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Abstract
Learning to interview patients to find out their disease is an essential part of the training of medical students. The practical part
of this training has traditionally relied on paid actors that play the role of a patient to be interviewed. This process is expensive
and severely limits the amount of practice per student. In this work, we present a novel data set and methods based on Natural
Language Processing, for making progress towards modern applications and e-learning tools that support this training by providing
language-based user interfaces with virtual patients. A data set of german transcriptions from live doctor-patient interviews was
collected. These transcriptions are based on audio recordings of exercise sessions within the university and only the doctor’s utterances
could be transcribed. We annotated each utterance with an intent inventory characterizing the purpose of the question or statement.
For some intent classes, the data only contains a few samples, and we apply Information Retrieval and Deep Learning methods
that are robust with respect to small amounts of training data for recognizing the intent of an utterance and providing the correct
response. Our results show that the models are effective and they provide baseline performance scores on the data set for further research.

Keywords: Deep Learning, Transfer Learning, Information Retrieval, Contextual Representations, Answer Selection, Doctor-Patient
Interview

1. Introduction
Medical training programs aim at enabling students to di-
agnose diseases correctly. Nevertheless, today up to 20
percent of patients are misdiagnosed (Berner and Graber,
2008). In order to prevent misdiagnoses and improve the
quality of patient treatment, practical courses for doctor-
patient interviews1 are put into the medical study curricu-
lum. Usually, the university pays actors to take on the role
of a standardized patient with a defined persona, i.e., life
history and disease. These actors have to memorize a per-
sona description that contains personal details and answers
to typical questions that a doctor may ask patients in the in-
terview. Even professional actors are challenged by trans-
ferring the medical student’s question to the sample ques-
tions from the persona description and remembering all rel-
evant answers. Also, actors are quite expensive and not al-
ways available for the live interview sessions.
Modern solutions for simulating doctor-patient interviews
include e-learning tools like computer-based simulations
for practicing interviews with virtual patients. On the inter-
net platform USC Standard Patient Hospital2, students can
select a virtual patient and interview him by typing ques-
tions in a chat window. In such simulations, the dialogue is
usually structured as a sequence of questions (asked by the
trainee) followed by a response of the virtual patient, typi-
cally a predefined answer, e.g. in the form of a short video
clip.
Various end-to-end systems for virtual doctor-patient inter-
views have been proposed. Narayanan et al. (2004) has
developed a multilingual system with speech recognition to

1In medical terms called Anamnesis or history taking. For con-
sistency and simplicity, we use the phrase ”doctor-patient inter-
views“ in this paper.

2https://www.standardpatient.org/

bridge the language barrier in such interviews. They de-
scribe the components required for such system but focus
on dialogue management rather than classification. Kenny
et al. (2007) created a similar architecture but select appro-
priate responses by translating the question to an answer
representation based on the known mappings between sam-
ple questions and answers.
However, due to the lack of training and evaluation data,
many e-learning systems for this task have either relied on
interfaces that only allow the selection of pre-formulated,
specific questions (Manyuk, 2016) or the question is pro-
cessed by inflexible, rule-based systems (Hirumi et al.,
2016). Other approaches like Talbot et al. (2012) use sta-
tistical models for language classification and focus on sub-
conversations within the dialogue. All of them make only
limited use of dialogue context and don’t conduct detailed
evaluation. The classification of such free-form questions
can be improved by better utilizing sentence and dialog
context.
We propose novel models based on Information Retrieval
and Transfer Learning techniques to enable natural interac-
tions between medical students and virtual patients. Specif-
ically, the models can understand a freely phrased question
by the medical student and respond with the related video
clip containing the respective answer by the virtual patient.
Moreover, the proposed models take into account the ques-
tion itself and the context in the current dialogue. Another
important property of those models is their ability to learn
from a small data set and make precise predictions. The
major contributions of this work can be summarized as fol-
lows:

• We release a novel data set of questions and expres-
sions in the medical domain in German, each labeled
with one of 62 categories that are relevant to doctor-
patient interviews.
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• We evaluate different models based on Information
Retrieval and Transfer learning algorithms and show
that they can perform well even on small amounts of
training data.

• We investigate contextual features (from preceding
questions) for advancing intent recognition in the in-
terviews, and show that they can improve the perfor-
mance.

In section 2 we present existing approaches and techniques
from the field of Information Retrieval and Deep Learning.
Specifically, we focus on approaches that work well on data
sets that contain classes with just a few samples. The data
set described in detail in section 3. Next, we describe mod-
els for the baseline performance scores in section 5. Two
kinds of algorithms will be used for model development
and comparison, hence we will take a closer look on their
comparability and establish shared metrics. The results and
discussion (section 7 and 8) show the empirical effective-
ness of the approach and describe all findings.

2. Related Work
The training of doctor-patient interviews is an essential part
of the medical course of studies. To reduce costs and im-
prove the training, the idea of virtual patients and interview
systems has been around for several decades (Manyuk,
2016). Rule-based systems such as NERVE (Hirumi et al.,
2016) show important components of e-learning experience
in a standardized environment. Initial research on using
natural language processing, and more specifically, intent
recognition has been described in G.Tavarnesi et al. (2018).
The system is based on two components to identify the in-
tent and return the corresponding answer. The first compo-
nent does a ranking overall intent samples based on similar-
ity with the input, the second checks for a semantic match
between the top ranked sample and the input. This match
was determined by approximating the the N most impor-
tant words based on frequency in the corpus and and their
overlap between input and original utterance. However, no
data set or metrics have been provided to indicate the per-
formance of those components.
Information retrieval methods provide effective relevancy
estimation, and the relevancy is typically approximated by
the information overlap between query and document and
the importance of overlapping terms (Schütze et al., 2008).
Relevance estimation methods like TF/IDF (Salton and
Buckley, 1988) or BM25 (Robertson et al., 2009) can also
be applied to text classification, by comparing the relevance
of test samples (with unknown labels) to training samples
(where the labels are known, see Zhang et al. (2011) and
Marcelo (2012)).
Recently, neural network based models for joint intent de-
tection and slot filling were proposed by Zhang and Wang
(2016) and Haihong et al. (2019). Both approaches do not
consider the conversation context and history as features for
classification. These neural approaches require huge data
sets to have enough training material.
For problems and domains, where availability of anno-
tated training data is a problem, small data sets can still
be leveraged by utilizing pre-trained language models such

as BERT (Bidirectional Encoded Representations by Trans-
formers) by Devlin et al. (2019). The models are well-
suited for low resource scenarios as they are based on the
principle of transfer learning. An algorithm is trained on a
task A and then the same model is used to do predictions
on a similar task B. Additionally, they can better encode
word representations in context of a sentence. Chen et al.
(2019) build a joint model for intent recognition and slot
filling, showing its effectiveness for this task.
Leveraging conversation history and contextual features for
classification decisions has been explored in various set-
tings. Liu et al. (2017) presents several ways to incorpo-
rate conversational context for the classification of dialogue
acts. Jin and Szolovits (2018) compute a sentence encod-
ing from word embeddings with RNNs followed by an at-
tention and pooling mechanism. This network is extended
to encode abstract context features and this results in im-
provements compared to the non-contextualized variant but
it requires a huge amount of training data to optimize the
weights from scratch.

3. Data set
For enabling the development and evaluation of systems for
simulating doctor-patient interviews, we provide a dialogue
data set in German that is annotated with one or more intent
classes per utterance.
This data set was gathered in a study that investigated the
assessment of diagnostic abilities in live and video simu-
lations of medical interviews (Fink et al., 2019). Learners
were in the role of a doctor who conducted the medical in-
terview and actors played patients, answering according to
the case description of a specific persona. In the live sim-
ulations, the doctors and patients could freely interact with
each other and all utterances were recorded on video. In
the video simulations, learners selected questions from a
menu that contained the same questions and categories as
the coding scheme of the live simulations (see table 2).
The study employed a repeated measures design in which
students where randomly assigned to either first take part in
three cases in the live simulations and then three other cases
in the video simulations or vice versa. Hence, the data set
of this study is balanced between one group of participants
who completed computer simulations before taking part in
the live simulations and another group of participants who
did not take part in computer simulations before taking part
in the live simulations.
After data collection, the utterances of the participating
medical students were transcribed by student research as-
sistants in their sequential order. The transcripts were an-
notated by the assistants according to a coding scheme
based on the classifications of communication strategies in
doctor-patient interviews as proposed by Roter et al. (2002)
and Jefferson et al. (2013). The resulting coding scheme is
displayed with its major codes and definitions in table 1.
Important annotation guidelines for this scheme include
that each utterance of a doctor is coded separately as one
unit and utterances of actors displaying the patient are not
transcribed and coded. Within the category DQ (direct
questions to the patient), the coding scheme is more fine-
grained and based on a content and structure analysis of
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Code Category Definition
DQ Questioning the pa-

tient
Direct questions to
the patient.

PINF Informing the patient Providing general
information, specific
instructions, biomed-
ical or psychosocial
information to the
patient.

DESC Organizing and
structuring the
interview

Transitions in the
medical interview,
information about
the structure etc.

SUM Summarizing Summarizing symp-
toms and information
for the patient.

REL Relationship build-
ing

Establishing rapport
and relationship
building with the
patient.

MET Meta information Information on the
medical interview,
the physician and the
standardized patient.

Table 1: Coding scheme of communication strategies

history-taking forms by Bornemann (2016). According to
this coding scheme for direct questions (DQ), questions can
be categorized into seven different categories. The classifi-
cation is illustrated with one example per category in table
2.
To generate the data set for training and testing the models,
we obtain the utterances of the doctor from the raw tran-
scripts, and filter them by their type so that only those are
retained which were assignedDQ andREL (those directed
to the patient, all other classes correspond to non-verbal or
pre/post interview information).
Utterances with multiple classes assigned are split into
several single labeled instances in the training/test pro-
cedure. Specifically, each utterance u with labels
l1, l2, ..., ln is copied into multiple instances Su =
(u, l1), (u, l2), ..., (u, ln). During preprocessing, we add
the contextual features containing text and classes of the
preceding utterance in the interview.
Each entry in the dialogue sequence contains following
fields:

• utterance - The text of the original utterance

• class - One of the classes assigned to the utterance

• position - The position within the dialogue sequence
(e.g. 3 = third utterance from the doctor)

• previous utterance - The text of the preceding utter-
ance.

• previous utterance class - The classes assigned to the
preceding utterance.

A class label consists of two parts: The symptom category
and a question id. Symptom category determines the gen-
eral area of symptoms, the question id the specific intent
within that group. For example, PH10 is in the category
medical history (PH, see table 2) and the intent number
10 covers specific questions for heart diseases in child age.
Seven different categories exist in the data (see table 2), but
we focus on those directly related to symptoms. All other
utterances (categories IQ and OQ) are collected and cov-
ered by an artificial class OTHER in order to reduce com-
plexity.

Symptom
category

Code Sample

Main symp-
toms

MS Do you experience the com-
plaints for the first time?
[MS01]

Prior history PH Do you know of any pre-
existing conditions? [PH01]

Allergies and
medication

AM Do you frequently have in-
fections against which you
take antibiotics? [AM01]

Social and
family his-
tory

SF Have your parents or other
relatives of your family
passed away at a rather
young age? [SF01]

System
review

SR Has your weight changed
within the last weeks?
[SR01]

Inquiry IQ Inquiry to a question posed
previously.

Other ques-
tions

OQ Questions that were not in-
cluded in the predefined set
of history-taking questions.

Table 2: Symptom categories and sample questions (cate-
gories for training the models are marked in bold, samples
are translated manually from German into English)

A small section of a medical interview from the data set
is presented in table 3. A dialogue usually starts with a
greeting such as ”Guten Tag” (eng.: Good day!), then the
patient is asked some basic questions from the category of
main symptoms (MS). The further the dialogue progresses
the more detailed the questions become. After questions at
positions 2,3 and 4 concerned with current pain and short-
ness of breath of the patient, position 5 is directed to the
history of infects the patient may have had.
Table 4 provides an overview of the distribution within
the data set and highlights some of its quantitative prop-
erties. The number of classes results from 62 symptom
classes from the encoding scheme and one additional, arti-
ficial class OTHER. A sample here is one record (question,
class and context features) from a transcribed doctor-patient
interview. Overall the data set contains 2627 samples dis-
tributed over 63 classes. Only 101 samples have more than
one class assigned (approximately 4% of the data).
On spot checks we discovered the multi class samples of-
ten contain multiple questions from the same symptom cat-
egory which ask for different aspects, e.g. the doctors asks
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Pos. Utterance Class
1 Good morning Ms. Klein, I’m

in charge of you in the ER today.
What brings you to me?

OTHER

2 Do you have pain ? MS01
3 When inhaling and exhaling ? MS01
4 Did that come all of a sudden? Or

has it been a long time since you
had any shortness of breath?

MS06

5 Have you had an infection lately? PH13
... ... ...

Table 3: Sample utterances of a medical interview

Number of classes 63
Number of samples 2627
Samples with multiple classes 101
Tokens in vocabulary 1789
Average utterance length 11.14

Table 4: Data set statistics

for preceding diseases and allergies at the same time. Here
is an example of a multi-class utterance:
Und das kam dann ganz plötzlich das Sie Luftnot bekom-
men haben und einen Schwindel? (eng.: ”And then all of a
sudden, you got shortness of breath and felt dizzy?”)

This sample was assigned to the classes MS06 and MS09.
MS stands for main symptom category and 06/09 for short-
ness of breath and dizziness respectively. Sometimes
the questions are combined in one sentence using ”and”.
Sometimes, it is difficult to identify the part of the utter-
ance which is referring to a specific intent if the utterance
is too generic. For example, ”Mit dem Herzen irgendwas
mal gewesen?” (eng.: Have you had any heart issues previ-
ously?) gets classes PH08 and PH10 assigned because the
question about heart history is so broad both heart issues in
the childhood (PH10) and any heart issues at all (PH08) are
covered.
Next, we present different ways to express a question about
drinking alcohol from the data set. The last sample in the
following enumeration presents a multi class expression.

• Und Alkohol? Wie viel trinken Sie da? (eng.: And
alcohol? How much do you drink?)

• Und mit dem Alkohol? Trinken Sie ab und zu? Oder
hatten Sie da was getrunken? (eng.: Do you drink
from time to time? Or did you drink something?)

• Wie ist es mit Alkohol oder Drogen? (eng.: What
about alcohol or drugs?)

This demonstrates the variability of length of the utterances
as well. The distribution of samples between the classes
varies heavily. The result is a high class imbalance and
hence a harder classification problem. To visualize the dis-
tribution, we plotted the resulting counts as equal-width
bins with width w = 10 in figure 1.

Figure 1: Grouping of classes by how many samples they
cover in the data set. Most of the classes have only 10 or
fewer samples assigned.

Classes with a small amount of samples (up to 20) make
over half of the data. Samples with a size≤ 10 are most fre-
quent. Two classes contain more than 90 samples: OTHER
and AM02. OTHER is a catch all class for utterances with
out-of-scope labels and therefore has many samples. In fact
this class contains 1321 samples overall, which shows the
huge amount of utterances produced by the doctor to either
build a relationship with the patient or fill in the conversa-
tional flow, e.g. saying ”yes” and ”I understand”.
The data set is prepared once and then used in all experi-
ments with the same preprocessing and data split. The data
is partitioned in three sets in a stratified manner: training,
development and test data. There are classes that do not
have enough samples for multiple splits, meaning less than
three. The first set contains the data from all classes with
80% of the overall available samples. It is used to learn
the weights of the networks and optimize the parameters of
the information retrieval system. Second, the development
data set contains about 10% of the data. With this data, the
model performance between each iteration over the whole
training data is measured. The best models for testing are
chosen exclusively based on the highest accuracy score on
this set. The remaining 10% of the data are hidden in test
set and only used for the final evaluation of an optimized
model.
Due to the short and diversely distributed samples and the
imbalanced semantic classes for symptoms, we see high po-
tential in this data set for further search. We have published
the data set on Github3.

4. Evaluation Metrics
The models presented in the following sections can be cat-
egorized into two types: classification models that are opti-
mized to predict a specific target class, and ranking models
that aim at providing a ranking of all classes. In order to es-
tablish comparability, we evaluate classification approaches

3https://github.com/RobinRojowiec/intent-recognition-in-
doctor-patient-interviews
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also in a ranking setting (by considering the ranking they
induce if one orders all classes by the scores the classifier
assigns to them), and we evaluate ranking approaches also
in a classification setting (by taking their top-ranked class
as the prediction).
For each utterance i, we denote the rank (obtained by rank-
ing models, or by sorting classification scores) of the cor-
rect class asRi. The Mean Reciprocal Rank (MRR) is com-
puted for the entire test set of size n in the following man-
ner:

MRR =
1

n

n∑
i=1

1

Ri
(1)

Similarly, the accuracy can be computed by counting how
often the top-ranked element is the correct class (1[·] de-
notes the indicator function):

Acc =
1

n

n∑
i=1

1[Ri=1] (2)

5. Methods
5.1. Ranking models
Two different ranking models are proposed, built on the
standard retrieval frameworks with only one modification:
the incorporation of transition probabilities. Each class c in
the ranking is modeled by a document dc in the index con-
taining all concatenated utterances for this specific class c.
For the TF/IDF method, the term frequency tft,c for term
t and class c can be calculated from the training corpus by
counting the term occurrences per class. The IDF weight
for class c can be calculated as follows:

idft = log
N

dft
(3)

where dft denotes the number of utterances containing the
term t and N the number of classes in the collection. Fi-
nally, when calculating the relevance score for a class c
given the query q, the term frequency is multiplied with
the inverse document frequency for each term in the query:

TF/IDF(q, c) =
∑
t∈q

tft,c × idft (4)

The second ranking method, Okapi BM25, is a proba-
bilistic scoring model for IR systems. The relevancy for
class c given query q in BM25 is calculated as follows
(Sparck Jones et al., 2000):

BM25(q, c) =
∑
t∈q

idft
dft(k1 + 1)

dft + k1 × (1− b+ b× dl
avl )

(5)

where k1, b are free parameters (b = 0.75, k1 = 1.2) and
avl is the average length and dl the current length of the
combined utterances in dc.
Additionally, the context of the interview should be taken
into account to improve the recognition performance. This
is based on the assumption that questions of the medical
student rely on each other, e.g. if a doctor asks the patient
if he had pain in the last weeks, then he might follow up
with a question about the intensity and region of the pain

on the body. In order to model that relationship the prob-
ability p(ci|ci−1) is estimated by counting the transitions
from each class to each other in the transcripts. To work
with transitions that have never been seen before (as they
would introduce zero probabilities), a smoothing factor λ
is added the probability estimation:

p(c|ci−1) =
trans(ci−1, c) + λ∑
c trans(c, ci−1) + λN

(6)

where ci−1 is the class predicted in the previous time step
and c is one of the possible classes to predict at the current
time step. trans(a, b) is a function that counts the number
of times class a transitions to b in the training data. The
final ranking score is calculated as follows:

score(u, c, ci−1) = p(c|ci−1)× rank score(u, c) (7)

with rank score(u, c) being the score of the respective
ranking function scoring the relevance of the utterance u
for class c. If the utterance is the first in the interview, the
previous class is set to a special class symbol START.

5.2. Classification models
For all classification models the Cross Entropy Loss is cal-
culated as the discrepancy between predictions and actual
class labels:

L(y|x) = −log( exp(zy)∑
j exp(zj)

) (8)

where z = FFN(BERT(xu), θ) with xu being the text of
the utterance of sample x and FFN a feed forward network
with parameters θ. Adaptive Moment Estimation (Adam)
is used for parameter optimization (Kingma and Ba, 2014).
The classification approach requires a model that can learn
even with only few samples per class and as utterances
are quite short, the amount of information and features to
be used for learning is limited. Pretrained language mod-
els should work well in this scenario because of their pre-
trained weights. Hence we modify BERT using a Feed For-
ward Layer on top of the last output layer. This layer pro-
duces an output for each class as a probability using soft-
max (see figure 2). We add 20% dropout to the output of
the language model, forcing it to adapt during the training
time and allowing the classification layer to be more robust
against diverse inputs. Following the guidance of Peters et
al. (2019) we apply fine tuning on BERT representations
instead of simply extracting contextual features.
A special extension to this simple classifier are context fea-
tures which can be extracted from the dialogue. Specif-
ically, the previous utterance is is encoded through the
BERT model into a vector representation and concatenated
to the one produced for the current input. A feed forward
layer serves as the classification layer and produces the
probabilities for each class:

score(c|u, ui−1) =
FFN(BERT(u)⊕ BERT(ui−1)⊕ p(c|c∗), θ)

(9)

with⊕ being the concatenation operator combining all vec-
tor representations. p(c|c∗) returns a vector containing tran-
sition probabilities from all classes to the particular class c.
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Figure 2: BERT classifier Architecture

The probability for each class is calculated using a Softmax
function:

p(c|u, ui−1) =
exp(score(c|u, ui−1))∑
i exp(score(ci|u, ui−1))

(10)

where u is the utterance of the current and previous time
step i.

6. Experimental Setup
For comparison, we conduct initial experiments using only
the pretrained model without any context features. Then
the available context features are combined in the following
three configurations:

1. Only preceding utterance encoding BERT (ui−1)

2. Only transition probabilities ptrans(c)

3. Both combined

The class imbalance poses a challenge to each of the models
because they may start to overfit on majority classes in or-
der to improve accuracy. To mitigate this problem, counter
measures are applied at model development: Avoiding
dominance of majority classes is achieved through the defi-
nition of a maximum group size Sc (number of samples per
group). Downsampling can be used to randomly remove
samples form the clusters which exceed Sc (Albon, 2018).
The only disadvantage of this method is the chance of re-
moving samples which are in the center of the group and
can represent the class best. Through multiple data splits
and following performance evaluation the impact can be
measured and quantified. For all splits downsampling with
Sc = 100 is applied because we found it works best through
prelimiary experiments.
Next, L2 Regularization is employed and adjusted in
multiple training runs to avoid large model weights. This
regularizer adds a penalty of the squared summed update
value to the loss function:

L(x, y) =

n∑
i=1

L(xi, yi) + λL2||θ||22 (11)

with a summed loss over all elements using the loss func-
tion Li and θ being the update values for each parameter of
the network. We also apply early stopping with a maximum
number of 10 iterations according to accuracy.

7. Results
First, we compare Information retrieval approaches TF/IDF
and BM25, and we study the effect of including transition
probabilities into the model. The lambda value for smooth-
ing was determined in preliminary experiments on develop-
ment data. It is set to λ = 1000 for TF/IDF and λ = 200
for BM25. These λ values are very high, perhaps only a
few transitions occur often and consistently in the data set.
Another aspect is the assumption of a relationship between
the questions which may not by very static. We leave the
investigation of transitions between classes open for further
research.

Model MRR Accuracy
TF/IDF 66.39 54.24
BM25 73.25 62.15
TF/IDF+TProbs 66.37 53.67
BM25+TProbs 73.88 62.15

Table 5: Performance of the IR Models on test data

Next we report the final performance scores of IR models
on the test data (see table 5). The scores demonstrate that
BM25 is superior to TF/IDF in this scenario. All measures
are better for BM25 compared to TF/IDF and also adding
the transition probabilities works slightly better for BM25.
However, the transition probabilities only slightly improve
the performance of the BM25 model in terms of MRR. The
accuracy is not effected and does even slightly decrease for
the TF/IDF model. It seems for both models that they start
to overfit more on the data set when using the transition
probabilities.

Model MRR Accuracy
BERT 67.08 64.08
+ Previous Utterance 65.87 71.35
+ Transition Probabilities 66.02 70.31
+ Both 65.29 64.58

Table 6: Performance of BERT-based models

We report the same score for the classification models us-
ing the pretrained German BERT model. The basic model
without any context information achieves the highest MRR
score. The gap to the other configurations is quite small
suggesting that all configurations do not differ much by
their ability to rank correct classes to the top. Regarding
the accuracy, the models with context information perform
better. The model using the encoded previous utterance per-
forms best overall, the second best uses the previously used
transition probabilities. If both feature vectors are used for
prediction, the accuracy goes down, suggesting the model
starts to overfit on the training set.

8. Discussion
The ranking and classification models performed signifi-
cantly higher than a random baseline ( 1

63 = 1, 58%). This
shows that all models can learn successfully from the data
set (even though it contains only few samples for many
classes) and approximate the distribution of the utterances.



708

The best performing ranking and classification model are
compared in terms of accuracy and MRR scores on test
data. The accuracy is higher for the classification model,
achieving the best score at 71,35% accuracy. The rank-
ing models can achieve higher MRR scores with 73,88%
as the best result. This indicates that they provide relevance
rankings that are more useful across the entire spectrum of
ranking positions. From a model design point of view the
results suggest that if the task is concerned only with the
best answer, a classification model is suited better and if
the task requires multiple answers, a ranking model might
work better.

9. Conclusion
We investigated contextual intent recognition in doctor-
patient interviews in the medical domain. A data set was
created which allows feature generation from the context of
the interviews. Also, semantic labels of the respective utter-
ance content were added. The experimental results show a
good performance of the Information Retrieval techniques
for this kind of data. Classification models performed supe-
rior in terms of accuracy and established the state-of-the-art
baseline.
Virtual patient systems like those described in Kenny et al.
(2007) and e-learning tools can benefit from our proposed
model by incorporating it into their dialog and classifica-
tion components. The experimental results indicate that
those models can recognize the intent in many variations
and hence could trigger the correct responses and behav-
ior of the virtual patient. Especially advanced medical stu-
dents may possibly gain higher and longer-lasting diagnos-
tic competences by freely formulating questions of inter-
view questions. Further research can use the provided data
set and baseline models to investigate the task of contextual
classification within medical interviews.
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