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Abstract
Computational morphological segmentation has been an active research topic for decades as it is beneficial for many natural language
processing tasks. With the high cost of manually labeling data for morphology and the increasing interest in low-resource languages,
unsupervised morphological segmentation has become essential for processing a typologically diverse set of languages, whether
high-resource or low-resource. In this paper, we present and release MorphAGram, a publicly available framework for unsupervised
morphological segmentation that uses Adaptor Grammars (AG) and is based on the work presented by Eskander et al. (2016). We
conduct an extensive quantitative and qualitative evaluation of this framework on 12 languages and show that the framework achieves
state-of-the-art results across languages of different typologies (from fusional to polysynthetic and from high-resource to low-resource).

Keywords: Unsupervised Morphological Segmentation Framework, Low-Resource Languages, Qualitative and Qualitative Eval-
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1. Introduction
Many natural language processing tasks profit from mor-
phological segmentation, for example machine translation
(Nguyen et al., 2010; Ataman et al., 2017) and speech
recognition (Narasimhan et al., 2014). Many of the lan-
guages of the world are low-resource and/or endangered,
where they lack adequate morphologically annotated re-
sources. Thus, open-source unsupervised morphological
segmentation frameworks could be an important resource
for the computational linguistics community. In addition,
we argue that frameworks that enable the use of linguistic
knowledge to guide the learning process could be partic-
ularly beneficial when working on low-resource or endan-
gered languages, where even unsegmentated data might be
minimal.
We present MorphAGram 1, an publicly available frame-
work for unsupervised morphological segmentation based
on the approach proposed by Eskander et al. (2016), that
uses Adaptor Grammars. Formal grammars, and partic-
ularly Context-Free Grammars (CFGs), are a keystone of
linguistic description and provide a model for the struc-
tural description of linguistic objects. Probabilistic CFGs
(PCFGs) extend this model by associating a probability to
each context-free rewrite rule. Adaptor grammars (AGs)
(Johnson et al., 2007) weaken the independence assump-
tions of PCFGs by inserting additional stochastic processes
called adaptors into the procedure for generating struc-
tures. Introducing dependencies among the applications
of rewrite rules extends the set of distributions over lin-
guistic structures that can be characterized by a grammar,
better matching the occurrences of trees and sub-trees ob-
served in actual corpora. AGs define a framework to imple-
ment Bayesian nonparametric learning of grammars and are
usually trained in an unsupervised manner using sampling
techniques. AGs have been used successfully for unsuper-
vised morphological segmentation, where a grammar is a
morphological grammar that specifies word structure (Sirts

1https://github.com/rnd2110/MorphAGram

and Goldwater, 2013; Eskander et al., 2016; Eskander et al.,
2018; Eskander et al., 2019). AGs have been also applied to
other NLP applications such as word segmentation (John-
son, 2008a; Johnson, 2008c; Johnson and Demuth, 2010),
named-entity clustering (Elsner et al., 2009), transliteration
of names (Huang et al., 2011) and native-language identifi-
cation (Wong et al., 2012).
In this paper, we release MorphAGram, a publicly avail-
able framework for unsupervised morphological segmenta-
tion. The framework is also suitable for semi-supervised
learning setups where it allows linguistic knowledge to be
specified at two levels: designing the grammars and using
scholar-seeded knowledge in terms of known affixes (Sec-
tion 3). We conduct an extensive quantitative and qualita-
tive evaluation of this framework (Section 4) for a set of 12
languages across a language typology continuum (Section
2), namely English, German, Finnish, Estonian, Georgian,
Turkish, Arabic, Zulu, Mexicanero, Nahuatl, Wixarika and
Yorem Nokki. Our results show state-of-the-art results for
this framework, and showcase that for some languages us-
ing linguistic knowledge in terms of known affixes helps,
even when the grammars are language-independent. Both
the code and the grammars are released with the frame-
work.

2. Language Typology and Morphological
Analysis

The type of language impacts the way languages should
be analyzed since wide-ranging cross-linguistic typological
differences exist between languages (Comrie, 1993); and
one of these parameters is based on morphological proper-
ties and usage of different affixation processes. The broad-
est distinction among languages is whether or not affixation
is allowed at all, or if every word must be a single mor-
pheme. Although language typology forms a framework
for morphological analysis, it is important to remember that
a typology involves a logical continuum along which lan-
guages can differ synchronically and move diachronically.
Thus, most languages are mixtures of typological distinc-
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tions with a primary type as the one to be chosen as most
salient. This paper addresses languages from several ty-
pological continua and demonstrates that the unsupervised
Adapter-Grammar method performs well regardless of ty-
pology. The challenges of segmentation are directly related
to the type of affixation and cliticization found in each lan-
guage (Klavans, 2018).

Isolating Languages In isolating languages, every word
must be a single morpheme (no affixation). These are iso-
lating and fully analytic languages. This makes segmenta-
tion more clear in this language type.

Synthetic Languages In contrast to isolating languages
are synthetic languages, which allow affixation; words may
(though are not required to) include two or more mor-
phemes. These languages have bound morphemes, mean-
ing they must be attached to another word (whereas analytic
languages almost exclusively only have free morphemes).
Synthetic languages include three subcategories: aggluti-
native, fusional, and polysynthetic. An agglutinating lan-
guage (e.g., Turkish or Finnish) is one in which word forms
can be easily and clearly segmented into individual morphs,
each of which represents a single grammatical category. In
this case, morphological segmentation can be achieved in a
relatively straightforward way since individual components
are easily recognizable as units even though the “word”
may appear to be long and complex. This is generally
just a matter of many morphemes joined together. Mov-
ing along the synthetic continuum are fusional languages,
where bound morphemes often blend two or more underly-
ing functions into one, and these are not easily decompos-
able. Unlike agglutination, there may be no one-to-one cor-
respondence between specific word segments and particu-
lar grammatical categories. For example, the Latin suffix
-is represents the combination of categories “singular” and
“genitive” in the word form hominis “of the man”, but one
part of the suffix cannot be assigned to “singular” and an-
other to “genitive,” and -is is only one of many suffixes that,
in different classes (or declensions) of words, represents the
combination of “singular” and “genitive”. At the other end
of the extreme are polysynthetic languages, where many
morphemes fuse into one unit, known as the “word” but
also often representing an entire sentence, and replete with
verbs, nouns and clauses. These languages are difficult for
computational systems (and for non-native speakers) to de-
construct and analyze due to the high level of ambiguity in
segmentation and to the lack of one-to-one mapping.

Languages Considered for Analysis In this paper, we
consider 12 languages that are spread across the typol-
ogy spectrum and for which morphologically segmented
datasets are available for evaluation. These languages are:

• English: fusional, mildly synthetic

• German: fusional, more synthetic

• Finnish: agglutinative, more synthetic

• Estonian: agglutinative, more synthetic

• Georgian: agglutinative, mildly fusional

• Turkish: agglutinative, more synthetic

• Arabic (MSA): fusional, less synthetic

• Zulu: agglutinative, mildly fusional

• Mexicanero: polysynthetic

• Nahuatl: polysynthetic

• Wixarika: polysynthetic

• Yorem Nokki: polysynthetic

3. Framework
As pointed out earlier, Adaptor Grammars (AGs) are non-
parameteric Bayesian models that generalize Probabilistic
Context Free Grammars (PCFGs) (Johnson et al., 2007).
An AG is composed of two main components: a PCFG
and an adaptor that adapts the probabilities of the sub-trees
and acts as a caching model. The adaptor is based on the
Pitman-Yor process (Pitman, 1995), where the posterior
probability of a subtree is kept proportional to the num-
ber of times that subtree is utilized given the input data.
Markov Chain Monte Carlo sampling (MCMC) (Andrieu
et al., 2003) is then used to infer the probabilities of the
production rules of the grammar and all the hyperparam-
eters of the model. The definition of the grammar relies
on the underlying task. In the case of morphological seg-
mentation, the grammar specifies the word structure in the
underlying language.
We next describe the different parts of our segmentation
framework, MorphAGram, that is based on Adaptor Gram-
mars.

3.1. Defining the Grammar
The first step in learning morphological segmentation us-
ing Adaptor Grammars is to define the grammar; non-
terminals, terminals and production rules. Eskander et al.
(2016) describe a list of nine grammars that specify word
structures, where the construction of the grammar relies on
three main dimensions:

• Word Modeling: A word can be modeled as a se-
quence of generic morphs or as a sequence of prefixes,
a stem and a sequence of suffixes.

• Level of Abstraction: Basic non-terminals can be
combined into more complex categories, e.g., Com-
pounds, or split into smaller ones, e.g., SubMorphs.

• Segmentation Boundaries: This defines the non-
terminals that incur the splits in the final segmentation
output. For example, a word can be segmented on the
level of complex affixes, e.g., re+play+ings, or simple
ones, e.g., re+play+ing+s.

Figure 1 shows the grammar trees of three different gram-
mars: PrStSu+SM, PrStSu2a+SM and Morph+SM, repre-
senting the English word irreplaceables. A PrStSu gram-
mar is a grammar where a word is modeled as a sequence
of prefixes, a stem and a sequence of suffixes, where Pr,
St and Su refer to Prefix, Stem and Suffix, respectively.
The addition of SM means the basic components are split
into sub-morphs. The term 2a refers to a variation of the
PrStSu+SM grammar where the stem and the list of the suf-
fixes are combined into a parent category StemSuffixes. On



7114

the other hand, the Morph+SM grammar, proposed by Sirts
and Goldwater (2013), has words modeled as a sequence
of morphs that are composed of sub-morphs. For more de-
tails about the specifications of these grammars and other
grammars, see Eskander et al. (2016).
In addition to defining the main grammar, each production
rule has to be associated with three parameters; θ, a and
b, where θ is the probability of the rule in the generator,
while a and b are the parameters of the Pitman-Yor process
(Pitman et al., 1997). If not specified, the parameters are
sampled by the trainer, or they can be set to default values
prior to running the learner. Setting a to one means the un-
derlying non-terminal is not adapted and is sampled by the
general Pitman-Yor process, while setting a to zero means
the adaptor of the non-terminal is a Dirichlet process (Ish-
waran and James, 2003) with the concentration parameter
b. When a non-terminal is adapted, each sub-tree that can
be generated using the initial rule of that non-terminal is
considered as a potential rule in the grammar. Otherwise,
the non-terminal expands as in a regular PCFG. For more
details, see Johnson et al. (2007) and Johnson (2008b).

(a) PrStSu+SM

(b) PrStSu2a+SM

(c) Morph+SM

Figure 1: The representation of the English word ir-
replaceables segmented using three different grammars:
PrStSu+SM, PrStSu2a+SM and Morph+SM

3.2. Training the Model
Inputs The two main inputs to the learner are the gram-
mar, along with the adaptation information, and the vocab-
ulary of the language we want to learn the segmentation
for. The vocabulary is represented as a unique list of un-
segmented words. If the size of the vocabulary is rela-
tively large (e.g., more than 50K words), we recommend
providing only the most frequent words in the underlying
language. We then can obtain the segmentation of the re-
maining words in an inductive-learning manner. The details
of text segmentation are discussed in Subsection 3.3.

Learning Settings Eskander et al. (2016) define three
learning settings: Standard, Scholar-seeded and Cascaded.

• Standard: The Standard setting is language-
independent, where a grammar does not have any
language-specific production rules, and the learning is
fully unsupervised. Figure 2 shows the input of the
PrStSu+SM grammar in the standard mode, where ˆˆˆ
and $$$ indicate the beginning and end of words, re-
spectively.

• Scholar-seeded: In the case where some linguistic
knowledge is available, e.g., a list of morphemes,
this knowledge can be seeded into the grammar trees
as additional production rules, allowing for a semi-
supervised learning setup. Figure 3 shows the input of
the PrStSu+SM grammar in the scholar-seeded mode,
where a sample of English prefixes and suffixes are
added.

• Cascaded: The cascaded setting approximates the
effect of the scholar-seeded setting in a language-
independent setup. This is done by first obtaining a
list of morphemes from a segmentation model that is
trained on a high-precision grammar, and then seeding
those morphemes into another grammar. In this setup,
both the standard grammar and the segmentation out-
put of another grammar are provided. The system then
extracts the top morphemes, typically affixes, from the
segmentation output and seeds them into the standard
grammar prior to running the learner.

It is worth noting that a production rule that is not preceded
by parameters in Figure 2 and Figure 3 has a default zero
value for the a parameter in the Pitman-Yor process, which
means the rule is adapted. On the other hand, those rules
preceded by ”1 1” are not adapted, where the first num-
ber represents the value of the probability of the rule in the
generator, θ, and the second number is the value of the a
parameter in the Pitman-Yor process.

Inference The Markov Chain Monte Carlo (MCMC)
approach is then used to infer the posterior distribution
over the trees using a component-wise Metropolis-Hastings
sampler. This also infers all the hyperparameters of the
model, including the PCFG probabilities in the base distri-
bution and the hyperparameters of the Pitman-Yor process.
For comprehensive details about the inference algorithm
and software implementation, see Johnson et al. (2007).
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Figure 2: The standard PrStSu+SM grammar

Figure 3: The scholar-Seeded PrStSu+SM grammar for En-
glish

3.3. Text Segmentation

The output of the inference algorithm includes the PCFG
with the inferred hyperparameters and the generated sub-
trees that correspond to the adapted nonterminals in ad-
dition to the segmentation output of the input vocabulary.
Text segmentation can then be performed in two differ-
ent modes; transductive and inductive. In the transductive
mode, the word should be present in the vocabulary list pro-
vided to the learner, where the segmentation output serves
as a segmentation lookup. In contrast, the inductive mode
is suitable for words that were not processed by the learner,

where the segmentation is performed by parsing the input
words given the output PCFG using a PCFG parsing algo-
rithm such as CKY.

4. Evaluation and Results
In this section, we evaluate our morphological-
segmentation framework, qualitatively and analytically.
To review, we process the languages outlined in Section
2, where the details about their morphological character-
istics are discussed. We start by describing our datasets,
evaluation setups and evaluation metrics. We then show
the performance of our segmentation framework compared
to state-of-the-art baselines, in addition to the correlation
between the size of the training set and segmentation
quality. Finally, we conclude with analyzing the common
errors produced by our models.

4.1. Data
The data for English, German, Finnish and Turkish is from
the Morpho Challenge competition 2 (MC2010) (Kurimo et
al., 2010), where we select the most frequent 50,000 words
for training after filtering out those words that have foreign
letters. In addition, the development sets are collected from
all the years of the competition, where we filter out the Ger-
man words in which the stem receives transformation.
The Estonian training and development sets are the ones
used by Sirts and Goldwater (2013) 3, where we filter out
words containing foreign letters. The data is based on the
Sega corpus 4, where the gold segmentation in the devel-
opment set is collected from the Estonian Morphologically
Disambiguated Corpus 5.
The training data for Georgian is based on the most com-
mon 50,000 words in the Georgian Wikipedia, while the
gold annotations in the development set are manually an-
notated in house.
The Arabic data is collected from the most frequent 50,000
words in the Arabic PATB Corpus (Maamourio et al.,
2004), where the words in the development set are ran-
domly selected. Similarily, the Zulu data is collected from
the Ukwabelana corpus (Spiegler et al., 2010).
For Mexicanero, Nahuatl, Wixarika and Yorem Nokki, we
use the data released by Kann et al. (2018) after cleaning
up those words that are not white-space tokenized or con-
taining foreign letters.
In all languages, we train our models using the training sets
(TRAIN) in an unsupervised manner, while we use the de-
velopment sets (DEV) for evaluation. We also use the test
sets (TEST) of the polysynthetic languages as additional
evaluation sets.
Table 1 reports the source of the data and the sizes of
TRAIN, DEV and TEST per language. We also release all
the datasets we use in this paper 6.
Table 2 reports morpheme-level statistics for the different
languages we are experimenting with, based on DEV. The

2http://research.ics.aalto.fi/events/morphochallenge2010/datasets.shtml
3through contacting the authors directly
4https://keeleressursid.ee/et/196-segakorpus-eesti-ekspress
5https://www.cl.ut.ee/korpused/morfkorpus/
6https://github.com/rnd2110/MorphAGram
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Language Source TRAIN DEV TEST
English Morpho Challenge 50,000 1,212 NA
German Morpho Challenge 50,000 556 NA
Finnish Morpho Challenge 50,000 1,494 NA
Estonian Sgea Corpus 49,621 1,492 NA
Georgian Morpho Challenge 50,000 1,000 NA
Turkish Morpho Challenge 50,000 1,531 NA
Arabic PATB 50,000 1,000 NA
Zulu Ukwabelana Corpus 50,000 1,000 NA
Mexicanero Kann et al. (2018) 424 106 353
Nahuatl Kann et al. (2018) 535 133 444
Wixarika Kann et al. (2018) 664 166 550
Yorem Nokki Kann et al. (2018) 509 126 421

Table 1: Data source and number of words in the training,
development and test sets per language

second column lists the average morpheme length in the
corresponding language, while the third column shows the
average number of morphemes per word. The maximum
number of morphemes in a word is reported in the fourth
column. Finally, the last column lists the degree of ambi-
guity, which we define as:

1− 2×

∣∣∣∣∣0.5−
∑n

i=1
Ni

Mi

n

∣∣∣∣∣
Where:

• n is the number of morphemes.

• N is the number of occurrences of the sequence of
characters constituting the ith morpheme.

• Mi is the number of occurrences of the ith morpheme.

Language Ave L(M) Ave M/W Max M/W Ambiguity
English 5.30 2.39 6 0.48
German 5.16 2.94 8 0.43
Finnish 5.74 3.48 9 0.53
Estonian 5.63 1.93 7 0.48
Georgian 4.18 2.99 8 0.65
Turkish 4.61 3.30 8 0.65
Arabic 4.29 2.25 5 0.27
Zulu 4.60 3.96 9 0.64
Mexicanero 4.39 1.93 7 0.59
Nahuatl 4.58 2.31 6 0.69
Wixarika 4.16 3.30 10 0.75
Mayo 4.01 2.24 5 0.59

Table 2: Language statistics based on the development sets.
M=Morpheme, W=Word, L(M)=Length of Morpheme.

4.2. Evaluation Setup
We evaluate two models per language: 1) the best language-
independent (standard/cascaded) setup, denoted as AG-LI,
and 2) the best scholar-seeded setup, denoted as AG-SS. We
use the system proposed by Eskander et al. (2016) to obtain
the best language-independent setups, which we report on
in Table 3.

Language Best AG-LI Best AG-SS
English Std. PrStSu+SM Sch. PrStSu+SM
German Std. PrStSu+SM Sch. PrStSu+SM
Finnish Casc. PrStSu+SM Sch. PrStSu+SM
Estonian Casc. PrStSu+SM Sch. PrStSu+SM
Georgian Casc. PrStSu+SM Sch. PrStSu+SM
Turkish Std. PrStSu+SM Sch. PrStSu2a+SM
Arabic Std. PrStSu+SM Sch. PrStSu2a+SM
Zulu Casc. PrStSu+SM Sch. PrStSu+SM
Mexicanero Std. PrStSu+SM Sch. PrStSu+SM
Nahuatl Std. PrStSu+SM Sch. PrStSu+SM
Wixarika Std. PrStSu+SM Sch. PrStSu+SM
Yorem Nokki Std. PrStSu+SM Sch. PrStSu+SM

Table 3: The best language-independent (stan-
dard/cascaded) setup (AG-LI) and the best scholar-
seeded setup (AG-SS) per language. Std.=Standard,
Casc.=Cascaded, and Sch.=Scholar-Seeded

We conduct the evaluation in a transductive learning sce-
nario, where the unsegmented test words are included in our
training set, which is common in the evaluation of unsuper-
vised morphological segmentation (Poon et al., 2009; Sirts
and Goldwater, 2013; Narasimhan et al., 2015; Eskander et
al., 2016). However, we do not see gains in the performance
when using the inductive learning approach instead, where
the unsegmented test words are separate from the training
set.
We run the learners for 500 iterations for all languages, and
we compute the results as the average of five runs since
the samplers are non-deterministic. No annealing is used
as it does not improve the results, and all parameters are
automatically inferred.

4.3. Evaluation Metrics
We evaluate the performance of our morphological-
segmentation framework using two metrics: Boundary Pre-
cision and Recall (BPR) and EMMA-2 (Virpioja et al.,
2011). BPR is the classical evaluation method for mor-
phological segmentation, where the boundaries in the pro-
posed segmentation are compared to the boundaries in the
reference. In contrast, EMMA-2 is based on matching
the morphemes, and is a variation of EMMA (Spiegler
and Monson, 2010). In EMMA, each proposed morpheme
is matched to each morpheme in the gold segmentation
through one-to-one mappings. However, EMMA-2 allows
for shorter computation times as it replaces the one-to-one
assignment problem in EMMA by two many-to-one assign-
ment problems, where two or more proposed morphemes
can be mapped to one reference morpheme. EMMA-2 also
results in higher precision and recall as it tolerates failing
to join two allomorphs or to distinguish between identical
syncretic morphemes.

4.4. Baselines
We evaluate our system versus two state-of-the-art base-
lines: Morfessor (Creutz and Lagus, 2007) and Mor-
phoChain (Narasimhan et al., 2014). Morfessor is a
commonly used framework for unsupervised and semi-
supervised morphological segmentation and is publicly
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available for free 7. Morfessor utilizes the Minimum De-
scription Length (MDL) concept for the selection of the
optimal segmentation for both the input vocabulary and the
segmentation lexicon. It also uses an HMM model that en-
codes the positional information of the morphemes. Mor-
phoChain is another publicly available system for unsu-
pervised morphological segmentation 8. In MorphoChain,
words are modeled as morphological chains, where a chain
is a sequence of words that starts with a base word (parent)
and ends up with a morphological variant. It uses a log-
linear discriminative model to predict the parent of a given
word, and uses the transformations in the underlying chain
to derive the segmentation.

4.5. System Performance
Table 4 reports the performance of the best language-
independent model (AG-LI) and the best scholar-seeded
model (AG-SS) versus Morfessor and MorphoChain, for
each language when tested on DEV, using the BPR and
EMMA-2 metrics.
When using the BPR metric, our systems do constantly
better than Morfessor and MorphoChain on all languages,
where the AG-LI model decreases the errors produced by
Morfessor and MorphoChain by 26.0% and 38.0%, respec-
tively, on average across all languages, while the AG-SS
model outperforms the AG-LI model by an average F1-
score of 1.7%. We obtain the same patterns when applying
the EMMA-2 metric, where our AG-LI model outperforms
Morfessor and MorphoChain on all languages, but with a
smaller gap than that of the BPR metric.
It is worth noting that models that tend to under-segment
achieve significantly better EMMA-2 scores as opposed to
the BPR ones, which is due to the one-to-many mappings
in EMMA-2. This is one of the main reasons why system
rankings may differ depending on the evaluation metric. An
example is the considerable increase in the F1-score from
49.3%, when using BPR, to 81.1%, when using EMMA-
2, when evaluating MorphoChain on Yorem Nokki, where
MorphoChain does under-segmentation with 100% preci-
sions and low recalls when detecting common affixes such
as m, ne po and su.
Table 4 reports the performance of our systems compared
to Morfessor and MorphoChain for the polysynthetic lan-
guages when tested on TEST . The AG-LI and AG-SS mod-
els achieve the best results on all languages, where the AG-
LI model achieves absolute average F1-score increases of
25.4% and 46.2% over Morfessor and MorphoChain, re-
spectively, when using the BPR metric.

4.6. Learning Curves
We examine the performance of the AG-LI and AG-SS
models on German, Turkish and Arabic when training on
different sizes: 500, 1K, 5K, 10K, 20K, 30K, 40K and 50K.
The learning curves are reported in Figure 4.6.
The learning behavior for Arabic meets the expectations,
where the performance consistently increases by adding
more training data, while the AG-SS model always out-
performs the AG-LI model across the different training

7https://morfessor.readthedocs.io/en/latest/
8https://github.com/karthikncode/MorphoChain

sizes. In contrast, augmenting the training data for Ger-
man and Turkish sometimes results in performance drops,
despite the overall upward learning patterns. One explana-
tion is that some data points might confuse the learner when
added, leading to hyperparameters that are less efficient.
It is noteworthy to mention that the performance of the
system on German and Turkish when only using 5,000
and 10,000 training words, respectively, outperforms the
performance of the baseline systems, Morfessor and Mor-
phoChain, when they utilize the full training set. This is be-
cause the system learns well from a small amount of data,
which is the case when learning the segmentation for the
polysynthetic languages as well.

4.7. Error Analysis
Table 6 shows some examples of correctly and incorrectly
segmented words by our models, where incorrect ones are
marked in red and italic characters, for seven languages:
German, Georgian, Turkish, Arabic, Zulu, Wixarika and
Yorem Nokki.

German Our models recognize the affixes an ab and auf
with a high average recall of 94.8%. While an, ab auf
have low relative frequencies in the data, 0.61%, 0.55%
and 0.43% of the morphemes, respectively, they are not
components of other morphemes which they could be mis-
taken for. In contrast, Morfessor and MorphoChain achieve
lower average recalls of 83.3% and 46.3% on the three
morphemes, respectively. On another hand, the AG-SS
model over-segments words containing isch by producing
the morpheme isch with a 100% recall and a low preci-
sion of 39.3%. The reason for that is the high ambiguity
of the morpheme, as isch is a separate morpheme 37.9%
of the time it occurs, in addition to its low relative fre-
quency of 0.67.2%. In contrast, both Morfessor and Mor-
phoChain under-segment the morpheme isch, with low re-
calls of 9.1% and 18.2%, respectively. Moreover, our mod-
els tend to over-segment consecutive simple prefixes, e.g.,
merging auf+ent into aufent. One explanation is that pre-
fixes are not frequent enough in the data, where the eleven
most frequent morphemes are suffixes. While Morfessor
shows a similar behavior, MorphoChain tends to split com-
plex prefixes into simple ones.

Georgian The AG-LI model significantly outperforms
Morfesssor and MorphoChain in the detection of the top
common one-letter morphemes, namely i, a, s, e, m, o and
v, with an average F1-score of 54.4%, as opposed to 33.1%
by Morfessor and 35.7% by MorphoChain. However, these
morphemes are highly ambiguous and difficult to be cor-
rectly identified by the different models. For instance, all
the models achieve a low recall (up to 49.2% by the AG-SS
model), when detecting the top two morphemes, i and a,
where these morphemes appear as part of other bigger mor-
phemes such as ˝i, da and ga. In contrast, the morphemes
ze and ad are the top detected morphemes among the most
frequent ones. However, the different models achieve rel-
atively low recalls, compared to the performance on other
languages, where they tend to under-segment.

Turkish Our models show better detection of one-letter
morphemes than Morfessor and MorphoChain. For in-
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Language BPR EMMA-2
Morfessor MorphoChain AG-LI AG-SS Morfessor MorphoChain AG-LI AG-SS

English 75.2 69.5 75.5 80.0 85.9 82.5 86.3 88.7
German 72.8 64.0 78.1 79.5 80.9 73.9 84.6 85.9
Finnish 62.8 55.7 70.9 71.1 73.4 68.9 77.7 77.4

Estonian 67.6 61.4 74.0 69.0 83.5 75.1 85.3 85.8
Georgian 62.1 62.4 72.7 72.0 72.1 72.2 78.6 78.8
Turkish 64.6 60.6 78.9 72.8 61.3 61.1 69.3 65.2
Arabic 78.0 77.1 82.5 90.1 85.5 85.3 88.4 93.9
Zulu 47.5 42.2 65.6 75.7 52.5 55.9 69.7 78.7

Mexicanero 70.7 69.5 79.4 82.7 86.8 86.1 90.1 92.0
Nahuatl 58.4 61.5 67.0 68.3 80.9 82.9 83.4 85.2

Wixarika 70.2 43.1 76.4 77.9 72.6 64.0 80.4 82.5
Yorem Nokki 63.9 49.3 78.8 81.1 81.2 81.1 88.1 89.1

Average 66.2 59.7 75.0 76.7 76.4 74.1 81.8 83.6

Table 4: The results on the development sets using the top language-independent (Standard/Cascaded) model (AG-LI)
and the top scholar-seeded model (AG-SS) for each language, compared to two baselines; Morfessor and MorphoChain.
The results are reported on both the BPR and EMMA-2 F1-scores. The best language-independent result per language and
evaluation metric is underlined, while the best overall result per language and evaluation metric is in boldface.

Language BPR EMMA-2
Morfessor MorphoChain AG-LI AG-SS Morfessor MorphoChain AG-LI AG-SS

Mexicanero 70.5 64.3 77.7 78.5 79.6 77.4 84.6 87.1
Nahuatl 61.2 55.9 72.1 73.7 73.4 74.8 80.6 82.8

Wixarika 72.9 50.3 76.8 78.2 71.7 62.3 77.5 81.2
Yorem Nokki 71.7 58.0 81.0 80.7 79.0 77.6 86.3 87.0

Average 69.1 57.1 76.9 77.8 75.9 73.0 82.3 84.5

Table 5: The results on the test sets using the top language-independent (Standard/Cascaded) model (AG-LI) and the top
scholar-seeded model (AG-SS) for each language compared to two baselines; Morfessor and MorphoChain. The results
are reported on both the BPR and EMMA-2 F1-scores. The best language-independent result per language and evaluation
metric is underlined, while the best overall result per language and evaluation metric is in boldface.

stance, our AG-LI model detects the top three one-letter
morphemes, i and ı and t, with an average F1-score of
29.9%, as opposed to average F1-scores of 16.1% and
20.1% by Morfessor and MorphoChain, respectively. How-
ever, the detection of these morphemes remains a challenge
as they are highly ambiguous and usually appear as part of
bigger morphemes. On the other hand, despite ler (a plu-
ral suffix) being a morpheme 82.2% of the time it occurs,
our AG-LI model recognizes it successfully only 38.5% of
the time, probably because there are other morphemes con-
taining ler such as leri. Most of such errors occur when ler
is followed by a vowel. On the other side, MorphoChain
has a better detection of the ler morpheme, while Morfes-
sor tends to under-segment it. Another example is the mor-
pheme ma. Despite the fact that ma is the fourth most oc-
curring morpheme in the data, all the models tend to merge
it with sı due to the frequent occurrence of ması. In con-
trast, the morpheme yla is always correctly identified by the
AG-LI model due to its low degree of ambiguity (90.0% of
the time it is a morpheme), and the fact that it is almost
always an ending suffix. On the other hand, the recalls of
Morfessor and MorphoChain in detecting yla are signifi-
cantly lower, 27.8% and 55.6%, respectively.

Arabic 9 The precision and recall of our models in the de-
tection of the Arabic morphemes are the highest among the
other languages. The AG-LI model detects the one-letter
common morphemes efficiently, e.g., the affixes w, t, y, n, p
and k, especially they mostly appear in the very beginning
or at the end of words. In contrast, both Morfessor and Mor-
phoChain have relatively low recalls and precisions, under
70.0%, in the detection of the verbal prefixes t, y and n.
In addition. Morfessor tends to over-segment w when it
appears in the middle of a word, while MorphoChain over-
segments k when it is part of a stem. However, our models
fail to detect the verbal prefix s as it is always followed
by another prefix. On another hand, the AG-LI model and
MorphoChain tend to over-segment the beginning m since
many adjectives start with m, but it is not an Arabic prefix.
It is also noted that some segmentation errors are correct
when ignoring the context, while the gold segmentation is
based on the context in the PATB corpus. An example is
the word t$bh, which means either t+$bh (she looks like)
or t$bh (resembling).

9We use the Buckwalter Transliteration for better readability
(Buckwalter, 2004)
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Figure 4: Learning Curves for German, Turkish and Arabic when training on different vocabulary sizes: 500, 1K, 5K, 10K,
20K, 30K, 40K and 50K. The X-axis represents the training size in thousands. The Y-axis represents the BPR F1-scores.

Language word Gold Segmentation AG-LI segmentation AG-SS Segmentation

German

absonderlicher ab+sonder+lich+er ab+sonder+lich+er ab+sonder+lich+er
anfeuchtet an+feucht+et an+feucht+et an+feucht+et
tarifarische tarif+arisch+e tarif+arisch+e tarif+ar+isch+e
aufenthalte auf+ent+halt+e auf+enthalt+e auf+enthalt+e

Georgian

na˛ami na+˛am+i na+˛am+i na+˛am+i
˜ursze ˜urs+ze ˜urs+ze ˜urs+ze
a¨ireb a+¨ir+eb a¨ireb a+¨ir+eb
tve˝ic tve+˝i+c tve+˝i+c tve+˝ic

Turkish

nedameti nedamet+i nedamet+i nedamet+i
pastanelerde pastane+ler+de pastane+ler+de pastane+lerde
oynamasıdır oyna+ma+sı+dır oyna+ması+dır oyna+masıdır
esrarlarıyla esrar+ları+yla esrar+ları+yla esrar+larıyla

Arabic

wqrTAs w+qrTAs w+qrTAs w+qrTAs
fAlE$yqp f+Al+E$yq+p f+Al+E$yq+p f+Al+E$yqp
sytmkn s+y+tmkn sy+tmkn sy+tmkn
mqAtlyn mqAtl+yn m+qAtl+yn mqAtlyn

Zulu
ngamaqembu nga+ma+qembu nga+ma+qembu nga+ma+qembu
ngathola ng+a+thol+a nga+thola nga+thol+a
ungazi u+ng+azi u+ngazi u+nga+z+i
bayofik+a ba+yo+fik+a ba+yo+fika ba+yo+fik+a
ngisafanisa ngi+sa+fan+is+a ngi+sa+fanisa ngi+sa+fan+is+a

Wixarika

pütawieya pü+tawie+ya pü+tawie+ya pü+tawie+ya
nepexeiya ne+p+e+xeiya ne+p+e+xeiya ne+p+e+xeiya
nepexeiya ne+p+e+xeiya ne+pe+xeiya ne+pe+xeiya
perexeiya pe+r+e+xeiya pe+re+xeiya pe+re+xei+ya

Yorem Nokki

nechie’ ne+chi+e’ ne+chi+e’ ne+chi+e’
usimpo usi+m+po usi+m+po usi+m+po
pwertapo pwerta+po pwer+tapo pwerta+po
tekipanwapeyaka tekipan+wa+peya+ka tekipanwa+peya+ka tekipanwa+peya+ka

Table 6: Examples of correct and incorrect segmentation for German, Georgian, Turkish, Arabic, Zulu, Wixarika and
Yorem Nokki

Zulu The AG-LI and AG-SS models are able to identify
the prefix nga 79.6% and 77.6% of the time, respectively,
due to the low ambiguity and the high frequency of the mor-
pheme. In contrast, both Morfessor and MorphoChain fail
to detect nga most of the time, with a low recall of 16.3%.
On the other side, our models mostly fail to detect the mor-
pheme ng as it is usually part of other morphemes such as
nga and ngi, while MorphoChain tends to over-segment ng
instead. One observed phenomenon in the case of Zulu is
that our models vary widely in their performance. For in-
stance, while the AG-SS model is able to detect the most
frequently used morpheme, a, correctly 75.8% of the time,
the AG-LI model detects it correctly only 14.6% of the
time. The AG-LI model’s errors occur around a often due

to under-segmentation, while the AG-SS model is efficient
at identifying a as a separate morpheme when it is at the
end of a word , although it often fails to identify it when it
is in the middle. In contrast, MorphoChain can detect the
ending a morpheme only 6.8% of the time, while Morfes-
sor under-segment it consistently, which highly affects their
overall performance. On another hand, all the models fail
to detect the is morpheme, except the AG-SS model, which
is able to detect it only 22.6% of the time. However, all the
models show under-segmentation in the case of Zulu.

Wixarika Our AG-LI and AG-SS models detect the two
most frequent morphemes, pü and ne, efficiently with aver-
age F1-scores of 86.2% and 94.8%, respectively. In con-
trast, Morfessor and MorphoChain achieve significantly
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lower average F1-scores on the two morphemes, 39.6% and
18.5%, in order. However, none of language-independent
systems can produce the morphemes p, e and r, which are
ranked fifth, sixth and tenth in terms of frequency. In gen-
eral, the segmentation models tend to under-segment the
one-letter morphemes as part of bigger ones when learning
from small corpora. On the other side, MorphoChain shows
a high degree of under-segmentation, where it achieves zero
F1-scores in the detection of seven out of ten most frequent
morphemes, and low recalls, up to 27.3%, on the rest of the
morphemes.

Yorem Nokki Our AG-LI and AG-SS models are highly
efficient at detecting the most frequent morphemes, where
the AG-LI model can always detect the morphemes ne, su
and e’ correctly, while the AG-SS model achieves a 100%
recall in the detection of the k, po and e’ morphemes. In
contrast, Morfessor can only detect the morpheme e’ cor-
rectly in a consistent manner, while MorphoChain achieves
a zero F1-score in the detection of five out of the ten most
frequent morphemes, namely k, ka, ri, e’ and wa. While the
AG-LI and AG-SS models tend to over-segment in Yorem
Nokki, MorphoChain under-segments most of the time,
which is why it cannot produce many of the short common
morphemes. Finally, all the models are inefficient in detect-
ing the morpheme wa due to its high degree of ambiguity.
For the analysis of the common segmentation phenomena
seen in both Mexicanero and Nahuatl, see Eskander et al.
(2019).

5. Related Work
Unsupervised morphological segmentation was first per-
formed by expensive manual rule engineering. An early
use of machine learning for morphological segmentation
was proposed by Goldsmith (2001) through the use of the
Minimum Description Length (MDL) approach. The ap-
proach, however, requires some manual work that makes it
challenging to generalize across languages.
Morfessor (Creutz and Lagus, 2002), is a commonly
used unsupervised and semi-supervised morphological-
segmentation framework that utilizes the MDL principal,
along with an HMM model, where the morphemes have a
hierarchical structure. Another variation of Morfessor is
Morfessor FlatCat (Grönroos et al., 2014), which predicts
both segmentation and morpheme categories.
Log-linear models have proved successful for the problem
of unsupervised morphological segmentation (Poon et al.,
2009) with the use of global and contextual features. An-
other log-linear model is proposed by Narasimhan et al.
(2015), where they arrange the words into chains that model
the word formation process. A chain starts with a base word
and ends with some variant, where predicting the chain of
a given word derives its segmentation information.
Johnson et al. (2007) propose Adaptor Grammars, nonpara-
metric Bayesian models that generalize PCFGs. Adaptor
Grammars have then become the basis for several unsuper-
vised morphological segmentation systems.
Botha and Blunsom (2013) extend Adaptor Grammars
to model non-concatenative morphology, while Sirts and
Goldwater (2013) and Eskander et al. (2016) utilize Adap-
tor Grammars by exploring different grammars and learn-

ing settings for language-independent and minimally super-
vised morphological segmentation. In a follow-up study,
Eskander et al. (2018) proposes a machine-learning ap-
proach for the automatic identification of the best Adaptor-
Grammar learning setups. Eskander et al. (2019) then uti-
lize Adaptor Grammars for the unsupervised morphologi-
cal segmentation of polysynthetic languages. They show
that Adaptor Grammars are highly efficient in low-resource
setups.
A comprehensive study that compares different unsuper-
vised and semi-supervised morphological segmentation ap-
proaches, including Morfessor, MorphoChain and basic
Adaptor-Grammar setups, is conducted by Ruokolainen et
al. (2016).

6. Conclusion and Future Work
We presented MorphAGram, a publicly available frame-
work for unsupervised morphological segmentation that is
based on Adaptor Grammars. The framework can also ben-
efit from the addition of language-specific information. We
conducted an extensive quantitative and qualitative eval-
uation using two common evaluation metrics, BPR and
EMMA-2, on 12 languages that are spread across the ty-
pology spectrum (from fusional to polysynthetic and from
high-resource to low-resource). We showed that the frame-
work achieves the state-of-the-art results on all languages
on both metrics. We also conducted an error analysis to
discuss the most common phenomena seen in the segmen-
tation outputs of several languages.
In the future, we plan to conduct an extrinsic evaluation
for our morphological-segmentation framework on down-
stream tasks such as part-of-speech tagging, machine trans-
lation, information retrieval and learning cross-lingual em-
beddings.
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