
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 7069–7076
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

7069

SHR++: An Interface for Morpho-syntactic annotation of Sanskrit Corpora

Amrith KrishnaH, Shiv VidhyutF, Dilpreet Chawlal, Sruti Sambhavi¨, Pawan Goyal_
HIT University of Copenhagen, FIIITDM Kancheepuram, lIIIT Kalyani

¨NIT Rourkela, _IIT Kharagpur
amrith@iitkgp.ac.in, pawang@cse.iitkgp.ac.in

Abstract
We propose a web-based annotation framework, SHR++, for morpho-syntactic annotation of corpora in Sanskrit. SHR++ is designed
to generate annotations for the word-segmentation, morphological parsing and dependency analysis tasks in Sanskrit. It incorporates
analyses and predictions from various tools designed for processing texts in Sanskrit, and utilises them to ease the cognitive load of
the human annotators. Specifically, SHR++ uses Sanskrit Heritage Reader (Goyal and Huet, 2016), a lexicon driven shallow parser
for enumerating all the phonetically and lexically valid word splits along with their morphological analyses for a given string. This
would help the annotators in choosing the solutions, rather than performing the segmentations by themselves. Further, predictions from
a word segmentation tool (Krishna et al., 2018) are added as suggestions that can aid the human annotators in their decision making.
Our evaluation shows that enabling this segmentation suggestion component reduces the annotation time by 20.15 %. SHR++ can
be accessed online at http://vidhyut97.pythonanywhere.com/ and the codebase, for the independent deployment of the
system elsewhere, is hosted at https://github.com/iamdsc/smart-sanskrit-annotator.

Keywords: low-resource languages, Sanskrit, annotation, dependency trees, morphological analysis, word segmentation, visu-
alization, GUI, crowd-sourcing, treebanking

1. Introduction
Sanskrit is a classical language (Coulson, 1992; Sapir,
2004), and used to be the ‘lingua franca’ for the scientific,
literary and philosophical discourse in the Indian subconti-
nent for more than 3 millennia. The language has over 30
million extant manuscripts potent for digitisation, one hun-
dred times those in Greek and Latin combined (Goyal et al.,
2012). However, a major source of concern for the process-
ing of texts in a low-resource language like Sanskrit is the
lack of availability of labelled data. Acquiring task-specific
annotations can be linguistically involved and time consum-
ing, making it a challenge in itself. In this work, we present
‘SHR++’, a web-based annotation framework that would
assist a professional annotator1 to perform annotations for
three different tasks, ranging fromword-segmentation, mor-
phological parsing and dependency parsing.
Word-segmentation is a challenging task in Sanskrit, as the
writings in Sanskrit follow a phonemic orthography. Here
the words in the sentence often undergo phonetic trans-
formations at the juncture of the word boundaries, which
not only obscure the word boundaries but also modify the
graphemes present in the string. This euphonic assimi-
lation of phones is formalised as Sandhi. Sandhi, while
mostly deterministic in generation, is strongly ambiguous
in analysis. This makes segmentation more difficult than
languages such as Chinese, where the words are combined
without any euphonic assimilation at the boundary (Goyal
and Huet, 2016). In this work, we extend the function-
alities of a lexicon-driven shallow parser and annotation
framework for Sanskrit, Sanskrit Heritage Reader (Goyal
and Huet, 2013), henceforth to be referred to as SHR. It

1 A person proficient with Sanskrit. Though Sanskrit currently
has less than 15,000 documented native speakers, it is widely
offered as a linguistics course in more than 1000 institutions in
India alone. We assume our annotator to have acquired a formal
education in Sanskrit Linguistics.

uses finite-state methods in the form of a lexical juncture
system to obtain the possible segments for a given sentence
(Goyal and Huet, 2016; Huet and Goyal, 2013). Here, SHR
enumerates all the valid segmentation candidates for a given
sequence along with their possible morphological analyses.
Figure 1 shows one such analysis for a given sequence (as
displayed in our proposed systemSHR++). Here, the human
annotator’s job is to choose the correct candidate words and
the morphological analyses for those selected candidates
based on the output fromSHR.Given the extensive presence
of syncretism and homonymy in Sanskrit (Krishna, 2019;
Sims, 2015), this is performed as a two step process. The
human annotator first selects the segmentation candidates
and then chooses the appropriate morphological tag for the
selected candidates. SHR++ not only incorporates all the
annotation functionalities of SHR, but it is an improvement
from SHR in the following three significant ways:

1. In SHR++ we extend the system to include annotation
capabilities for dependency relations, in addition to the
annotation of word segmentation candidates and their
morphological tags. Given that the morphology and
syntax are tightly interlinked in a language like Sanskrit
(Kiparsky, 1994), our framework still uses only a two
step approach for the annotations. In the first step,
we replicate the working of SHR, while in the second
step we expect the user to annotate the dependency
relations, along with the corresponding morphological
tags using our user-friendly and intuitive interface.

2. Our framework facilitates the incorporation of predic-
tions from automated word segmentation tools for San-
skrit (Krishna et al., 2018) and the use of these predic-
tions as suggestions to the human annotators. Through
a human judgement experiment, we find that using
these predictions as suggestions results in an average
of 20.15 % reduction in the annotation time for the
human annotators.

http://vidhyut97.pythonanywhere.com/
https://github.com/iamdsc/smart-sanskrit-annotator


7070

a)
b)

Figure 1: a) Segmentation analysis and the b) correct solution for the sequence ‘tasyāśramapadābhyaśe vavuh. vātāh.
sugadhinah. ’ as displayed in the SHR++ interface. In the figure, the mouse pointer is hovered over the candidate word aśram.
Due to this, the morphological analysis for this word is shown both as a tooltip near the word and on the top portion of the
interface. The analysis for the given sentence can be accessed at http://bit.ly/shrpp.

3. SHR allows for accessing the analyses and the annota-
tions only via its web interface. It does not provide a
means to export the necessary data into any of the stan-
dard formats. SHR++ facilitates storage and export of
data into standard data formats, including CSV, JSON,
SQL or even in CoNLL-X format, the widely used for-
mat for storing dependency annotations. Additionally,
we also provide a web interface to access and manage
the data that was annotated using the system.

2. Background
The usage of Sanskrit was strongly rooted in its oral tradition
(Staal, 2008) prevalent during the pre-classical and classical
time period in the Indian subcontinent. This has shaped the
characteristics of the language greatly, with many of those
characteristics reflected in thewriting aswell. The euphonic
assimilation of phones at the juncture of the words, similar
to what one observes in connected speech, is one such fea-
ture. The presence of an advanced discipline of phonetics
in Sanskrit formalises this euphonic assimilation of phones
as Sandhi (Goyal and Huet, 2016). Sandhi, while mostly
deterministic during generation, leads to ambiguities during
analysis. While such transductions are commonly observed
between morphemes of a word in various languages, here
the transformations happen between words in a sentence.
Figure 1 shows the segmentation analysis and the final seg-
mented solution for the sentence ‘tasyāśramapadābhyaśe
vavuh. vātāh. sugadhinah. ’. Here, consider the substring from
the given sentence, ‘tasyāśrama’. It can be split in four dif-
ferent ways, i.e. ‘tasya + śrama’, ‘tasya + āśrama’, ‘tasya
+ a + aśram’ or as ‘tasya + aśram’ by virtue of Sandhi.
The last 3 cases show phonetic transformations, resulting
in change of ‘ā’ to ‘a + ā’, ‘a + a + a’ and ‘a + a’ respec-
tively. Figure 1a, shows the various candidate segments for
the given sentence and the sentence can have 2446 differ-

ent segmentation solutions.2 The correct solution, along
with the splits for the compound components (shown in
yellow), are shown in Figure 1b. Given the extensive use
of multi component compounds and the use of compounds
in place of the syntactic co- and sub-ordination in Sanskrit
(Lowe, 2015), word segmentation in Sanskrit typically in-
volves splitting of compounds into its components as well
(Goyal and Huet, 2016; Hellwig and Nehrdich, 2018).
The word-splits in Figure 1a are obtained based on the anal-
ysis from SHR. SHR uses finite state methods in the form
of a lexical juncture system to obtain the possible segments
for a given sentence. Following definitions from Goyal and
Huet (2016)3, a lexical juncture system can be formalised as
follows. It is composed of a finite alphabet Σ, a finite set of
words L ⊆ Σ∗ and a finite setR of rewrite rules of the form
u|v → f/x__ (Kaplan and Kay, 1994), with x, v, f ∈ Σ∗

and u ∈ Σ+. Here, Σ forms the set of phonemes, R is the
set of Sandhi rewrite rules, and L is the vocabulary which
is a set of lexical entries. Each entry z ∈ L is defined as
a tuple (l,m,w). Here l denotes the lemma of the word,
m denotes the morphological class of the word, w denotes
the inflected surface-form generated from l and m. The
sandhi analysis Si for a string s can be seen as a sequence
〈z1, σ1, k1〉; ...〈zp, σp, kp〉. Here, 〈zj , σj , kj〉 is a segment
with zj ∈ L, kj denotes the position at which the word wj

begins in the sentence s and σj = xjuj |vj → fj ∈ R for
(1 ≤ j ≤ p), vp = ε and vj = ε for j < p only if σj = o,
subject to the matching conditions: zj = vj−1yjxjuj for
some yj ∈ Σ∗ for all (1 ≤ j ≤ p), where by conven-
tion v0 = ε. Finally s = s1...sp with sj = yjxjfj for
(1 ≤ j ≤ p), ε denotes the empty word. Further, words

2 Estimated based on the number of syncretisms and homonyms
involved in the analysis.

3 We recommend the readers to refer to the work for a detailed
review of SHR.

http://bit.ly/shrpp


7071

SHR

Word 
Editor

Segmentation 
Annotator

Morpho-syntactic 
Annotator

Segmentation 
Suggestion

SHR 
Extractor

DatastoreCorpus 
Mode

Standalone 
Mode

Datastore
Explorer

Figure 2: Overview of the modules in SHR++ and their interactions within the system.

that are proposed as alternatives to each other, and hence
cannot co-exist in a single solution, are called as ‘conflict-
ing’ word-pairs. The words ‘śrama’, ‘āśrama’, ‘aśram’ are
conflicting to each other.
Sanskrit is a morphologically rich language and consists of
a rich tag-set of 1,635 possible tags for its inflectional mor-
phology (Krishna, 2019; Hellwig, 2016). Further, cases
of syncretism and homonymy are prevalent for the fusional
language (Krishna et al., 2018; Hellwig, 2015b). SHR, sim-
ilar to its segmentation analysis, also performs the possible
morphological analyses for each of the candidate words.
For a compact representation of the candidate words, both
SHR and SHR++ display only the unique inflected forms
in the segmentation analysis and then incorporate all the
valid morphological analyses for the surface-form within
the surface form itself. This information for each word is
shown to the user on hovering the mouse pointer over the
corresponding word. The morphological analysis for the
word ‘aśram’ is shown in Figure 1a. Here, the surface-form
‘aśram’ essentially consists 3 valid analyses, of which 2 are
cases of syncretism for the stem ‘asra’ and the third one is
a case of homonymy where stem for the inflection is ‘aśri’.
The identification of the correct morphological tag is ex-
pected only at the second phase of annotation in both SHR
and SHR++.
The second phase of annotation in SHR++, expects the
human annotator to annotate the morphological informa-
tion and the syntactic (dependency) relations jointly. This
decision of ours is motivated in principle from the tra-
ditional grammatical treatise on Sanskrit, Ashtādhyāyı̄.
Ashtādhyāyı̄, written by Pān. ini about 2500 years ago, treats
themorphology and syntax as a single subsystem (Kiparsky,
1994). It uses the Kāraka framework for the analysis of a
sentence, which stands close to the dependency analysis
of sentences followed in western linguistics (Begum et al.,
2008; Bharati et al., 2019). The Kāraka relations, formed
between various word pairs in a sentence, are syntactico-
semantico relations between the verbals and other related

constituents in a sentence, with the analysis resulting in a
dependency tree (Bharati and Sangal, 1993). Kāraka rela-
tions are pivotal in the assignment of case and other mor-
phological elements for the words in a sentence. “The key
principle is that every Kāraka relation must be expressed
by a morphological relation, and none can be expressed by
more than one” (Kiparsky, 1994).

3. System
Our system, SHR++, has a client-server architecture, where
the server component is completely built using Django4,
a python framework. The client-side uses a web-based
front-end (HTML+CSS+JS). Figure 2 shows the overview
of SHR++ and the various modules it contains. Our
system is designed to work in two different modes, the
corpus mode and the standalone mode. In the standalone
mode, we provide a web-interface that enables the user
to input a string (a word, phrase, fragment or a sentence)
in Sanskrit. The user input is then passed onto SHR in
real-time for enumeration of the possible word-splits and
their morphological analyses. In corpus mode, we expect
that the analyses for all the sentences in a corpus are
already populated into a datastore, via a command-line
script from the back-end itself. This facilitates bulk upload
of data. Apart from this, both modes work exactly the
same. Sentence level analysis and the resulting candidates
are then displayed to the human annotator, as shown in
Figure 1. Here, we expect the annotator to identify the
correct segmented word forms and then proceed for the
morpho-syntactic analysis of the selected word forms, as
shown in Figure 3. Now we detail, each of the component
involved in SHR++.

Segmentation Annotator: As shown in Figure 1a, the
segmentation candidates for a given string are presented to
the annotator. The challenge here is that the number of

4 https://www.djangoproject.com/



7072

Figure 3: Interface for the morpho-syntactic annotator and the overlay ‘lightbox’ interface for labelling the relations

candidates can exponentially increase with the length of the
string and aligning these candidates to fit in a screen can be
a challenge in itself (Goyal and Huet, 2016). Here, we faith-
fully follow the design scheme adopted by SHR to represent
the candidate word-splits. SHR uses the term ‘shared for-
est’ (Goyal and Huet, 2016) to refer to such an arrangement.
However, this is similar to that of a ‘lattice’ used in the lat-
tice based morpho-syntactic parsing approaches (Kudo et
al., 2004; More et al., 2018; Seeker and Çetinoğlu, 2015)
proposed for languages such asKorean, Hebrew, Turkish etc.
The segmentation annotator forms first phase of annotation,
where only the unique inflected word-forms are shown to
annotators. Among the candidate words, the longer ones are
placed in the topmost row, provided none of them conflict
with each other. This policy is followed for every subsequent
row and leads to a compact display. When a user clicks on
the word, its corresponding conflicting candidates are elimi-
nated automatically. Clicking back on the word would undo
this selection, and previously eliminated conflicting words
are displayed back for the un-selected word. All the possi-
ble morphological analyses for a given candidate word are
shown by hovering the mouse over it. As stated previously,
we only focus on annotating the surface-form level segmen-
tations with this module. Further, we colour-code the words
based on their morphological classes. For instance, we use
blue for substantives, red for finite verbforms, purple for
adverbs, pale blue for pronouns and yellow for compound
components (Goyal andHuet, 2016). Since the final compo-
nent of compound in Sanskrit carries the inflectional mark-
ers, it is represented with blue color.‘aśramapadābhyāśe’ is
one such compound word with the correct splits shown in
Figure 1b.
Segmentation Suggestion: In addition to showing the
segmentation candidates from SHR, we also facilitate
the incorporation of predictions from automated word-
segmentation tools designed for Sanskrit (Krishna et al.,
2018; Hellwig and Nehrdich, 2018) as suggestions to the
human annotators. Based on the predictions from these
systems5, the relevant candidate words are highlighted so
as to assist the annotator by inviting her attention to those
words. However, the final decision still remains with the
annotator, who may or may not choose the suggestion. The
annotators may enable or disable this feature by clicking on

5 Currently, we incorporate predictions only from Krishna et al.
(2018). But this can be trivially extended to other prediction
systems as well.

the ‘Segmentation Suggestions’ button as shown in Figure
1a. Currently, this feature is intended to be used only in
the corpus mode, where the predictions from the automated
segmenters are obtained offline and stored in our datastore.
This is primarily due to the time constraints required for
obtaining the predictions in real-time using the inference
procedure of the word-segmentation tools.
Word Editor: It is possible that SHR may not produce an
analysis for certain substring-spans of the input string. It
can also be possible that the analyses provided by SHR for
some of the candidate words might be erroneous and require
correction (Krishna et al., 2017). Taking into consideration
such cases, we add a provision for the annotators to modify
the candidate word analyses. On hovering the mouse over
a candidate word, an edit option appears below it. It can be
used by the human annotator to edit the details of the word.
As shown in Figure 4b, the annotator can edit the surface
form, the lemma as well as the morphological tags associ-
ated with the words. In case of missing analysis for a span
of the input, a dummy candidate word is provided beneath
the span, which the annotator can edit to add the appropriate
words. All the modifications made by the human annotators
get stored in our datastore.
Morpho-syntactic Annotator: This forms the second
phase of analysis, where we expect a human annotator
to perform morphosyntactic annotations, i.e. morpholog-
ical information and dependency relations, for the candi-
date words selected using the segmentation annotator. In
SHR, the annotator is guided to a new page once the an-
notator completes the identification of all the segmentation
candidates for a given string. In SHR++, both the phases
can be accessed from the same screen. Even with a par-
tial selection of candidates in the segmentation annotator,
the morphosyntactic annotator can be accessed by enabling
the "Morpho-syntactic Annotations" button. This button is
placed above the segmentation annotator component and is
shown in Figure 1a. This gives the annotator the freedom
to switch between both the phases of annotations as per her
will. Figure 3 shows the interface for the annotation of mor-
phological and syntactic information. The interface uses
the jQuery flowchart module6, a jQuery UI plugin origi-
nally designed for drawing flowcharts. Each surface-form
candidate, selected during segmentation annotation, is rep-
resented as a separate node in the flowchart interface. Every

6 http://sebastien.drouyer.com/jquery.
flowchart-demo/

http://sebastien.drouyer.com/jquery.flowchart-demo/
http://sebastien.drouyer.com/jquery.flowchart-demo/


7073

a) Datastore b) Word editor
Figure 4: a) An instance of the datastore explorer component. b) An instance of the word-editor component.

node, i.e. a surface-form, has at least one flow, i.e. one in-
flow and one outflow, and the number of flows equals the
number of morphological analyses each surface-form has.
The human annotator has to construct the edges between
words that are related by a syntactic relation. In this pro-
cess, the flow corresponding to the relevant morphological
tag needs to be selected. This automatically disables all
other flows for the node, as they were suggested as alterna-
tives to each other, and hence cannot co-exist in a sentence.
Once an edge is created, the human annotator may click on
it to add the dependency relation as the edge label. A ‘light-
box’7 interface, as shown in Figure 3, is used to capture the
edge label information.
SHR Extractor and Datastore: SHR provides only an
HTML output of its analyses for the input strings. We build
a scraper, that would scrape this information from SHR’s
HTML output and convert it into a structured tabular for-
mat. It needs to be noted that, SHR makes several design
decisions to represent syncretisms, homonyms, compound
splits and derivational nouns (from verbs), which we take
care of during our scraping procedure and this makes scrap-
ing a non-trivial exercise. In the independent mode, the user
is supposed to pass one sentence at a time via the interface,
while in the corpus mode the user can use a single com-
mand to pass multiple sentences in bulk. In either of the
cases the sentences are parsed by SHR. In the corpus mode,
the SHR analysis is saved onto the datastore directly and we
use SQLite8 databases for the purpose. In the standalone
mode, the SHR analysis is directly passed to the segmenta-
tion annotator to avoid any latency, and then later saved onto
the datastore. For in-memory handling of the data, we use
pandas dataframes (McKinney, 2010). SHR++, by virtue of
using pandas, enables for import and export of the data into
various standard structured data formats, including JSON,
CSV, XML etc. Further, we also facilitate exporting the
data into a revised version of CoNLL-X format. CoNLL-
X and its variants are a widely adopted format for storing
dependency annotations. Additionally, we add provisions

7 http://fancybox.net/
8 https://en.wikipedia.org/wiki/SQLite

for handling file formats such as GraphML in which other
popular Sanskrit datasets are released (Krishna et al., 2017).

Datastore Explorer We also provide a web based inter-
face to explore the SQLite database which contains the SHR
analyses and annotations for all the sentences that have been
populated in the database. This is an additional feature from
SHR, and allows for corpus level exploration of the data.
Figure 4a shows an instance of the datastore explorer.

4. Evaluation
We perform a human annotator evaluation to evaluate the
efficacy of our proposed system. Table 1 shows the results
for the evaluation. Here, we compare whether there ex-
ists any significant difference in time taken for annotations,
when using SHR and SHR++. We also evaluate whether
the use of segmentation suggestion module in SHR++ leads
to any significant reduction in annotation time. Finally, we
also report the time taken for morphosyntactic annotation in
SHR++. The annotations were performed by 3 human ex-
perts, each with at least an undergraduate degree in Sanskrit
Linguistics.
We randomly selected 60 textlines from the digital corpus
of Sanskrit (Hellwig, 2010 2016). As our objective of the
evaluation was to compare the time taken for performing the
annotations, we only considered those sentences in which
the human annotators made no mistakes during the anno-
tation. This resulted in a final set of 30 sentences. By the
end of the experiment, each annotator ends up annotating
all the 30 sentences. However, an annotator annotates a par-
ticular sentence for only one of the 3 annotations tasks, i.e.
segmentation annotation without suggestion, segmentation
annotation with suggestions and morphosyntactic annota-
tion. By this, we make sure that the annotators do not
perform two annotation tasks on the same sentence, as fa-
miliarity with the sentences may affect the annotation time.
For segmentation annotation using SHR, 3 new expert an-
notators were asked to perform the annotations on the same
set of sentences.
The 30 sentences in the final set were further divided and
grouped into 10 different sets, each containing 3 sentences.

http://fancybox.net/
https://en.wikipedia.org/wiki/SQLite


7074

Sl.
No.

Sentence
Length

Total
Solutions

Number of
correct Splits

Segmentation
annotation

Segmentation
annotation

with suggestion

Morphosyntactic
annotation

1 80 - 95 3839 6.67 31.67 26.34 54
2 96 - 110 6418.33 8.67 30.67 25.9 58
3 111 - 125 9017.67 8 34.67 23.01 46.67
4 126 - 140 16814.33 12.33 39.33 32 59.67
5 141 - 150 417295.66 14.33 43 31.67 69.33
6 151 - 165 19781779 16.67 55.67 42.34 86
7 166 - 170 47246874.33 15 49.33 39.67 84.33
8 171 - 185 100276799 18.67 71.67 58.34 102
9 186 - 200 72674493.66 22.33 88.33 68.66 113.67
10 201 - 215 103810590 22 95 82.67 129
Avg. 53.934 43.06 80.267

Table 1: Evaluation in terms of time taken for morphosyntactic annotation and segmentation annotation (with and without
suggestions) of Sanskrit sentences. Each row represents the values averaged over sets of 3 sentences each.In the last three
columns, the time taken is reported in seconds.

0 20 40 60 80 100 120
Time (in seconds)

No
segmetnation

suggestion

With
segmentation

suggestion

Se
gm

en
ta
tio
n 
an

no
ta
tio
n

Figure 5: Violin plots showing the distributions of time
taken for segmentation annotation phase with and without
the segmentation suggestion component. The white dot in
the middle denotes the median value and the thick black bar
in the centre represents the interquartile range.

The sentences are grouped based on the number of charac-
ters present in them.9 Table 1 shows the number of possible
segmentation suggestions that are available for the sentences
as well as the number of correct splits in the final solu-
tion. It also shows the average time taken for the annotation
task per set. From the violin plot shown in Figure 5, it
can be observed that enabling the segmentation suggestion
component consistently results in lesser annotation time as
compared to the setting where the component is disabled.
The set-wise macro-averaged time taken to complete the
annotations with and without the segmentation suggestion
component is 43.06 and 53.93 seconds, respectively. It can
be observed that the use of segmentation suggestion com-
ponent leads to a 20.15 % reduction in the time taken to per-
form the annotations. For the experiment, the suggestions
are obtained using the word segmentation tool proposed by
Krishna et al. (2018). The tool reported a macro-averaged
F-score of 96.92 % on their test data and it reports 94.21 %
for the 30 sentences we use in the experiment. Similarly,
Table 1 also shows the time taken for the morphosytnactic

9 number of characters are decided as per the SLP1 encoding
scheme (Scharf and Hyman, 2011).

annotation and reports an average of 80.27 seconds for this
phase. We could not observe any significant differences
in the annotation time taken for segmentation annotation
in both the SHR and SHR++. The average time taken in
SHR is 56.8 seconds as compared to the 53.93 seconds in
SHR++.

5. Discussion and Future Work
SHR++ is a Django based annotation framework. It is de-
signed to be independent in its setup and functioning from
that of SHR, even though we rely on SHR for the analysis
of the input strings. Currently, SHR++ obtains the analy-
sis for the input strings by relying on the SHR web-service
hosted online.10 We design our own scraping tool to ob-
tain the data from SHR. SHR++ is designed primarily to
be an annotation interface which can accept data from var-
ious sources and structured data formats. This gives us a
leverage that our annotation framework can be easily used
along with other numerous tools (Kulkarni and Ramakrish-
namacharyulu, 2013; Susarla and Challa, 2019; Hellwig,
2015a) and datasets (Krishna et al., 2017) available for San-
skrit. In fact, SHR++ can be used as an annotation frame-
work for any language, such as Korean, Turkish, Hebrew
etc., that is amenable to a lattice-based parsing approach
(Hatori et al., 2012; More et al., 2019; Kudo, 2006; Smith
et al., 2005). At the same time, using a scraper to obtain
the analyses from SHR leads to latency issues and consider-
able performance overhead. This is particularly true in the
case of standalone mode, where the analysis from SHR is
required real-time, based on the query from the user. But,
we leave this for future.
Yet another reason to decouple SHR from SHR++ is due
to the differences in the frameworks and languages used
in development of both the systems. SHR is implemented
completely in OCaml for its analysis, and uses a CGI based
interface to interact with its web interface. At the same time,
SHR++ is written purely using the Django framework. Our
decision to use a python based framework stems from our

10https://sanskrit.inria.fr/DICO/reader.fr.
html

https://sanskrit.inria.fr/DICO/reader.fr.html
https://sanskrit.inria.fr/DICO/reader.fr.html


7075

plans to extend the functionalities of SHR++ in the future.
Currently the segmentation suggestion component utilises
the segmenter only from Krishna et al. (2018). We plan
to extend this to other word segmentation tools for Sanskrit
(Hellwig and Nehrdich, 2018; Aralikatte et al., 2018; Reddy
et al., 2018). Similar in spirit to CROWDTREE (Tratz and
Phan, 2018), the annotation framework can be used for
developing a human in the loop machine learning system,
where the annotations and feedback from the annotators can
be used as inputs to an active learning framework or more
specifically, to a co-active learning framework (Shivaswamy
and Joachims, 2012). This enables us to leverage the use of
logical constraints from the traditional grammatical frame-
work of Sanskrit, the wisdom of the crowd and the statistical
inference power of machine learning.

6. Conclusion
In this work, we propose an online annotation tool for anno-
tating sentences in Sanskrit for three tasks, namely, word-
segmentation, morphological parsing and dependency pars-
ing. While there have been tremendous advances in digi-
tising texts in Sanskrit in the past 2 decades (Hellwig, 2010
2016; Scharf, 2009), there still exist limitations in the avail-
ability of task-specific labelled data (Goyal et al., 2012). We
believe SHR++ will be yet another step in bridging the gap
in this area. Summarily, our tool extends the SHR so as to
facilitate annotation of syntactic relations and also to enable
storage and sharing of data using standard structured data
formats. Our tool also enables to ease the cognitive load of
the annotator, by making use of predictions from automated
word segmentation tools as suggestions. Our evaluation ex-
periment shows that this results in a reduction in annotation
time by about 20.15 %.

Tool and codebase: Our annotation tool can be accessed
online at http://vidhyut97.pythonanywhere.
com/ and our codebase along with installation instructions
can be accessed at https://github.com/iamdsc/
smart-sanskrit-annotator.

Acknowledgements
We are grateful to Gérard Huet for providing the Sanskrit
Heritage Engine. We extend our gratitude to Amba Kulka-
rni, Oliver Hellwig, Peter Scharf and Najmeh Abiri, along
withGérard for helpful comments and discussions regarding
the work.

7. Bibliographical References
Aralikatte, R., Gantayat, N., Panwar, N., Sankaran, A.,
and Mani, S. (2018). Sanskrit sandhi splitting us-
ing seq2(seq)2. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 4909–4914, Brussels, Belgium, October-
November. Association for Computational Linguistics.

Begum, R., Husain, S., Dhwaj, A., Sharma, D. M., Bai, L.,
and Sangal, R. (2008). Dependency annotation scheme
for Indian languages. In Proceedings of the Third Interna-
tional Joint Conference on Natural Language Processing:
Volume-II.

Bharati, A. and Sangal, R. (1993). Parsing free word or-
der languages in the paninian framework. In 31st Annual
Meeting of the Association for Computational Linguis-
tics, pages 105–111, Columbus, Ohio, USA, June. Asso-
ciation for Computational Linguistics.

Bharati, A., Kulkarni, A., and Sharma, D. M. (2019).
Pān. inian syntactico-semantic relation labels. In Proceed-
ings of the Fifth International Conference onDependency
Linguistics, DepLing 2019 (Accepted).

Coulson, M. (1992). Sanskrit: An introduction to the clas-
sical language.

Goyal, P. and Huet, G. (2013). Completeness analysis of a
sanskrit reader. In Proceedings, 5th International Sympo-
sium on Sanskrit Computational Linguistics. DK Print-
world (P) Ltd, pages 130–171.

Goyal, P. and Huet, G. (2016). Design and analysis of a
lean interface for sanskrit corpus annotation. Journal of
Language Modelling, 4(2):145–182.

Goyal, P., Huet, G., Kulkarni, A., Scharf, P., and Bunker,
R. (2012). A distributed platform for Sanskrit process-
ing. In Proceedings of COLING 2012, pages 1011–1028,
Mumbai, India, December. The COLING 2012 Organiz-
ing Committee.

Hatori, J., Matsuzaki, T., Miyao, Y., and Tsujii, J. (2012).
Incremental joint approach to word segmentation, pos
tagging, and dependency parsing in chinese. In Pro-
ceedings of the 50th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pages 1045–1053, Jeju Island, Korea, July. Association
for Computational Linguistics.

Hellwig, O. and Nehrdich, S. (2018). Sanskrit word seg-
mentation using character-level recurrent and convolu-
tional neural networks. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pages 2754–2763. Association for Computa-
tional Linguistics.

Hellwig, O., (2010-2016). DCS - The Digital Corpus of
Sanskrit. Berlin.

Hellwig, O. (2015a). ind. senz–ocr software for hindi,
marathi, tamil, and sanskrit.

Hellwig, O. (2015b). Morphological disambiguation of
classical sanskrit. In Cerstin Mahlow et al., editors, Sys-
tems and Frameworks for Computational Morphology,
pages 41–59, Cham. Springer International Publishing.

Hellwig, O. (2016). Improving the morphological analysis
of classical Sanskrit. In Proceedings of the 6th Work-
shop on South and Southeast Asian Natural Language
Processing (WSSANLP2016), pages 142–151.

Huet, G. and Goyal, P. (2013). Design of a lean interface
for Sanskrit corpus annotation. In Proceedings of ICON
2013, the 10th International Conference on NLP, pages
177–186.

Kaplan, R. M. and Kay, M. (1994). Regular models of
phonological rule systems. Computational Linguistics,
20,3:331–378.

Kiparsky, P. (1994). Paninian linguistics. The Encyclope-
dia of Language and Linguistics, 6:2918–2923.

Krishna, A., Satuluri, P. K., and Goyal, P. (2017). A dataset
for sanskrit word segmentation. In Proceedings of the

http://vidhyut97.pythonanywhere.com/
http://vidhyut97.pythonanywhere.com/
https://github.com/iamdsc/smart-sanskrit-annotator
https://github.com/iamdsc/smart-sanskrit-annotator


7076

Joint SIGHUMWorkshop on Computational Linguistics
for Cultural Heritage, Social Sciences, Humanities and
Literature, pages 105–114, Vancouver, Canada, August.
Association for Computational Linguistics.

Krishna, A., Santra, B., Bandaru, S. P., Sahu, G., Sharma,
V. D., Satuluri, P., and Goyal, P. (2018). Free as in free
word order: An energy based model for word segmenta-
tion and morphological tagging in sanskrit. In Proceed-
ings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 2550–2561. Associ-
ation for Computational Linguistics.

Krishna, A. (2019). Addressing Language Specific Charac-
teristics for Data-Driven Modelling of Lexical, Syntactic
and Prosodic Tasks in Sanskrit. Ph.D. thesis, Kharagpur,
West Bengal, India.

Kudo, T., Yamamoto, K., and Matsumoto, Y. (2004). Ap-
plying conditional random fields to japanese morpholog-
ical analysis. In Dekang Lin et al., editors, Proceedings
of EMNLP 2004, pages 230–237, Barcelona, Spain, July.
Association for Computational Linguistics.

Kudo, T. (2006). Mecab: Yet another part-of-speech and
morphological analyzer. Retrieved october 9, 2019 from
https://taku910.github.io/mecab/.

Kulkarni, A. and Ramakrishnamacharyulu, K. (2013).
Parsing sanskrit texts: Some relation specific issues. In
Proceedings of the 5th International Sanskrit Computa-
tional Linguistics Symposium. DK Printworld (P) Ltd.

Lowe, J. J. (2015). The syntax of sanskrit compounds.
Language, 91(3):e71–e115.

McKinney, W. (2010). Data structures for statistical com-
puting in python. In Stéfan van der Walt et al., editors,
Proceedings of the 9th Python in Science Conference,
pages 51 – 56.

More, A., Çetinoğlu, Ö., Çöltekin, Ç., Habash, N., Sagot,
B., Seddah, D., Taji, D., and Tsarfaty, R. (2018). Conll-
ul: Universal morphological lattices for universal depen-
dency parsing. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Evalua-
tion (LREC-2018). European Language Resource Asso-
ciation.

More, A., Seker, A., Basmova, V., and Tsarfaty, R. (2019).
Joint transition-based models for morpho-syntactic pars-
ing: Parsing strategies for MRLs and a case study from
modern Hebrew. Transactions of the Association for
Computational Linguistics, 7:33–48, March.

Reddy, V., Krishna, A., Sharma, V., Gupta, P., R, V. M.,
and Goyal, P. (2018). Building a Word Segmenter for
Sanskrit Overnight. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and Eval-
uation (LREC 2018), Miyazaki, Japan, May 7-12, 2018.
European Language Resources Association (ELRA).

Sapir, E. (2004). Language: An introduction to the study
of speech.

Scharf, P. M. and Hyman, M. D. (2011). Linguistic issues
in encoding sanskrit. The Sanskrit Library.

Scharf, P. M. (2009). Modeling pāinian grammar. In
Gérard Huet, Amba Kulkarni and Peter Scharf (Eds.),
Sanskrit Computational Linguistics: First and Second In-
ternational SymposiaRocquencourt, France, October 29-

31, 2007 Providence, RI, USA, May 15-17, 2008 Revised
Selected and Invited Papers. Berlin, Heidelberg:Springer
Berlin Heidelberg, pp. 95–126.

Seeker, W. and Çetinoğlu, Ö. (2015). A graph-based lattice
dependency parser for joint morphological segmentation
and syntactic analysis. Transactions of the Association
for Computational Linguistics, 3:359–373.

Shivaswamy, P. and Joachims, T. (2012). Online struc-
tured prediction via coactive learning. In Proceedings of
the 29th International Coference on International Con-
ference on Machine Learning, ICML’12, pages 59–66,
Edinburgh, Scotland. Omnipress.

Sims, A. D. (2015). Productivity, defectiveness, and
syncretism. In Inflectional Defectiveness, Cambridge
Studies in Linguistics. Cambridge University Press, p.
82–132.

Smith, N. A., Smith, D. A., and Tromble, R. W. (2005).
Context-based morphological disambiguation with ran-
dom fields. In Proceedings of Human Language Technol-
ogy Conference and Conference on Empirical Methods
in Natural Language Processing, pages 475–482, Van-
couver, British Columbia, Canada, October. Association
for Computational Linguistics.

Staal, F. (2008). Discovering the Vedas : origins, mantras,
rituals, insights. Penguin Books India.

Susarla, S. and Challa, D. R. (2019). A platform for
community-sourced indic knowledge processing at scale.
In Proceedings of the 6th International Sanskrit Computa-
tional Linguistics Symposium, pages 68–82, IIT Kharag-
pur, India, 23–25October. Association for Computational
Linguistics.

Tratz, S. and Phan, N. (2018). A web-based sys-
tem for crowd-in-the-loop dependency treebanking. In
Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan, May. European Language Resources
Association (ELRA).

https://taku910.github.io/mecab/

