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Abstract

This paper presents experiments on sentence boundary detection in transcripts of spoken dialogues. Segmenting spoken language into
sentence-like units is a challenging task, due to disfluencies, ungrammatical or fragmented structures and the lack of punctuation. In
addition, one of the main bottlenecks for many NLP applications for spoken language is the small size of the training data, as the
transcription and annotation of spoken language is by far more time-consuming and labour-intensive than processing written language.
We therefore investigate the benefits of data expansion and transfer learning and test different ML architectures for this task. Our
results show that data expansion is not straightforward and even data from the same domain does not always improve results. They also
highlight the importance of modelling, i.e. of finding the best architecture and data representation for the task at hand. For the detection
of boundaries in spoken language transcripts, we achieve a substantial improvement when framing the boundary detection problem as a
sentence pair classification task, as compared to a sequence tagging approach.
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1. Introduction

Being able to structure natural spoken discourse into
sentence-like units (SLUs) is desirable not only from a the-
oretical point of view, but is also a key requirement for
enabling research in corpus linguistics as well as the ap-
plication of Natural Language Processing tools (e.g. PoS-
taggers, syntactic parsers) to transcripts of spoken lan-
guage.

While various proposals have been made for how to di-
vide spoken language in corpora into smaller units, typi-
cally these divisions were not guided by syntactic consider-
ations. Instead, division into inter-pausal units is common
(e.g. Hamaker et al. (1998) for the Switchboard corpus
(John J. Godfrey, Edward Holliman, 1993)).

For German, the SegCor project presented a proposal and
guidelines for dividing transcribed speech into sentence-
like units based on Topological Fields (Westpfahl and
Gorisch, 2018; Westpfahl et al., 2019). The Topological
Fields Model (Drach, 1937; Hohle, 1986) is a descriptive
grammar formalism that captures regularities in German
word order by dividing sentences in different verbal and
non-verbal fields and describing their position with regard
to the main verb. In a corpus-based study, Schmidt and
Westpfahl (2018) then investigated how well the length of
gaps between utterances can predict the syntactic bound-
aries annotated in the SegCor corpus. They showed that
while there is a correlation between gap length and surface
syntax, gap length on its own is not sufficient for a reliable
prediction of SLU boundaries.

Our work builds on previous work on automatic bound-
ary detection in German spoken language transcripts (Rup-
penhofer and Rehbein, 2019) and tries to further improve
the accuracy for SLU boundary detection. Ruppenhofer
and Rehbein (2019) modelled the problem as a sequence
tagging task and showed that neural models with contex-
tual string embeddings (Akbik et al., 2018), based on the
Flair library of Akbik et al. (2019), outperform a classi-

cal feature-based CRF classifier. This paper presents new
experiments where we (i) test different neural architectures
and task setups for SLU boundary detection, and (ii) inves-
tigate the potential benefits of additional training data from
a different source of spoken language.

This paper proceeds as follows. We discuss related work in
Section 2. and present our dataset in Section 3. Our exper-
iments and their results are described in sections 4. and 5.
While we show that training data expansion for this task is
not straightforward even with data from the same domain
(Section 4.), we present substantial improvements for SLU
boundary detection when framing the task as sentence pair
classification (Section 5.2.). We conclude and outline av-
enues for future work in Section 6.

2. Related Work

In this section, we report on previous work on sentence
boundary detection in written language and on the detec-
tion of sentence-like units in spoken language.

2.1. SLU detection in written text

In the realm of medially written language, the most closely
related task is sentence boundary detection. Typically, this
has been framed as deciding for a closed class of interpunc-
tuation symbols (mainly *.’,;’?’,’!”) whether they represent
the end of a sentence or not, with abbreviations constitut-
ing one of the key sources of error. While traditionally very
high accuracies were reported, Read et al. (2012) show
in their overview of SLU detection that performance can
be significantly worse on text other than news, with ma-
chine learning-based systems often being less robust than
rule-based or hybrid sytems. Comparing Wikipedia pages
to topically related blogs, they also show that within the
same domain, sentence-boundary detection performs less
well the more informal the text type is.

Recently, sentence boundary detection has also come into
focus due to the rise of social media, which often include
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text where standard punctuation conventions are both ig-
nored and/or extended. Posts on Twitter or Facebook may,
for instance, ‘end’ a sentence with an emoticon, an asterisk
or a pipe symbol rather than a punctuation symbol. Rudra-
pal et al. (2015) test the limitations of rule-based sentence
boundary detection and investigate three machine learning
algorithms as possible alternatives.

2.2. SLU detection in spoken language
transcripts

In the domain of medially spoken language, the detection of
sentence-like units is a much harder problem, given the lack
of punctuation and case information, and the high number
of disfluent utterances.

Stevenson and Gaizauskas (2000) investigated the upper
bound for human performance on such data and measured
agreement for inserting punctuation (also including com-
mas) in transcriptions of a BBC news program. Instead of
transcriptions created by an ASR system, they used human-
created transcription but removed punctuation and case in-
formation. On that data, human annotators showed a pre-
cision in the range of 84-93%. Recall, however, was much
lower with 68-78%.

Westpfahl and Gorisch (2018) measured human agree-
ment for the syntactically motivated SegCor segmentation
scheme that also distinguished different sentence types (see
Section 3.). They report an average kappa of 0.69 for the
agreement of two annotators for the segmentation across 8
transcripts. While Westpfahl and Gorisch (2018) give no
breakdown of which confusions among boundary types are
most frequent for their human annotators, they do show
a further complication of the task: the different sentence
types are distributed differently across different text types
and their specific properties also vary by text type. For in-
stance, in so-called expert talk, simple sentences are longer
than in other texts.

Taken together, these experiments underline the challenge
in the task we tackle by showing that sentence boundary
labeling cannot be done perfectly by humans and that its
diffculty is variable across text types.

To make up for missing punctuation and case information,
some studies have made use of both prosodic features to
augment the lexical information from the transcripts. Go-
toh and Renals (2000) performed experiments with HMMs
on reference transcripts from BBC radio and tv programs
which included repeated and incorrect speech as well as
disfluencies. They also constructed an alternative pause
duration model alone based on speech recogniser output
aligned with the transcripts. The pause duration model out-
performed the language modelling approach, while a com-
bination of the two models provided further performance
gains. Precision and recall scores of over 70% were at-
tained for the task of deciding for each word whether it
represents the last word of a sentence. In his work on sen-
tence boundary detection on Czech radio news and discus-
sion programs, Kolar (2008) similarly finds that combining
several models works best.

Liu et al. (2005) evaluate the performance of a CRF-model
on two English corpora (conversational telephone speech
and broadcast news speech) on both human transcriptions

and automatic speech recognition output. Their experi-
ments show that the use of prosody improves performance
over the use of word n-grams alone and that the addition of
further features e.g. on pos-tags provides another improve-
ment.

Roark et al. (2006) apply a re-ranking approach to the de-
tection of SLU boundaries. In a two stage approach, they
first fix a subset of the word boundaries as points of di-
vision, yielding subsequences betwen fixed points, which
they call fields. In the second stage, candidate boundaries
within the fields are generated and then ranked.

Zribi et al. (2016) predict sentence boundaries in tran-
scriptions of spoken Tunisian Arabic. Their best sys-
tem combines a rule-based approach with partial decision
trees (PART) and achieves an F1 of around 82% on their
data. Importantly, their results show that automatic sen-
tence boundary detection can improve the accuracy of a
PoS tagger for transcribed Tunisian Arabic.

In previous work (Ruppenhofer and Rehbein, 2019), we
have experimented with various features and task param-
eters, showing that the right context is far more important
for SLU detection than the left context, and that informa-
tion on speaker turns considerably improves results. We ex-
perimented with a feature-rich classification setup based on
Conditional Random Fields (CRF) that allowed us to easily
include additional information, such as PoS tags or lem-
mas. However, we also showed that the CRF classifier can
be outperformed by a simpler neural model that incorpo-
rates contextualised string embeddings (Akbik et al., 2018;
Akbik et al., 2019). Given the success of the neural model,
we would like to test whether further improvements can be
obtained with transfer learning based on BERT’s contextu-
alised word embeddings (Devlin et al., 2019) (Section 5.).

3. Data

This section presents our gold standard for the segmenta-
tion of German oral corpora, created in the SegCor (“Seg-
mentation of Oral Corpora™) project,' as well as the ad-
ditional spoken language data we use in our training data
expansion experiments.

3.1. SegCor

The SegCor data has some features that distinguish it from
most previous work. Our data represents conversational
speech with two or more speakers that was recorded in non-
laboratory settings. Since tools based on the automatic pro-
cessing of the audio signal do not work all that well on our
data, we instead work with the transcripts only. Our dataset
consists of 33 documents with more than 54,000 lexical to-
kens originating from the FOLK corpus (Schmidt, 2014)
that were divided into sentence-like units by the SegCor
project. This data set was doubly annotated and disagree-
ments were adjudicated (Westpfahl and Gorisch, 2018).
Note that to avoid confusion, we reserve the term segment
and related forms for the division of speech into chunks by
the transcribers that was guided by silences in the speech
signal. For the division of the material into sentence-like
units we will use the term “SLU boundary detection”.

"https://wwwl.ids-mannheim.de/prag/
muendlichekorpora/segcor.html
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The raw FOLK transcripts, which we take as our input and
which lack SLU-boundaries, follow the cGAT conventions
(Schmidt et al., 2015). Accordingly, the data uses “con-
tributions” and “’segments” as the fundamental units in the
data structure. Segments of speech are the original units
of transcription: transcribers are instructed to select them
as chunks that can be transcribed in one go given cognitive
load and usability of the transcription environment. Cru-
cially, segment boundaries should be placed at word bound-
aries or at the beginning or end of pauses. Like segments,
contributions are defined without any reference to syntactic
considerations (Schmidt et al., 2015, 8):

‘A contribution in a ¢GAT transcript comprises
all immediately consecutive segments attributed
to a speaker. Contributions should not be con-
fused with sentences, which are units of written
language. Instead, they are to be understood as
dialogue contributions.

Pauses (silences up to 0.2s) may occur between separate
contributions but also within a contribution. Gaps, silences
longer than 0.2s, always separate contributions in cGAT.
The relation between the input representation in terms
of contributions and the intended output representation in
terms of sentence-like units is not always one to one. Com-
mon deviations are as follows. First, a contribution may
correspond to several SLUs as illustrated by (1).

@)) 1 contribution : n SLUs

a. < c¢ >hich weil} net ich glaub eher nich h
h< /e >

b. < SLU >hich weif net< /SLU >
< SLU > ich glaub eher nichhh< /SLU >

c. ‘I'don’t know. I rather think not.’

Second, several contributions may jointly correspond to
one SLU.

2) n contributions : 1 SLU

a. < ¢ >der beschiftigt sich< /¢ >
<c>(0.85 < /ec>
< ¢ >zwei minuten mit dem< /¢ >

b. < SLU > der beschiftigt sich (0.85) zwei
minuten mit dem < /SLU >

c. ‘He occupies himself with that one for two
minutes.’

Both situations may also occur in combination so that we
get n : m-relations between contributions and SLUs.

To decide on SLU boundaries, we can not only make use
of the transcribed word forms but can also include further
information. While we do not use acoustic features such as
word durations and pitch contours, the transcript does give
us access to temporal information that has proved useful in
previous work (Gotoh and Renals, 2000). We encode pause
length and, since we know which tokens are produced by
which speaker, we also introduce turn boundaries into our
representation.

3.2. KiDKo

In addition to the rather small SegCor dataset we also
have access to a much larger corpus of informal spoken
youth language, the KiezDeutsch-Korpus (KiDKo) (Wiese
et al., 2012; Rehbein et al., 2014). KiDKo contains sponta-
neous peergroup dialogues of adolescents from multiethnic
Berlin-Kreuzberg (around 266,000 tokens) and a supple-
mentary corpus with adolescent speakers from monoeth-
nic Berlin-Hellersdorf (around 111,000 tokens, excluding
punctuation). On the normalisation layer where punctua-
tion is included, the token counts add up to around 359,000
tokens (main corpus) and 149,000 tokens (supplementary
corpus).

On the normalisation layer, the data includes punctuation
and is segmented into sentence-like units. On top of the
normalisation, the corpus comprises additional annotation
layers with Parts of Speech (PoS), syntactic chunks and
Topological Fields (Drach, 1937; Hohle, 1986).

As the segmented utterances in KiDKo serve as the basis
for the Topological Field annotations, both corpora have
been segmented according to similar principles. However,
some differences remain. One of them concerns coordi-
nated clauses where each conjunct includes a finite verb.
These coordinated sentences are split into seperate clauses
in SegCor (3). In KiDKo, the decision whether to segment
coordinated sentences or not is left to the transcribers who
have access to the audio file and decide for each individ-
ual utterance, based on prosodic and semantic cues. As a
result, a coordinated clause might either be separated as in
(3) or might be left as one complex clause, as in (4).

3) < SLU >sie trinkt kaffee< /SLU >
“she drinks coffee”
< SLU > und er trinkt tee < /SLU >
“and he drinks tea”

@) < SLU >sie trinkt kaffee und er trinkt tee
< /SLU >
“she drinks coffee and he drinks tea”

To be able to use the corpus as additional training data for
SLU detection in the SegCor corpus, we segmented all co-
ordinated sentences in KiDKo not containing an ellipsis
into seperate sentences, as in (3). We also merged tag ques-
tions, which are tagged as a separate SLU in KiDKo (5),
with their preceeding sentence, as was done in SegCor (6).

5) < SLU > gurke is n gemiise< /SLU >
“cucumber is a vegetable”
< SLU > oder < /SLU >
“right”

©6) < SLU > gurke is n gemiise oder < /SLU >
“cucumber is a vegetable right”

Other adaptations concern the transcription of hesitation
particles and interjections, where we converted frequent
word forms so that they followed the conventions used for
annotating SegCor.

Table 1 gives an overview of the two datasets after the con-
version and Table 2 shows the distribution of SLU types in
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# tokens # SLU
SegCor | KiDKo | SegCor | KiDKo
train | 38,293 | 230,166 7,756 | 61,524
dev 5,578 | 33,265 1,213 8,985
test 10,841 65,845 1,771 | 16,634
total | 54,712 | 329,276 | 10,740 | 87,143

Table 1: Statistics for train/dev/test data from SegCor and
KiDKo (no. of tokens and no. of sentence-like units).

the two datasets.? While the general trend looks similar,

we can see that KiDKo has a much higher number of non-
sentential SLUs than SegCor. SegCor, on the other hand,
has a larger number of non-boundary tokens. This con-
firms that many of the non-sentential units in KiDKo are
short answers (yes, no, ok etc.). SegCor also has a higher
percentage of pauses. This is due to the fact that SegCor
transcribers also recorded micropauses shorter than 2 mil-
liseconds while in KiDKo these micropauses have not been
transcribed.

Overall, the distribution in the two corpora seems to be sim-
ilar enough to suggest that KiDKo is a suitable dataset for
our data expansion experiments. We thus expect to see
an increase in results for SLU boundary detection on the
SegCor testset when training on the combined training sets
from both corpora.

4. Training Data Expansion

In our first set of experiments we want to test whether ad-
ditional training data can boost results for SLU detection in
SegCor. Given that our supplementary dataset was created
in a similar fashion, namely spoken multi-party dialogues
recorded in non-laboratory settings, we expect to see an
improvement when adding the KiDKo data to the SegCor
training set.

We first run experiments in a classical feature-based set-
ting with a Conditional Random Fields (CRF) classifier.
Even though the CRF was outperformed by a neural se-
quence tagger with contextual string embeddings (Akbik et
al., 2018; Akbik et al., 2019) in our previous work, the short
training times for the CRF allow us to run many experi-
ments in a short period of time in order to explore the poten-
tial of the training data expansion approach and to compute
learning curves.

We split the SegCor training data into 10 samples of equal
size and train 10 separate classifiers, the first on sample 1,
the second on samples 1 and 2, the third on the first three
samples, and so on. Sample 10 accordingly includes all
data from the SegCor training set. Next, we also split the
KiDKo training data into samples of the same size as the
SegCor samples and add them incrementally to the train-
ing set. We evaluate each model on the SegCor and KiDKo
test sets, separately, and report F1 for each class (Boundary,
nOn-boundary), as accuracies on the highly imbalanced
datasets are not very informative.

2Both corpora encode additional information either on the
level of PoS or chunks/topological fields that allows us to retrieve
this statistic.

SLU type KiDKo (%) | Segcor (%)
uninterpretable 0.07 0.26
aborted 0.20 1.39
complex 2.00 1.75
simple 8.89 5.30
pauses/turns 10.10 18.02
non-sentential 19.65 7.42
no boundary 59.08 65.86

Table 2: Distribution of SLU types in the two corpora.

Table 3 and Figure 1 show F1 scores and learning curves
for the CRF models trained on data of increasing size. We
can see that the KiDKo test set seems to be somewhat eas-
ier to segment, with results being nearly 3% higher than the
ones for the SegCor test set when training on all 10 sam-
ples from SegCor. When adding additional samples from
KiDKo (samples 11-29), the learning curve for the KiDKo
test set rises steeply, with final results of 90% F1(B) being
more than 10% higher than the ones for the SegCor test set.
This gap in performance might be partly due to the greater
number of short answers in KiDKo that are easy for the
classifier to predict. However, we also observe a perfor-
mance gap for longer sentence-like units. It is not obvious

SegCor KiDKo
Sample | F1 F1B F10 | F1 F1B F10

1 834 70.8 96.0 | 8.8 76.7 950
2 84.1 720 96.1 874 794 954
3 848 735 962 | 874 794 954
4 862 760 965 | 8.1 80.6 956
5 86.6 766 965 | 885 813 957
6 872 776 967 | 882 80.7 956
7 875 783 96.8 | 88.6 815 958
8 87.6 785 968 | 89.0 821 959
9 879 790 96.8 | 889 819 958
10 88.0 791 969 | 889 819 958
11 879 79.0 96.8 | 90.3 842 963
12 878 789 96.8 | 91.1 856 96.6
13 87.6 785 96.8 | 913 860 96.6
14 877 786 968 | 91.6 865 96.8
15 877 787 968 | 919 869 96.8
16 87.7 786 968 | 923 876 970
17 879 789 96.8 | 927 883 97.1
18 87.8 788 96.8 | 92.8 885 972
19 87.7 78,6 968 | 929 886 972
20 877 787 96.8 | 93.0 887 972
21 878 788 96.8 | 93.1 89.0 973
22 87.8 78.8 96.8 | 933 892 973
23 88.0 791 968 | 934 894 974
24 879 790 968 | 935 895 974
25 87.8 78.8 96.8 | 935 895 974
26 877 787 968 | 935 89.6 974
27 879 791 968 | 93.6 898 975
28 879 790 96.8 | 937 899 975
29 87.8 78.8 96.8 | 93.8 90.0 975

Table 3: CRF: results for training on samples from SegCor
of increasing size (samples 1-10), with additional training
data from KiDKo (samples 11-29).
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whether this gap is caused by annotation inconsistencies in
the dataset or whether the content and interaction types of
the conversations in SegCor are, in fact, harder to segment.

We tested an additional setting where we filtered out those
training instances in KiDKo that were most unsimilar to
the ones in the SegCor dataset. This was done with the
help of a language model (LM) that was trained on PoS se-
quences in SegCor. We then ranked the instances in KiDKo
by their perplexity per PoS tag sequences, according to the
LM. Then we removed those instances that had the highest
perplexity, thus the ones being the least similar to the Seg-
Cor data.> We experimented with removing different por-
tions of KiDKo and obtained small improvements. How-
ever, none of the settings we tried managed to improve re-
sults over training only on the SegCor data, thus showing
that it is hard for the classifier to learn new information
from KiDKo that is useful for SLU detection on SegCor.
This is evidenced by the learning curves (Figure 1). The
curve for SegCor levels out after the first nine samples and
shows only a very slight improvement for sample 10 which
achieves the highest F-score on the SegCor testset. After
that, results do not improve further and even decrease for
most samples. For KiDKo, however, the learning curves
show small but steady improvements until the end. Here
we obtain our best result of 90% F1(B) when training on
all samples from both corpora.

While it is not surprising that results on the KiDKo test-
set improve when adding training data from the same cor-
pus (i.e. in-domain data), we were surprised that the large
KiDKo training set did not help at all to improve results for
SLU detection in SegCor.

The learning curves cast some doubt on whether annotat-
ing more training data from the same domain might help to
improve results on the SegCor data, given that we only see
a very slight improvement from sample 9 to 10. This find-
ing is consistent with previous experiments where we added
new transcripts from the SegCor corpus but did not see any
improvements.4 Therefore, in our next set of experiments,
we focus on testing different architectures and representa-
tions for improving SLU detection in spoken language tran-
scripts, based on multi-layer bi-directional transformers.

5. SLU detection with BERT

Recently, transformers have pushed the state of the art for
many NLP applications by learning context-sensitive em-
beddings with different optimisation strategies and then
fine-tuning the pre-trained embeddings in a task-specific
setup. The BERT embeddings have been trained on large
datasets by incorporating word embeddings with positional
information and self-attention in different tasks, i.e. by pre-
dicting masked words based on their left and right context
and by classifying two sentences based on how probable it
is that the second one immediately succeeds the first one in

A similar method was used successfully in Sggaard (2011)
for cross-lingual unsupervised parsing, and in Rehbein (2011) for
self-training of monolingual parsers.

“These transcripts, however, had only been annotated by one
annotator so it was not clear whether the results might reflect a
lower quality in the annotations.

Learning Curves for SegCor + KiDKo

o |
® AAAAAAAA
aaast
/A/
,A'A
n AA
® /
A
L/
L ataa
o A A
~ @ AL
A e
’1
~
/
S/ « SegCor
24 A KiDKo
T T T T T T T
0 5 10 15 20 25 30

Samples

Figure 1: CRF: learning curves (F1 B) for SegCor when
using additional training data from KiDKo coarse-grained
SLU detection (first 10 samples are from SegCor, samples
11-29 from KiDKo).

a text document. As a result, the learned embeddings en-
code the left and right context for each word which makes
them superior to previous representations for many NLP
tasks.

Given the tremenduous success of the transformer model, it
seems only natural to test pre-trained BERT embeddings in
the sentence boundary detection task. However, there are
two potential problems for using BERT for SLU detection
on spoken language transcripts. First, most available trans-
former models have been trained on large amounts of writ-
ten text, and we therefore might expect a high OOV rate for
non-normalised transcribed spoken language. Second, it is
not clear how to represent the input data when fine-tuning
the model, given that we do not have sentence boundaries
in the first place.

The most straightforward way to fine-tune BERT for our
task is to model SLU detection as a sequence tagging prob-
lem as we have done before, but this time replacing the
character-based contextual string embeddings of Akbik et
al. (2018; Akbik et al. (2019) by the BERT embeddings.

5.1. SLU detection as sequence tagging

In our experiments, we use the HuggingFace transformers
library (Wolf et al., 2019) that provides pre-trained trans-
former models for different languages and tasks. As our
input transcripts are lower-cased, we use the pre-trained
German uncased BERT model (bert-base-german-dbmdz-
uncased).

>The model has been trained by the MDZ Digital Library team
(dbmdz) at the Bavarian State Library on 2,350,234,427 tokens
of raw text, including Wikipedia, the EU Bookshop corpus, Open
Subtitles, CommonCrawl, ParaCrawl and News Crawl. For details
see https://github.com/dbmdz/german-bert.
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O was bei  muttersprachlern untersucht wird
G what in  native speakers investivated ~ will
B was  bei mutter ##sprach ##lern  untersucht wird
E “that’s studied in native speakers”

Figure 2: Subword tokenisation by BERT (bert-base-
german-dbmdz model; O: orig. transcript, G: english gloss,
B: BERT tokenisation, E: English translation).

One limitation of BERT is the sequence length constraint,
a parameter set during pretraining, that restricts the length
of the input sequences for the pre-trained model to 512 to-
kens. While this still seems to be quite long, in practice
BERT provides its own tokenisation of the input text into
subtokens that results in much higher token counts per se-
quence, as compared to the original sequence length (see
the example in Figure 2 above). Because of this, we have to
reduce the length for our input sequences that was set to five
merged speaker contributions in previous experiments (for
a discussion of different representations of spoken language
transcripts for ML, see Ruppenhofer and Rehbein (2019).

To accomodate BERT’s length restrictions, we extract se-
quences with a maximum length of 80 tokens as follows.
We iterate over each token in the input data, looking for
probable starting points of new utterances. We consider
pauses, speaker turns or discourse markers such as ’also’
(well) as probable starts.® For each potential starting point,
we then extract at least 10 tokens to the right (or, if there
are less than 10 tokens, we add all of them). This gives
us sequences with a length of at least 10 tokens. Then we
extend this sequence by adding additional tokens from the
right context, up to the next pause, speaker turn or discourse
marker, again assuming that those are probable SLU bound-
aries. Finally, we make sure that the length of the extracted
sequence does not exceed 80 tokens. If the sequence is too
long, we cut off after the first 20 tokens.

This procedure ensures that our input sequences have a
length of at most 80 tokens. It also means that during
training and test, some tokens are presented to the tagger
more than once, but with different context window sizes.
To obtain the final prediction for each token, we collect all
predictions made by the tagger and use a simple majority
vote to determine the final label.

Once we have extracted our input sequences from SegCor,
we train the sequence tagger provided by the HuggingFace
library with a batch size of 32 and a learning rate of Se-
5 for three iterations on our data.” The sequence tagging
model was originally intended for NER and similar tasks.
In our setup, however, we input an unsegmented sequence
from our spoken transcripts and let the model predict for
each token whether or not this token is followed by an SLU

The disambiguation between discourse markers and other ad-
verbial forms was done based on automatically predicted fine-
grained PoS (Westpfahl and Schmidt, 2016).

"We also experimented with other learning rates which gave
inferior results on the development set.

E[CLS] E1

Ry 1T
( [CLS] W Tok 1 Tok 2

Single sequence

Figure 3: Fine-tuning BERT for sequence tagging tasks.

Macro Macro Embeddings/
Acc F1 F1B F10 Features
ID BERT sequence tagging
1 95.3 90.3 834 973 dbmdz-
2 95.1 89.6 82.0 972  german-
3 95.2 89.7 822 972 uncased
4 95.0 89.5 81.8 97.1
5 95.1 89.6 82.0 97.1
avg. 95.1 89.7 823 972
947 883 797 969  +/-2word,pos
- 92.3 83.4 713 955 FastText (FT)
= 95.1 89.6 82.0 97.1 FT+Flair
94.8 89.3 81.6 97.0  FT+custom
954 90.2 83.1 97.4 FT+Flair+custom

Table 4: Results for SLU detection as a sequence labelling
task (training/dev/test data from SegCor). Baseline results
for CRF + Flair are from Ruppenhofer & Rehbein (2019)
on the same dataset.

boundary. Figure 3% illustrates the BERT model for the se-
quence tagging task.

Results on the SegCor data for this architecture are shown
in Table 4. When comparing our results to our previ-
ous work on the same dataset (Table 4, lower part), we
see that the BERT model outperforms all previous mod-
els (CREF, Flair-FastText, Flair-FastText+Flair embeddings)
except for the Flair model that was trained with our own
customised embeddings (Flair-FastText+Flair+custom), in
addition to the FastText and Flair embeddings provided by
the Flair library (Akbik et al., 2019).

These custom embeddings are character-based Flair em-
beddings that have been trained on ca. 11 million ‘sen-
tences’ extracted from the open subtitles corpus (Lison and
Tiedemann, 2016) and an in-house twitter dataset. All sen-
tences with a length > 60 characters have been removed,
as have sentences that contained more than one comma and
one period, question mark or exclamation mark. The punc-

8Taken from Devlin et al. (2019) and adapted to our setup.
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tuation marks were removed before training and the data
was lowercased. The motivation for this setup was to train
embeddings on text that is more similar to our spoken lan-
guage transcripts.

As shown above, our BERT sequence tagging model
achieves results in the same range as the model stacked
with the original FastText, Flair and our Flair-custom em-
beddings, with considerably shorter training times. It
does, however, fail to outperform our best previous model
(FT+Flair+custom). We thus decided to test a different
BERT architecture where, instead of modelling SLU de-
tection as sequence tagging, we present the model with two
separate strings and fine-tune it on the task of predicting
whether or not there should be a SLU boundary at the end
of the first string.

5.2. SLU detection as sentence pair classification

Devlin et al. (2019) present a BERT model for Recognising
Textual Entailment (RTE), framed as a sentence pair clas-
sification task where the model is presented with two input
sentences and learns to predict a label, i.e. whether the sec-
ond sentence is entailed by the first one or not. The model
architecture uses pre-trained BERT embeddings to encode
the two sentences, separated by a special token E[sgp
(Figure 4). In addition, the model encodes on a separate
segmentation embedding layer for each token whether it
belongs to the first or to the second sentence. The resulting
representation is then fed to a logistic regression that pre-
dicts the class label. It has been shown that this model out-
performs previous models for RTE (Devlin et al., 2019) and
also for similar semantic tasks such as Multi-Genre Natural
Language Inference (MNLI).

We hypothesize that explicitly representing the left and
right context for each potential SLU boundary as two sepa-
rate sequences to the model might make it easier for BERT
to learn relevant features for SLU detection from the data.
Thus, in our next experiment, we model SLU detection as
a sentence pair classification task. As we do not have sen-
tence boundaries in the first place but our goal is to learn
them, we extract the input sequences for the model in a sim-
ilar fashion as before (Section 5.1.). We iterate over each
token ¢ in the input corpus and extract a training (dev/test)
instance where the task is to predict whether ¢ is followed
by an SLU boundary (Table 5). For each token ¢, we thus
extract two separate sequences where ¢ is the last token of

CLASS Sentence 1 Sentence 2

(0] TURN dh so um die ja &h PAUSE ...
O TURN ih so um die ja ih PAUSE ...
(0] TURN ih so um die ja ih PAUSE ...

(0] TURN &h so um die ja &h PAUSE ...

B TURN ih so um die ja dh PAUSE ...

B TURN dh soum die ja  &h PAUSE ...

Engl uh so about the yes  uh

Table 5: Generation of training instances for SLU detection
as sentence pair classification.

Class
Label

Sequence 1 Sequence 2

Figure 4: Fine-tuning BERT for sentence pair classifica-
tion.

input sequence 1 while input sequence 2 encodes the right
context of token .

We extract the left context for token ¢ by adding at least 10
tokens to the left of ¢ to sequence 1. After adding the 10th
token, we check, for each additional token, whether it is a
pause or new speaker turn and, that being the case, we stop
adding more context. The motivation behind this is that we
would like to present the model with sequences that have
starting and end points similar to real SLU boundaries. We
generate input sequence 2 in the same fashion, starting from
token,; and adding at least 10 tokens to the right, stopping
when we encounter a potential SLU boundary.

Figure 4 illustrates the BERT architecture for sentence pair
classification that we apply for the SLU detection task.’
The two input strings are separated by an artificial token
and the model explicitly encodes the sequence id for each
token (i.e. whether the token belongs to the first or to the
second sequence) on a separate segmentation embedding
layer. We train a sentence pair classifier on our training
data and predict SLU boundary labels for each token in the
test set.

Table 6 shows results for modelling SLU detection as sen-
tence pair classification. For ease of comparison, we repeat
our results for sequence tagging (Table 4) in the first row
of Table 6. As can be seen, explicitly representing the left
and right context relevant for SLU boundary prediction as
separate representations results in an increase of more than
3% F1 for the boundary class (F1 B). F1 over both classes
increases from 89.7% to 91.5%. Our model also outper-
forms the best Flair model trained with additional custom
embeddings (Table 4) by 2.3% (F1 B).

We also notice that the sentence pair classification model
seems to be more robust, compared the the BERT sequence
tagging model from Section 5.1. We observe less varia-
tion in results between different runs (for sequence tagging,
standard deviation for F1 (B) was 0.64 while the standard
deviation for the sentence pair classification model is some-

°Figure taken from Devlin et al. (2019) and adapted to our
task.
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Macro Macro

Acc F1 FIB F10

BERT sequence tagger
avg. 95.1 89.7 823 972

ID BERT sentence pair classifier

95.9 91.4 8.1 976
96.1 91.7 85.6 977
96.0 914 8.1 977
96.0 91.5 84 9717
96.0 91.5 8.3 977

avg. 96.0 91.5 853 977

wn W=

Table 6: Results for SLU detection with BERT in different
task setups (sequence tagging, sentence pair classification).

what lower with 0.38). In addition, we noticed that the
model seems to be less sensitive to the choice of learning
rate than the sequence tagging model trained on the same
data.

5.3. SLU detection with transfer learning

In Section 4. we saw that adding data from another corpus
of spoken language transcripts failed to improve results on
SegCor, despite the similarity of content (informal multi-
party dialogues) and annotations. Therefore, we now want
to test whether we can benefit from the auxiliary training
data when using it to initialise the model weights in a trans-
fer learning setup.

So far, we have used the pre-trained BERT embeddings
to leverage the information learned from large amounts
of data to help for our specific task, SLU detection on
spoken language transcripts. In our final experiment,
we add another learning step where we first fine-tune a
pretrained BERT model on the KiDKo training data and
then fine-tune the same model again on the SegCor data.
This should allow the model to transfer useful information
from the larger KiDKo dataset while still being fine-tuned
to the target data.

Table 7 shows that this additional learning step allows us to
benefit from the auxiliary training data. For ease of com-
parison, we repeat our best result from Table 6 in the first
row of Table 7. The additional transfer learning step further
increases results on SegCor from 85.3% to 86.2% F1(B) on
average, yielding another improvement of nearly 1%. We
can also see that this procedure results in a more robust
classifier, with hardly any variation between the results for
the different runs. In contrast, our previous BERT models
are highly sensitive to initialisation, with differences in re-
sults between the highest and the lowest score of 1% for
sentence pair classification and 1.6% for sequence tagging
(F1 for the boundary class).

6. Conclusion & Future Work

The goal of this paper was to improve results for SLU de-
tection in spoken language transcripts. To that end, we
experimented with different architectures, based on the
Bi-directional Encoder Representations from Transformers

Macro Macro

Acc F1 FIB F10

ID BERT sentence pair classifier
avg. 96.0 91.5 853 977

ID Transfer learning on KiDKo

96.3 92.2 86.5 979
96.2 92.0 86.1 978
96.3 92.0 862 978
96.2 92.0 862 978
96.2 92.0 862 978

avg. 96.3 92.0 86.2 97.8

wn W=

Table 7: Results for SLU detection as sentence pair classi-
fication, with transfer learning on the KiDKo dataset.

(BERT). We showed, however, that transfer learning with
pre-trained BERT embeddings does not always outperform
other neural architectures and that choosing the right model
and data representation is crucial. For the task of SLU
boundary detection, we showed that explicitly encoding the
left and right context is important, and that this can be done
using BERT’s segmentation embedding layer. Modelling
SLU detection as sentence pair classification obtained 3%
improvement (F1 B) over a BERT sequence tagger trained
on the same data.

Expanding the training set with additional data from an-
other spoken language corpus, however, did not yield the
expected results. Instead, we observed even a slight de-
crease in F1(B) when training on the combined datasets.
We showed that this problem can be overcome in a transfer
learning setup where we succeeded to make use of the aux-
iliary data without suffering from out-of-domain effects.
The final classifier not only outperforms our previous mod-
els on the SegCor data by another 0.9% F1(B) but also
proved to be far more robust than models trained only on
the smaller SegCor dataset.

Based on our previous results, we suggest that multi-task
learning might be another way to improve results for SLU
detection in spoken language transcripts. We leave this av-
enue to future work.
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