
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 7161–7169
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

7161

A Tree Extension for CoNLL-RDF

Christian Chiarcos, Luis Glaser
Applied Computational Linguistics Lab (ACoLi)

Goethe University Frankfurt, Germany
{chiarcos, lglaser}@informatik.uni-frankfurt.de

Abstract
The technological bridges between knowledge graphs and natural language processing are of utmost importance for the future
development of language technology. CoNLL-RDF is a technology that provides such a bridge for popular one-word-per-line formats
with tab-separated values (TSV) that are widely used in NLP (e.g., the CoNLL Shared Tasks), annotation (Universal Dependencies,
Unimorph), corpus linguistics (Corpus WorkBench, CWB) and digital lexicography (SketchEngine): Every empty-line separated table
(usually a sentence) is parsed into an graph, can be freely manipulated and enriched using standard graph technology, and then be
serialized back into in a TSV format, RDF or other formats. An important limitation is that CoNLL-RDF provides native support for
word-level annotations only. This does include dependency syntax and semantic role annotations, but neither phrase structures nor text
structure. We describe the extension of the CoNLL-RDF technology stack for two vocabulary extensions of CoNLL-TSV, the bracket
notation used in earlier CoNLL Shared Tasks and the extension with XML markup elements featured by CWB and SketchEngine. In
order to represent the necessary extensions of the CoNLL vocabulary in an adequate fashion, we employ the POWLA vocabulary for
representing and navigating in tree structures.

Keywords: linguistic annotation, data formats, interoperability, tab-separated values, RDF, graphs, trees, CoNLL-RDF, POWLA

1. Introduction & Motivation
Since their original conception in the early 1990s, one-
word-per-line formats, mostly based on tab-separated val-
ues (TSV), have become enormously influential in cor-
pus linguistics (Evert and Hardie, 2011, Corpus Work-
bench/CWB),1 digital lexicography (Kilgarriff et al., 2014,
SketchEngine),2 natural language processing (Schmid,
1994, TreeTagger), and as exchange format of various an-
notation projects (Universal Dependencies (Nivre et al.,
2016), PropBank, UniMorph).3 The main reasons for their
continuing popularity are the apparent simplicity of tables
and tab-separated values, and their expressive power that
allows for the flexible and seamless extension of annota-
tions with additional columns and novel annotations, mak-
ing these formats capable of expressing and combining
any kind of word-level annotation in a compact, human-
readable, and machine-processable format.
Yet another factor contributing to the popularity of TSV for-
mats in natural language processing is their application as
exchange and evaluation format(s) of the Shared Tasks of
the SIGNLL Conference on Computational Natural Lan-
guage Learning (CoNLL)4, conducted annually since 1999.
With CoNLL data sets as an important basis for future eval-
uation of most NLP tasks, their formats are supported by
most existing NLP tools, and various CoNLL-TSV formats
(‘dialects’) have seen a steady increase in popularity for
linguistic data in NLP applications since. Even when cre-
ated independently from CoNLL Shared Tasks, novel TSV
formats following CoNLL conventions are now usually re-

∗ The authors contributed equally to the submission.
1http://cwb.sourceforge.net/
2http://www.sketchengine.eu
3http://universaldependencies.org/,

http://propbank.github.io/, http://unimorph.
github.io/

4http://www.signll.org/conll

ferred to as ‘CoNLL-TSV’, e.g., the CoNLL-U format of
the Universal Dependencies. Here, we follow this con-
vention in describing all one-word-per-line TSV formats as
CoNLL-TSV.

Chiarcos and Fäth (2017) introduced the CoNLL-RDF li-
brary, which allows to transform any CoNLL-TSV format
into an isomorphic graph representation in RDF, to flex-
ibly transform it with SPARQL-Update, to enrich it with
external ontologies and knowledge bases, and to serialize
it in a canonical format, in any RDF serialization (RD-
F/XML, Turtle, JSON-LD), a graphical representation (us-
ing GraphViz/Dot) or back into a CoNLL-TSV representa-
tion. This transformation is generic and applicable to any
TSV format as it uses user-provided column labels to pro-
duce properties (labeled edges) that hold the various anno-
tations. The only data structures it enforces are word (row)
and sentence (empty-line separated group of rows), as well
as conll:HEAD, a property that links a word with its par-
ent (in dependency annotation), resp., the (virtual root of
the) sentence. Beyond that, CoNLL-RDF is semantically
shallow and its annotation properties are not backed by an
ontology. However, using SPARQL Update, CoNLL-RDF
data can be flexibly transformed into a proper Linked Data
representation and linked with external ontologies.

The canonical CoNLL-RDF format is a fragment of RD-
F/Turtle that emulates the original TSV formats by putting
one word (with its annotations) in one line, and separating
sentences with an empty line. However, whereas CoNLL-
TSV is a tabular format, the canonical CoNLL-RDF format
uses explicit property names (comparable to a Python dic-
tionary or Java hashtable) as its data structure. Aside from
providing RDF output, we also provide transformation back
into CoNLL for further processing of its annotations with
conventional NLP pipelines and libraries.

Despite its popularity and wide use, CoNLL-TSV is lim-
ited in its expressivity: It imposes constraints on the type

http://cwb.sourceforge.net/
http://www.sketchengine.eu
http://universaldependencies.org/
http://propbank.github.io/
http://unimorph.github.io/
http://unimorph.github.io/
http://www.signll.org/conll

7162

#ID WORD LEMMA UPOS POS FEATS HEAD EDGE
1 James James PROPN NNP Number=Sing 2 name
2 Baker Baker PROPN NNP Number=Sing 3 nsubj
3 told tell VERB VBD Mood=Ind|... 0 root
4 reporters reporter NOUN NNS Number=Plur 3 obj
5 Friday Friday PROPN NNP Number=Sing 3 nmod:tmod
6 : : PUNCT : _ 3 punct

Figure 1: Example of CoNLL-U annotation (DEPS and
MISC columns omitted)

of linguistic annotation it captures. Indeed, CoNLL-TSV
is ideally suited for word-level annotations such as part-of-
speech tags or syntactic dependencies, it can be extended
to the annotation of non-recursive spans (using the IOBES
scheme) and semantic roles (by adding one argument col-
umn per predicate), but the format provides no native sup-
port for phrase-level annotations, text structure or annota-
tions beyond single sentences. CoNLL-RDF does not im-
pose such restrictions, but allows to create and to process
arbitrary graph data structures, for example, for parsing
topological fields in Middle High German (Chiarcos et al.,
2018), or for the creation of syntactic-semantic annotations
in the context of Role and Reference Grammar (Chiarcos
and Fäth, 2019). However, as its vocabulary is grounded in
CoNLL-TSV, CoNLL-RDF does not specify datatypes for
trees and directed graphs not grounded in individual words,
nor does the CoNLL-RDF package parse or serialize such
annotations.
In this paper we introduce the extensions we made to the
CoNLL-RDF library to natively support tree-like annota-
tions. Using the POWLA vocabulary (Chiarcos, 2012c),
we model an annotation graph independent of the sentence
and word structure imposed by CoNLL. In this way, we can
even represent generic linguistic annotations that go beyond
token-level annotation e.g. for usage in spoken discourse.
We will first revisit the original concept and functionality
of the CoNLL-RDF libraries. Second, this paper will de-
scribe a number of one-word-per-line TSV dialects with
extensions for tree structures. We show that CoNLL-RDF
was only partially able to represent them, and incapable of
processing them effectively. We then explain how we com-
plement the CoNLL-RDF vocabulary with generic linguis-
tic data structures from the POWLA vocabulary (Chiarcos,
2012c), and we describe the extensions of the CoNLL-RDF
libraries to parse tree annotations, to process and to produce
such data structures. Afterwards we present the extensions
we made to CoNLL-RDF that enable the tree extension and
finish with an outlook on future work.

2. CoNLL-TSV and CoNLL-RDF
2.1. The CoNLL-TSV Format
As the exchange, evaluation and data format for most
CoNLL Shared Tasks in the past 20 years, shared task or-
ganizers used line wise, tab separated formats with one
word per line and sentences split by empty lines. Since
then, CoNLL formats have been been used in a variety of
applications in NLP beyond the competition. In general,
CoNLL-TSV data is represented as tab separated values,
each line corresponding to a single word, with each column
entry representing an annotation to that word. Sentences

are delimited with a new line. There are different CoNLL
dialects, that each represent different information in these
columns.
Fig. 1 depicts an example representation of such a data for-
mat, the CoNLL-U format used in the context of the Uni-
versal Dependencies initiative, with the last two columns
DEPS and MISC omitted. The column names are given in
the first comment line, which is lead by a hash mark. The
ID column contains a sentence wide identifier, WORD rep-
resents the form, LEMMA the lemma, UPOS the POS-tag
in the UD tagset, the POS column contains any language
specific speech tag, FEATS contains morphosyntactic fea-
tures encoded as key-value pairs with a pipe (‘|’) as delim-
iter. The HEAD column points to the ID of the parent in the
dependency tree, with 0 representing the root. Finally, the
EDGE column carries the label of the dependency relation
that holds between a word and its head, resp., the (virtual
root of the) sentence.5

CoNLL-U only represents one specific CoNLL dialect, but
is supported by most multilingual dependency parsers –
as these are usually trained on UD data. Fig. 1 shows a
slightly simplified example from the OntoNotes (Hovy et
al., 2006) wsj-0655 file, with annotations subsequently
provided by the authors. Other dialects omit, reorder or
complement these columns with additional content. All
of them share the general advantages of this format: They
enjoy widespread integration in existing NLP technology,
they are easy to read and can be transformed and read with-
out a lot of overhead.

2.2. From TSV to Annotation Graphs
Being easily processable, interpretable and extensible, tab-
ular data structures in TSV formats are popular and effec-
tive for word-level annotations. They are also capable of
representing other annotations, e.g., dependency relations
between words by means of coindexing (between HEAD
and ID columns in Fig. 1). But while TSV formats can be
trivially parsed into tables (two-dimensional arrays), such
tables are less than ideal for querying or manipulating graph
structures. With the following listing, we show how to re-
trieve the lemmas of all subject arguments of the root nodes
of a sentence in Java, using a two-dimensional array:

String[][] sentence; // 2-dimensional array
// find root
for(int i = 0; i<sentence.length; i++)
if(sentence[i][7].equals("root")) {
String[] root = sentence[i];
// find nsubj
for(int j = 0; j<sentence.length; i++)
if(sentence[j][6].equals(root[0]) &&

sentence[j][7].equals("nsubj")) {
String[] nsubj = sentence[j];
// result value: lemma
String lemma = nsubj[2]; } }

5CoNLL formats differ with respect to the order and content of
columns, but also with respect to the labels they apply. In CoNLL-
U terminology, the columns WORD and EDGE are abbreviated
FORM and DEPREL, respectively. Here, we stay with CoNLL-
RDF conventions.

7163

The example nicely illustrates that path traversal within ar-
ray requires loops and variable bindings for every edge in
the graph. In particular, it is hardly possible to define graph
patterns of variable length. Graphs provide the higher-order
data structures necessary for this purpose; with RDF and
SPARQL, they can be represented, queried and manipu-
lated in a platform-independent, W3C-standardized man-
ner. Another advantage of using RDF for representing
graphs is that it builds on Uniform Resource Identifiers
(URIs) to represent nodes, relations and types. With a
URI, every node requires the developer to provide a glob-
ally unambiguous identity, whereas CoNLL-U IDs are only
unique within a sentence. As a result, RDF trivially per-
mits creating cross-references between different sentences,
whereas CoNLL-U does not provide a formalism for this
purpose, so that ad hoc solutions need to be improvised.6

CoNLL-RDF was designed to provide a seamless round-
tripping between arbitrary CoNLL-TSV formats and RDF
graphs.

2.3. CoNLL-RDF
Before we proceed with the extension of CoNLL-RDF, we
describe its current status. CoNLL-RDF (Chiarcos and
Fäth, 2017) is available as open source from our GitHub
repository.7 CoNLL-RDF provides vocabulary conventions
for representing CoNLL and other TSV formats in RDF,
components for consuming and producing such data, a
component for the efficient manipulation of CoNLL data by
means of SPARQL updates applied in parallel to individual
sentence graphs, and various scripts that demonstrate the
potential of this functionality.
Using the CoNLL-RDF library, linguistic data in any
CoNLL dialect or TSV format can be transformed to a
shallow RDF representation of it. CoNLL-RDF builds on
a small fragment of the popular NIF vocabulary (Hell-
mann et al., 2013), i.e., the concepts nif:Sentence,
nif:Words and the properties nif:nextSentence
and nif:nextWord.8 Beyond this, CoNLL-RDF adopts
user-provided column labels as names of properties in the
conll name space. It is thus a freely extensible, but a se-
mantically shallow vocabulary that is not being backed up
by a formal ontology. All column labels are preserved as
data type properties that provide string values, except for
very few that carry special semantics: HEAD will be con-
verted to an object property (foreign key) pointing from the
current word to its syntactic head, ID (if present) is used
to define the word URI, and PRED ARGs is a label that
captures multiple columns for semantic role annotation.9

6The CoNLL-2011 format added a COREF column that pro-
vides co-indexing information. The CoNLL-2015 format intro-
duced an additional column with numerical word IDs defined
on text level rather than sentence level. We are not aware of a
CoNLL-TSV solution to express relations across different texts.

7https://github.com/acoli-repo/conll-rdf,
Apache license 2.0.

8CoNLL-RDF deviates from NIF in providing its own URI
schema. This is necessary, because offset-based string URIs as
foreseen in NIF are not applicable to a format that does not pre-
serve the original white spaces after tokenization.

9Since CoNLL-2004, semantic role information is represented

:s1_1 rdf:type nif:Word;
conll:ID "1";
conll:WORD "James";
conll:LEMMA "James";
conll:UPOS "PROPN";
conll:POS "NNP";
conll:FEATS "Number=Sing";
conll:HEAD :s1_2;
conll:EDGE "name";
nif:nextWord :s1_2 .

Figure 2: CoNLL-RDF transformation of the first row in
fig. 1

The conversion with CoNLL-RDF returns a canonical se-
rialization in Turtle/RDF of the CoNLL data using user-
specified column names in the conll namespace. Thus, the
new representation can be further enhanced with SPARQL
update queries using the CoNLLRDFUpdater. Because
we emphasize interoparability with existing NLP and LOD
technology, we also provide the CoNLLRDFFormatter that
can recreate CoNLL from the CoNLL-RDF after updates
have been performed. Note that the last step may be lossy,
as newly introduced annotations may not be representable
within the restrictions of CoNLL.

2.3.1. The CoNLL-RDF Format
The RDF data model is grounded on the notion
of triples, consisting of a subject (source node),
property (relation type) and object (target node
or literal value), each represented by a URI, say,
<http://ufal.mff.cuni.cz/conll2009-st/
task-description.html#ID> for the ID column.
The Turtle format allows to define namespace prefixes
(e.g., conll:ID) and separates full triples by a dot (.).
If a triple shares its subject with the preceding triple, it is
possible to omit the subject and to mark this by using semi-
colon (;) as triple separator. The canonical CoNLL-RDF
format is a Turtle fragment that requires sentence breaks to
be marked by empty lines, and for every word a word URI
followed by a list of semicolon-separated properties (conll
properties, nif:nextWord, other RDF properties).
Information on the sentence precedes or follows all words
of the sentence, again written in a single line.
Fig. 2 provides a fragment of CoNLL-RDF in its Turtle
serialization. In the canonical CoNLL-RDF format, this
information would be written in a single line, adjusted here
for presentational reasons.

2.3.2. Querying CoNLL-RDF
The dominant query language for RDF data is SPARQL
(Prud’Hommeaux and Seaborne, 2008), a W3C stan-
dard that can be informally described as a combina-
tion of aspects of SQL (SELECT, WHERE, BIND, FIL-

by multiple columns: For every predicate in the PRED column,
another argument row is introduced that holds the argument infor-
mation for this particular predicate. In CoNLL-RDF, this is rep-
resented by object properties pointing from the predicate (word)
to the argument (words), and which take their name from the an-
notated semantic role (e.g., conll:A0 for the agens argument,
usually annotated as A0).

https://github.com/acoli-repo/conll-rdf
http://ufal.mff.cuni.cz/conll2009-st/task-description.html#ID
http://ufal.mff.cuni.cz/conll2009-st/task-description.html#ID

7164

TER, etc.) and Turtle (representation of graph pat-
terns, extended with variables). In addition, SPARQL
1.1 (Harris and Seaborne, 2013) introduced property
paths, i.e., the possibility to express chains of triples
(e.g., ?x conll:HEAD/conll:HEAD ?z as a short-
hand for ?x conll:HEAD ?y. ?y conll:HEAD
?z), and operators over these, e.g., the Kleene star (?x
conll:HEAD* ?y).
The lemma(s) of the subject(s) of root nodes in CoNLL-U
can thus be addressed in a SPARQL WHERE block:

?root conll:EDGE "root".
?nsubj conll:EDGE "nsubj".
?nsubj conll:HEAD ?root.
?nsubj conll:LEMMA ?lemma.

2.3.3. Manipulating CoNLL-RDF
The CoNLL-RDF library provides the CoNLLRDFUpdater
that allows to apply and to iterate a sequence of SPARQL
Update scripts to the CoNLL data it consumes. This can
be used, for example, to simplify navigation in a parse tree.
The following SPARQL Update script combines informa-
tion from EDGE and HEAD columns to facilitate naviga-
tion in CoNLL-U dependency trees:

INSERT { ?x ?rel ?y.}
WHERE {
?x conll:HEAD ?y; conll:EDGE ?e.
BIND(URI(CONCAT('https:// c

universaldependencies.org/u/dep/',?e))
AS ?rel) }

↪→

↪→

As a result, we can now effectively traverse UD dependen-
cies:10

PREFIX dep: <https:// c
universaldependencies.org/u/dep/>↪→

SELECT ?lemma
WHERE {
?nsubj dep:nsubj/dep:root ?sentence;

conll:LEMMA ?lemma }

More complex graph patterns can be expressed using ad-
ditional SPARQL property path operators such as + and *
(iteration), | (disjunction), ˆ (inversion), resp., their corre-
sponding grouping in parentheses.
As mentioned above, CoNLL-RDF has been used for vari-
ous annotation and feature extraction tasks. It does how-
ever, inherit some of the limitations of the CoNLL-TSV
data structures it is based on: CoNLL-TSV can neither
adequately represent units of annotation that are smaller
than words (e.g., in morphology), nor is it capable of rep-
resenting nested structures (as necessary for text structure
or phrase structure grammar). Each of these can be repre-
sented in RDF, but they require to extend the CoNLL-RDF
vocabulary beyond elements defined by CoNLL, and these
vocabulary elements need to be supported by the CoNLL-
RDF package as input and output elements.

10Note that we also improved annotation transparency: The
URIs of the newly created properties are links to the actual doc-
umentation about the corresponding label, so, this information is
now bundled with the annotation graph.

In the following section, we describe two extensions of
the original one-word-per-line TSV formats introduced for
representing tree annotations, and use these to extend the
CoNLL-RDF infrastructure accordingly.

3. Tree Structures in TSV Formats
Conversion from CoNLL to CoNLL-RDF works seam-
lessly for word-level annotations, dependency syntax and
semantic role annotations. However, one-word-per-line
TSV formats provide rudimentary support for annotations
on the level of text (markup) and syntax (phrase structures)
only, and CoNLL-RDF inherits this limitation.
We present two suggested extensions of one-word-per-line
TSV formats as the basis of the extension of CoNLL-RDF
with data structures for trees: the bracketing notation in
accordance with the Penn Treebank and the XML markup
used by SketchEngine or CorpusWorkbench.

3.1. PTB Bracketing Notation
The Penn Treebank(Marcus et al., 1993, PTB) featured a
formalism for phrase structure grammar that uses open-
ing and closing brackets to indicate beginning and end of
a phrase. They enclose first the phrase annotation fol-
lowed by the primary data. For representing such data, the
CoNLL-2005 format added another column with parse in-
formation split into word-level pieces, and the primary data
(= content of the WORD column) replaced by the place-
holder ‘*’. For each unit of primary data, the bracketing
and annotations containing the *-replacement are presented
in a separate column.
In CoNLL-RDF, this information is simply preserved as an
opaque string, e.g., in the triple :s1 1 conll:PARSE
"(TOP (S (NP-SBJ *" for the first row in Fig. 4.
With the CoNLLRDFUpdater, it was already possible to
recover the actual tree structure from such strings using
SPARQL Update scripts, and likewise, to create them from
an internal data structure that represents the parse tree. This
is, however, too complex and time-consuming to be practi-
cal. In particular, it requires recursive SPARQL Updates in
order to find and resolve (resp., insert) matching parenthe-
ses. As an alternative, we provide native support for tree
structures in CoNLL-RDF.

3.2. SGML/XML Markup Extentions
For representing markup information and syntactic chunks,
the CorpusWorkbench (Evert and Hardie, 2011) and the
SketchEngine (Kilgarriff et al., 2014) provide another ex-
tension of one-word-per-line TSV formats, the enrichment
with XML (SGML) markup elements: In order to repre-
sent trees, word-level annotations can be interrupted by
lines that hold one markup element each. For example,
several lines of word-level annotations can be grouped to-
gether into a phrase by enclosing them between single lines
with the markup elements <p>, resp. </p>. XML markup
may also include document-wide information, for which
the CoNLL-TSV formalism has no concept. See Fig. 6
for example data from SketchEngine.
In the original CoNLL-RDF pipeline, this markup infor-
mation was largely ignored, except that certain markup

7165

Figure 3: POWLA data model

elements were recognized as sentence separators (like an
empty line in CoNLL-TSV).

4. Extending the CoNLL-RDF Vocabulary
with POWLA Data Types

CoNLL-TSV data structures provide no base vocabulary
for representing trees. As we aim to use established vo-
cabularies rather than to invent new ones, we adopt the
POWLA vocabulary (Chiarcos, 2012b), as this provides
an OWL2/DL implementation of the Linguistic Annotation
Framework (Ide and Romary, 2004, LAF). In this approach,
we follow the suggestion of Cimiano et al. (2020, p.103-
111) to complement NIF with POWLA data structures and
extend it to CoNLL-RDF.

4.1. The POWLA Vocabulary
POWLA (Chiarcos, 2012c) is an OWL2DL vocabulary
for systematizing linguistic annotations. Compared to
other formalisms, POWLA does not make any assump-
tions on what the atomic structures look like. POWLA is
an OWL2/DL serialization of PAULA (Dipper and Götze,
2005; Dipper and Götze, 2006)11 an early implementa-
tion of LAF (Ide and Romary, 2004) and serialized in a
standoff XML format (Stede et al., 2006; Zeldes et al.,
2009). POWLA has been applied to modeling multi-layer
corpora, including case studies on the Manually Annotated
Sub-Corpus of the American National Corpus (Ide et al.,
2008, MASC), syntactic and coreference annotated cor-
pora (Chiarcos, 2012a), high-precision information extrac-
tion (de Araujo et al., 2017), annotation engineering (Chiar-
cos and Fäth, 2019), and syntactic parsing (Chiarcos et al.,
2018).
POWLA aims to formalize linguistic annotations by build-
ing on existing standards with respect to their anchoring in
the original document. PAULA XML uses XLink/XPointer
references for this purpose. POWLA’s design goal is to
complement existing NIF, Web Annotations or application-
specific RDF renderings of linguistic annotations with in-

11Every PAULA data structure can be expressed in POWLA,
but POWLA is slightly more general: It is not restricted to acyclic
graphs. This is not a disadvantage, as cycle detection (and reso-
lution) for POWLA data can be easily implemented by SPARQL,
e.g., using the property path powla:hasParent.

James NNP (TOP (S (NP−SBJ *
Baker NNP *)
t o l d VBD (VP *
r e p o r t e r s NNS (NP *)
F r i d a y NNP (NP−TMP *)
: : *

Figure 4: Example of CoNLL bracketing notation

James NNP (TOP (S (NP−SBJ *
Baker NNP *)
t o l d VBD (VP *
r e p o r t e r s NNS (NP *)
F r i d a y NNP (NP−TMP *)
: : *)))

Figure 5: CoNLL with bracketing notation after round-
tripping through CoNLL-RDF, identical with Fig. 4 except
for whitespaces

teroperable linguistic data structures. It is thus underspeci-
fied in respect to the anchor modelling.

4.2. Key Concepts of POWLA
The overall structure of the POWLA vocabulary is summa-
rized in Fig. 3. POWLA defines a key concept in form of
powla:Node. This node expresses a single linguistic an-
notation. These nodes can be related to each other using
two property pairs. The property powla:hasParent
(powla:hasChild is its inverse) can be used to ex-
press hierarchical structures in that annotation, e.g. when
representing syntax trees. The property powla:next
(powla:previous is its inverse) can be used to put
powla:Nodes into a sequential order. We recommend
to always put siblings pointing to the same node with
powla:hasParent in relation with each other by using
powla:next, as this makes navigating the graph easier.
Also, this provides an order of the tree elements that can be
independent of the underlying strings. This can be useful
when annotating speech data for example, where the canon-
ical syntax may deviate from the actual representation.

5. Processing Tree Annotations
5.1. Penn Treebank Bracketing Notation
We now elaborate on how this transformation works for
CoNLL containing PTB-like bracketing annotation as de-
scribed in section 3.1. First, we detect columns that con-
tain bracketing annotation by searching for open and clos-
ing bracket, because we need to treat them separately from
the normal CoNLL columns. Then, we read the CoNLL-
TSV sentence wise, recognizing new lines as sentence
boundaries. For each sentence, we first separate stan-
dard CoNLL-TSV columns, treat them as described in sec-
tion 2.1. and output them. With the remaining columns
containing bracketing annotation we do the following: We
remove the aforementioned *-placeholders in all columns
that contain the bracketing annotations. We then tra-
verse the tree given by the bracketing annotation within

7166

<doc i d =”G10” n=”32”>
<head t y p e =”min”>
FEDERAL J J
CONSTITUTION NN
<g/>
, $,
1789 NUM
</head>
<p n=”1”>
” $,
<g/>
we PRP
t h e DT
Pe op le NN

Figure 6: Example of a SketchEngine file

the POWLA structure. Similar to the conll:COLNAME
structure we employ when parsing CoNLL, we introduce
a powla:Node that also has a conll:COLNAME object
for each annotation we find. This node will furthermore be
linked to other powla:Nodes via powla:hasParent
and powla:next properties to recreate the tree structure.
The annotation part of the tree will be represented with
a rdf:value property. Fig. 4 displays a partial sen-
tence in such a CoNLL file with bracketing notation. Using
the CoNLLBrackets2RDF class, we generate the shallow
CoNLL-RDF transformation depicted in Fig. 8.
Because one central design goal of the CoNLL-RDF pack-
age is building a bridge between NLP and LOD formats and
pipelines, we also provide functionality for round-tripping
to CoNLL again. Using a SPARQL update query, we again
collapse the tree structure that the powla:Nodes repre-
sent into their former bracketing representation. This is
achieved by using the link established between the prop-
erties in the conll: namespace and the powla:Node
structure. For each conll: property, we search the
graph linked via powla:hasParent for all dependent
powla:Nodes and concatenate their rdf:values into
the original bracketed notation and reintroduce the *-
placeholder. The result after roundtripping is depicted in
Fig. 5. Also note, that the brackets were incomplete in Fig.
4, because we only used a partial sentence. This is fixed by
the SPARQL script, as we guarantee full trees.

5.2. SGML/XML Extensions
In analogy with section 5.2., we provide a conversion
of the SGML/XML markup extensions to CoNLL-
RDF. XML data that is captured, will be appended to
a powla:Node with type conll:XML DATA. The
node name will be given as an object to a rdf:value
property. Each attribute contained in the XML node will
receive a dedicated property in the xml namespace12 with
the attribute value as the object. E.g. the doc XML
node in the first line in Fig. 6 will result in :x1 a
powla:Node, conll:XML DATA; rdf:value
"doc" ; x:id "G10"; x:n "32".. See Fig. 9
for the full CoNLL-RDF result. Again, as we emphasize

12http://purl.org/acoli/conll-rdf/xml#

WORD POS XML DATA
FEDERAL J J (doc n=\”32\” i d =\”G10\” (head t y p e =\”min\” *
CONSTITUTION NN *

(g *)
, $, *
1789 NUM *))

&quo t ; $, (doc n=\”32\” i d =\”G10\” (p n=\”1\” *
(g *)

we PRP *
t h e DT *
Pe op l e NN *))

Figure 7: CoNLL with XML data in PTB-style annotation
after roundtrip

interoperability between NLP and LOD in our design, we
provide functionality for reconversion to CoNLL. Note
that we can not fully reconstruct the XML annotations,
as they may give information that is valid for the entire
document which is not possible in the standard CoNLL
format. Instead, we can recover the tree structure similar
to the PTB-like annotations as explained in section 5.1.
which results in CoNLL as depicted in Fig. 7. Parsing
the example SketchEngine file in Fig. 6 with the generic
CoNLLStreamExtractor class yielded 41 triples compared
to 72 triples using the new XMLTSV2RDF class. During
further postprocessing scripts, the original XML markup
can be restored.

5.3. Limitations
SketchEngine allows non-closing brackets, which we cur-
rently do not. Therefore it must be ensured that each open-
ing xml span will be closed at some point. Furthermore, we
do not validate the result in any way. To detect and resolve
cycles, we provide a SPARQL script at our GitHub reposi-
tory. Alternatively, it is possible to use dedicated solutions
for this purpose, for example Shape Expressions (ShEx).13

6. Evaluation
We conducted three evaluation experiments:

1. Runtime for parsing CoNLL-TSV with PTB-style
syntax annotations

2. Information loss for round-tripping from CoNLL-TSV
via CoNLL-RDF and POWLA to CoNLL-TSV

3. Conversion from SketchEngine format via CoNLL-
RDF and POWLA to CoNLL-TSV

For experiment 1, we compare an implementation that uses
SPARQL Update scripts with the revised CoNLL-RDF
parser. We use both to convert the WSJ section of the
OntoNotes corpus,14 to CoNLL-RDF using a 3.79 GHz In-
tel i5-7600K with 16 GB of memory and a SSD drive. Ta-
ble 1 presents a significant speed-up.
For experiment 2, we parsed and regenerated the WSJ
section of the OntoNotes corpus. For this purpose, we
excluded the SRL annotations from the documents. We

13http://shex.io/
14PropBank edition, available from https://github.

com/propbank/propbank-release

http://purl.org/acoli/conll-rdf/xml#
http://shex.io/
https://github.com/propbank/propbank-release
https://github.com/propbank/propbank-release

7167

Version number of triples time elapsed time per triple
(1) 10, 924, 378 966, 162 ms 0.088 ms
(2) 12, 526, 204 34, 457 ms 0.0027 ms

Table 1: Timing comparisons between conversion with (1)
CoNLLStreamExtractor + SPARQL updates and (2) CoN-
LLBrackets2RDF

were able to perform a loss-less roundtrip from the origi-
nal CoNLL-TSV to a CoNLL-RDF and POWLA represen-
tation and back to an identical representation of the data in
CoNLL-TSV. Parsing of SRL arguments was already pos-
sible using the CoNLLStreamExtractor.
For experiment 3, the principal feasibility has been demon-
strated in section 3.2.. Because we only recover a PTB-like
CoNLL annotation of the XML-markup elements so far,
we did not perform a round-tripping experiment as in ex-
periment 2. Instead, we measured whether the information
contained in the XML markup is adequately preserved by
comparing the number of markup elements with the num-
ber of powla:Nodes retrieved from it. We transformed
part of the TenTen Corpus (Jakubı́ček et al., 2013) into
CoNLL-RDF using the SGML/XML extension. The SGM-
L/XML annotations are embedded in metadata concerning
the retrieval, which we removed. This resulted in 71,617
powla:Nodes representing the annotation graph. This is
identical to the number of XML markup elements. This
means, that we were able to fully transport all SGML/XML
annotations from the original corpus into CoNLL-RDF.

7. Related Research
A very large number of interchange formats for NLP and
representation formalisms for linguistic annotations have
been (and continues to be) developed in the past 10 years,
some of them developed as native RDF vocabularies, usu-
ally with serializations in Turtle or JSON-LD, many others
with designated interfaces with Semantic Web technology,
e.g., NAF (Fokkens et al., 2014).15

Popular representatives from the first group are the NLP
Interchange Format (Hellmann et al., 2013, NIF), and the
LAPPS Interchange Format (Verhagen et al., 2015, LIF).
Both provide basic data structures for linguistic annotations
in NLP pipelines, coupled with annotation-specific exten-
sions. NIF focuses on formalizing string annotations (and
is employed here for this purpose). It does not, however,
provide specifications for linguistic data structures in gen-
eral. In particular, NIF 2.0 provides no data structures for
empty nodes (e.g., syntactic traces or zero anaphora), nor
does it permit multiple distinct, but co-extensional annota-
tions of the same string. Although it does provide syntax-
related classes such as nif:Phrase (v nif:String),
it is thus not an adequate vocabulary for extending CoNLL-
RDF with generic data structures for representing trees.
LIF16 is a JSON-LD-based formalism inspired by NIF,
but capable to express such information. LIF is designed
for NLP pipelines and provides data structures for popu-
lar types of linguistic annotation. As far as generic data

15https://github.com/newsreader/NAF
16http://vocab.lappsgrid.org/

structures for linguistic annotation are concerned, these are
largely equivalent to POWLA, although less compact, in
that LIF relations are reified, whereas POWLA provides the
powla:hasParent relation as a single statement.
Another RDF-based vocabulary that has been used for lin-
guistic annotation is Web Annotation (Sanderson et al.,
2017, WA). Web Annotation was not designed for NLP or
language resources, but for expressing metadata over web
objects, and it is largely applied for this purpose, especially
in Bioinformatics and Digital Humanities. It does not, how-
ever, provide specifically linguistic data structures.
Overall, these formats are actively used by their respective
communities, but they are less popular in the language re-
source community. The reason is pragmatic rather than
scientific, i.e., that they impose some technical overhead
over working with traditional formats such as CoNLL-TSV,
so, for applications not requiring Semantic Web technology
(even if they could benefit from it), they tend to be ignored.
By providing a technological bridge between RDF and
TSV formats, CoNLL-RDF addresses this particular gap
and to the best of our knowledge, it is the only proposal
of its kind for TSV formats in language technology. In-
terfaces between TSV formats and RDF technology have
been explored before, e.g., with the W3C recommentation
CSV2RDF (Tandy et al., 2015), that allows to map columns
in a table to RDF properties. It however misses certain
requirements for language resources, e.g., support for ta-
bles of varying size (for SRL annotations), sentence split-
ting with empty lines, or relations between adjacent rows
(nif:nextWord). We thus chose CoNLL-RDF as the
basis for our experiments rather than CSV2RDF.
The tree extension of CoNLL-RDF builds on the POWLA
vocabulary. POWLA has originally been developed for
modelling and querying multi-layer corpora (Chiarcos,
2012b), and subsequently applied in information extraction
(de Araujo et al., 2017). Alternatives to POWLA do exist
(especially the LIF format mentioned above), and we chose
POWLA because it is a compact, generic vocabulary (no
annotation-specific extensions, no obligatory reification of
hasParent relations).

8. Conclusion & Outlook
In this paper, we present the extension to the CoNLL-RDF
library. We present a novel approach to natively transform
tree-like structures in two different varieties: PTB-like an-
notations and CoNLL embedded in XML markup as used
by SketchEngine or CorpusWorkbench. To do so, we ex-
tend the previous shallow transformation from CoNLL to
CoNLL-RDF with a parallel annotation graph using the
POWLA vocabulary. This enables us to represent anno-
tations on any level of complexity, even going beyond tree-
like structures by representing entire annotation graphs us-
ing RDF. The extensions to the CoNLL-RDF libraries en-
able lossless round-tripping from CoNLL to CoNLL-RDF
and back for PTB-like annotations. Round-tripping CoNLL
embedded in XML may be lossy as document-wide anno-
tations cannot be represented in standard CoNLL. Instead
we provide conversion from XML embedded CoNLL to
CoNLL-RDF with a possible roundtrip to a PTB-like rep-
resentation in CoNLL.

https://github.com/newsreader/NAF
http://vocab.lappsgrid.org/

7168

PREFIX n i f : <h t t p : / / p e r s i s t e n c e . uni−l e i p z i g . o rg / n l p 2 r d f / o n t o l o g i e s / n i f−c o r e#>
PREFIX c o n l l : <h t t p : / / u f a l . mff . c u n i . cz / c o n l l 2 0 0 9−s t / t a s k−d e s c r i p t i o n . h tml#>
PREFIX x : <h t t p : / / p u r l . o rg / a c o l i / c o n l l−r d f / xml#>
PREFIX r d f s : <h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#>
PREFIX r d f : <h t t p : / / www. w3 . org /1999/02/22 − r d f−syn t ax−ns#>
PREFIX t e r m s : <h t t p : / / p u r l . o rg / a c o l i / open−i e />
PREFIX powla : <h t t p : / / p u r l . o rg / powla / powla . owl#>
PREFIX : <h t t p : / / example . com/>
: s 1 0 a n i f : S e n t e n c e .
: s 1 1 a n i f : Word ; c o n l l :WORD ” James ” ; c o n l l : POS PTB ”NNP” ; c o n l l :HEAD : s 1 0 ; n i f : nextWord : s 1 2 .
: s 1 2 a n i f : Word ; c o n l l :WORD ” Baker ” ; c o n l l : POS PTB ”NNP” ; c o n l l :HEAD : s 1 0 ; n i f : nextWord : s 1 3 .
: s 1 3 a n i f : Word ; c o n l l :WORD ” t o l d ” ; c o n l l : POS PTB ”VBD” ; c o n l l :HEAD : s 1 0 ; n i f : nextWord : s 1 4 .
: s 1 4 a n i f : Word ; c o n l l :WORD ” r e p o r t e r s ” ; c o n l l : POS PTB ”NNS” ; c o n l l :HEAD : s 1 0 ; n i f : nextWord : s 1 5 .
: s 1 5 a n i f : Word ; c o n l l :WORD ” F r i d a y ” ; c o n l l : POS PTB ”NNP” ; c o n l l :HEAD : s 1 0 ; n i f : nextWord : s 1 6 .
: s 1 6 a n i f : Word ; c o n l l :WORD ” : ” ; c o n l l : POS PTB ” : ” ; c o n l l :HEAD : s 1 0 .
: bPARSE PTB 1 a powla : Node , c o n l l : PARSE PTB ; r d f : v a l u e ”TOP” .
: bPARSE PTB 2 a powla : Node , c o n l l : PARSE PTB ; powla : h a s P a r e n t : bPARSE PTB 1 ; r d f : v a l u e ”S” .
: bPARSE PTB 3 a powla : Node , c o n l l : PARSE PTB ; powla : h a s P a r e n t : bPARSE PTB 2 ; r d f : v a l u e ”NP−SBJ” .
: s 1 1 powla : h a s P a r e n t : bPARSE PTB 3 .
: s 1 1 powla : n e x t : s 1 2 .
: s 1 2 powla : h a s P a r e n t : bPARSE PTB 3 .
: bPARSE PTB 3 powla : n e x t : bPARSE PTB 4 .
: bPARSE PTB 4 a powla : Node , c o n l l : PARSE PTB ; powla : h a s P a r e n t : bPARSE PTB 2 ; r d f : v a l u e ”VP” .
: s 1 3 powla : h a s P a r e n t : bPARSE PTB 4 .
: s 1 3 powla : n e x t : bPARSE PTB 5 .
: bPARSE PTB 5 a powla : Node , c o n l l : PARSE PTB ; powla : h a s P a r e n t : bPARSE PTB 4 ; r d f : v a l u e ”NP” .
: s 1 4 powla : h a s P a r e n t : bPARSE PTB 5 .
: bPARSE PTB 5 powla : n e x t : bPARSE PTB 6 .
: bPARSE PTB 6 a powla : Node , c o n l l : PARSE PTB ; powla : h a s P a r e n t : bPARSE PTB 4 ; r d f : v a l u e ”NP−TMP” .
: s 1 5 powla : h a s P a r e n t : bPARSE PTB 6 .
: bPARSE PTB 6 powla : n e x t : s 1 6 .
: s 1 6 powla : h a s P a r e n t : bPARSE PTB 4 .

Figure 8: Shallow CoNLL-RDF transformation of bracketing notation in fig. 4

: s 1 0 a n i f : S e n t e n c e .
: s 1 1 a n i f : Word ; c o n l l :WORD ”FEDERAL” ; c o n l l : POS ” J J ” ; c o n l l :HEAD : s 1 0 ; n i f : nextWord : s 1 2 .
: s 1 2 a n i f : Word ; c o n l l :WORD ”CONSTITUTION ” ; c o n l l : POS ”NN” ; c o n l l :HEAD : s 1 0 ; n i f : nextWord : s 1 3 .
: s 1 3 a n i f : Word ; c o n l l :WORD ” , ” ; c o n l l : POS ”$, ” ; c o n l l :HEAD : s 1 0 ; n i f : nextWord : s 1 4 .
: s 1 4 a n i f : Word ; c o n l l :WORD ” 1 7 8 9 ” ; c o n l l : POS ”NUM” ; c o n l l :HEAD : s 1 0 .
: x1 a powla : Node , c o n l l :XML DATA; r d f : v a l u e ” doc ” ; x : i d ”G10 ” ; x : n ” 3 2 ” .
: x2 powla : h a s P a r e n t : x1 ; a powla : Node , c o n l l :XML DATA; r d f : v a l u e ” head ” ; x : t y p e ” min ” .
: s 1 1 powla : h a s P a r e n t : x2 .
: s 1 1 powla : n e x t : s 1 2 .
: s 1 2 powla : h a s P a r e n t : x2 .
: s 1 2 powla : n e x t : x3 . : x3 powla : h a s P a r e n t : x2 ; a powla : Node , c o n l l :XML DATA; r d f : v a l u e ” g ” .
: x3 powla : n e x t : s 1 3 .
: s 1 3 powla : h a s P a r e n t : x2 .
: s 1 3 powla : n e x t : s 1 4 .
: s 1 4 powla : h a s P a r e n t : x2 .

: s 1 0 n i f : n e x t S e n t e n c e : s 2 0 .
: s 2 0 a n i f : S e n t e n c e .
: s 2 1 a n i f : Word ; c o n l l :WORD ”&quo t ; ” ; c o n l l : POS ”$, ” ; c o n l l :HEAD : s 2 0 ; n i f : nextWord : s 2 2 .
: s 2 2 a n i f : Word ; c o n l l :WORD ”we ” ; c o n l l : POS ”PRP ” ; c o n l l :HEAD : s 2 0 ; n i f : nextWord : s 2 3 .
: s 2 3 a n i f : Word ; c o n l l :WORD ” t h e ” ; c o n l l : POS ”DT” ; c o n l l :HEAD : s 2 0 ; n i f : nextWord : s 2 4 .
: s 2 4 a n i f : Word ; c o n l l :WORD ” Pe op le ” ; c o n l l : POS ”NN” ; c o n l l :HEAD : s 2 0 .
: x1 a powla : Node , c o n l l :XML DATA; r d f : v a l u e ” doc ” ; x : i d ”G10 ” ; x : n ” 3 2 ” .
: x4 powla : h a s P a r e n t : x1 ; a powla : Node , c o n l l :XML DATA; r d f : v a l u e ” p ” ; x : n ” 1 ” .
: s 2 1 powla : h a s P a r e n t : x4 .
: s 2 1 powla : n e x t : x5 . : x5 powla : h a s P a r e n t : x4 ; a powla : Node , c o n l l :XML DATA; r d f : v a l u e ” g ” .
: x5 powla : n e x t : s 2 2 .
: s 2 2 powla : h a s P a r e n t : x4 .
: s 2 2 powla : n e x t : s 2 3 .
: s 2 3 powla : h a s P a r e n t : x4 .
: s 2 3 powla : n e x t : s 2 4 .
: s 2 4 powla : h a s P a r e n t : x4 .

Figure 9: CoNLL-RDF conversion of the SketchEngine sample presented in fig. 6

9. Acknowledgements

The research described in this paper has been partially con-
ducted in the context of the BMBF Early Career Research
Group ‘Linked Open Dictionaries (LiODi)’, and partially

in the context of the Horizon 2020 Research and Innovation
Action ‘Pret-a-LLOD’, Grant Agreement number 825182.
We would like to thank Mari Aigro, University of Tartu, for
providing us with sample data from the TenTen Corpus for
SketchEngine evaluation.

7169

10. Bibliographical References
Chiarcos, C. and Fäth, C. (2017). CoNLL-RDF: Linked

corpora done in an NLP-friendly way. In Jorge Gracia,
et al., editors, Language, Data, and Knowledge, pages
74–88, Cham, Switzerland. Springer.

Chiarcos, C. and Fäth, C. (2019). Graph-based annotation
engineering: Towards a gold corpus for Role and Refer-
ence Grammar. In 2nd Conference on Language, Data
and Knowledge (LDK-2019). OpenAccess Series in In-
formatics, Schloss Dagstuhl – Leibniz-Zentrum fuer In-
formatik, Germany.

Chiarcos, C., Kosmehl, B., Fäth, C., and Sukhareva, M.
(2018). Analyzing Middle High German syntax with
RDF and SPARQL. In Proceedings of the 11th Inter-
national Conference on Language Resources and Evalu-
ation (LREC-2018), Miyazaki, Japan.

Chiarcos, C. (2012a). POWLA: Modeling linguistic cor-
pora in OWL/DL. In 9th Extended Semantic Web Con-
ference (ESWC-2012), pages 225–239, Heraklion, Crete,
May.

Chiarcos, C. (2012b). A generic formalism to repre-
sent linguistic corpora in RDF and OWL/DL. In Pro-
ceedings of the 8th International Conference on Lan-
guage Resources and Evaluation (LREC-2012), pages
3205–3212. European Language Resources Association
(ELRA).

Chiarcos, C. (2012c). Powla: Modeling linguistic corpora
in owl/dl. In Elena Simperl, et al., editors, The Semantic
Web: Research and Applications, pages 225–239, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Cimiano, P., Chiarcos, C., McCrae, J., and Gracia, J.
(2020). Linguistic Linked Data. Representation, Gener-
ation and Applications. Springer, Cham.

de Araujo, D. A., Rigo, S. J., and Barbosa, J. L. V.
(2017). Ontology-based information extraction for ju-
ridical events with case studies in Brazilian legal realm.
Artificial Intelligence and Law, 25(4):379–396.

Dipper, S. and Götze, M. (2005). Accessing heterogeneous
linguistic data — generic XML-based representation and
flexible visualization. In 2nd Language & Technology
Conference 2005, pages 23–30, Poznan, Poland, April.

Dipper, S. and Götze, M. (2006). ANNIS: Complex Mul-
tilevel Annotations in a Linguistic Database. In 5th
Workshop on NLP and XML (NLPXML-2006): Multi-
Dimensional Markup in Natural Language Processing,
Trento, Italy.

Evert, S. and Hardie, A. (2011). Twenty-first century Cor-
pus Workbench: Updating a query architecture for the
new millennium. In Proceedings of the Corpus Linguis-
tics 2011 conference, Birmingham, UK.

Fokkens, A., Soroa, A., Beloki, Z., Ockeloen, N., Rigau,
G., van Hage, W. R., and Vossen, P. (2014). NAF and
GAF: Linking linguistic annotations. In Proc. 10th Joint
ISO-ACL SIGSEM Workshop on Interoperable Semantic
Annotation, pages 9–16.

Harris, S. and Seaborne, A. (2013). SPARQL 1.1 query
language. W3C recommendation, World Wide Web
Consortium.

Hellmann, S., Lehmann, J., Auer, S., and Brümmer, M.

(2013). Integrating NLP Using Linked Data. In Camille
Salinesi, et al., editors, Advanced Information Sys-
tems Engineering, volume 7908, pages 98–113. Springer
Berlin Heidelberg.

Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., and
Weischedel, R. (2006). OntoNotes: The 90% solu-
tion. In Proc. of the Human Language Technology Con-
ference of the NAACL, Companion Volume: Short Pa-
pers, NAACL-Short 2006, pages 57–60, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Ide, N. and Romary, L. (2004). International standard for
a linguistic annotation framework. Natural language en-
gineering, 10(3-4):211–225.

Ide, N., Baker, C. F., Fellbaum, C., Fillmore, C. J., and
Passonneau, R. (2008). MASC: The Manually Anno-
tated Sub-Corpus of American English. In 6th Interna-
tional Conference on Language Resources and Evalua-
tion (LREC-2008), pages 2455–2461, Marrakech, Mo-
rocco, May.

Jakubı́ček, M., Kilgarriff, A., Kovář, V., Rychlý, P., and
Suchomel, V. (2013). The tenten corpus family. In 7th
International Corpus Linguistics Conference CL-2013,
pages 125–127, Lancaster.

Kilgarriff, A., Baisa, V., Bušta, J., Jakubı́ček, M., Kovář, V.,
Michelfeit, J., Rychlý, P., and Suchomel, V. (2014). The
Sketch Engine: ten years on. Lexicography, 1(1):7–36.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
(1993). Building a Large Annotated Corpus of English:
The Penn Treebank. Comput. Linguist., 19(2):313–330.

Nivre, J., Agić, Ž., Ahrenberg, L., and et. al. (2016).
Universal dependencies 1.4. http://hdl.handle.
net/11234/1-1827.

Prud’Hommeaux, E. and Seaborne, A. (2008). SPARQL
query language for RDF. W3C working draft, 4(Jan-
uary).

Sanderson, R., Ciccarese, P., and Young, B. (2017). Web
Annotation Data Model. Technical report, W3C Recom-
mendation.

Schmid, H. (1994). Probabilistic Part-of-Speech Tagging
Using Decision Trees. In Proceedings of International
Conference on New Methods in Language Processing,
pages 44–49, Manchester, UK.

Stede, M., Bieler, H., Dipper, S., and Suriyawongk, A.
(2006). Summar: Combining linguistics and statistics
for text summarization. In 17th European Conference
on Artificial Intelligence (ECAI-2006), pages 827–828,
Riva del Garda, Italy.

Tandy, J., Herman, I., and Kellogg, G. (2015). Generat-
ing RDF from tabular data on the web. Technical report,
W3C Recommendation.

Verhagen, M., Suderman, K., Wang, D., Ide, N., Shi, C.,
Wright, J., and Pustejovsky, J. (2015). The LAPPS In-
terchange Format. In International Workshop on World-
wide Language Service Infrastructure, pages 33–47.
Springer.

Zeldes, A., Ritz, J., Lüdeling, A., and Chiarcos, C. (2009).
ANNIS: A search tool for multi-layer annotated corpora.
In Corpus Linguistics, pages 20–23, Liverpool, UK.

http://hdl.handle.net/11234/1-1827
http://hdl.handle.net/11234/1-1827

	Introduction & Motivation
	CoNLL-TSV and CoNLL-RDF
	The CoNLL-TSV Format
	From TSV to Annotation Graphs
	CoNLL-RDF
	The CoNLL-RDF Format
	Querying CoNLL-RDF
	Manipulating CoNLL-RDF

	Tree Structures in TSV Formats
	PTB Bracketing Notation
	SGML/XML Markup Extentions

	Extending the CoNLL-RDF Vocabulary with POWLA Data Types
	The POWLA Vocabulary
	Key Concepts of POWLA

	Processing Tree Annotations
	Penn Treebank Bracketing Notation
	SGML/XML Extensions
	Limitations

	Evaluation
	Related Research
	Conclusion & Outlook
	Acknowledgements
	Bibliographical References

