complexity, no
tool has been proposed for automatically assessing concep-
tual text complexity which is on of the main factors for: (1)
maintaining reader’s interest in text; (2) improving reader’s
general knowledge by giving him/her a text on properly ad-
justed complexity level; (3) better social inclusion of people
with various intellectual impairments.
To bridge this gap, we presented CoCo - the first automatic
system to measure conceptual complexity of texts. We de-
scribed the provided hosted demo of the system and in-
structions on how to call the HTTP API. We also provided
the full code to allow for hosting it locally and adjusting it
as necessary. We modelled our system architecture using
docker containers which facilitates the deployment of the
model, evaluation and reproduction of our results over time
and across platforms.
We evaluated our CoCo tool and compared it against the
state of the art. The results indicated that the performance
of the system depends on the quality/choice of the entity
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linker. Furthermore, we showed how CoCo can be used
to detect whether conceptual simplification is present in a
given text simplification corpus or not, taking the exam-
ple of the two most widely used text simplification cor-
pora, Newsela and English Wikipedia - Simple English
Wikipedia (EW-SEW) corpora. As expected, the results in-
dicated that articles in Simple English Wikipedia are not
necessarily conceptually simpler than those in the original
English Wikipedia, a fact that is corroborated both by previ-
ous research and by the instructions provided to the authors
of the Simple English Wikipedia.
We hope that, by open sourcing our CoCo tool, we will
encourage more research on automatic assessment of con-
ceptual text complexity, a much needed field that has not
received much attention from the NLP community so far,
probably due to the complexity of the task and the lack of
frameworks and open source tools. Furthermore, we en-
vision that high number of parameters and their easy ad-
justment in the CoCo tool will inspire further research into
more personalized automatic assessment of conceptual text
complexity.
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Štajner, S., Bechara, H., and Saggion, H. (2015). A Deeper
Exploration of the Standard PB-SMT Approach to Text
Simplification and its Evaluation. In Proceedings of
ACL&IJCNLP (Volume 2: Short Papers), pages 823–
828.

Xu, W., Callison-Burch, C., and Napoles, C. (2015). Prob-
lems in Current Text Simplification Research: New Data
Can Help. Transactions of the Association for Computa-
tional Linguistics (TACL), 3:283–297.

Zhu, G. and Iglesias, C. A. (2017). Computing semantic
similarity of concepts in knowledge graphs. IEEE Trans-
actions on Knowledge and Data Engineering, 29(1):72–
85, Jan.

8. Language Resource References
Coster, William and Kauchak, David. (2011). English

Wikipedia - Simple English Wikipedia (document aligned
corpus). Freely available at: https://cs.pomona.
edu/˜dkauchak/simplification/, Version 2.0
document-aligned data.

DBpedia. (2014). DBpedia dump 2014. Freely available
at: https://wiki.dbpedia.org/.

DBpediaSpotlight. (2019). DBpedia Spotlight. Freely
at: https://dbpedia-spotlight.org, Version:
2016-01-29.

Newsela. (2016). Newsela Corpus. Freely available
for research purposes upon request at: https://
newsela.com/data, Version: 2016-01-29.

https://cs.pomona.edu/~dkauchak/simplification/
https://cs.pomona.edu/~dkauchak/simplification/
https://wiki.dbpedia.org/
https://dbpedia-spotlight.org
https://newsela.com/data
https://newsela.com/data

	Introduction
	Spreading Activation Framework for Tracking Conceptual Complexity of Texts
	Long-term Memory Parameters
	Working Memory Parameters

	Implementation and Code
	API Endpoints
	Complexity Assessment Endpoint
	Complexity Comparison Endpoint

	Evaluation
	Task
	Entity Linker
	Results

	Detection of Conceptual Simplification
	Datasets
	Results

	Conclusions and Outlook
	Bibliographical References
	Language Resource References

