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Abstract
Typical machine learning approaches to developing task-oriented dialog systems require the collection and management of large
amounts of training data, especially for the tasks of intent classification and slot-filling. Managing this data can be cumbersome
without dedicated tools to help the dialog system designer understand the nature of the data. This paper presents a toolkit for analyzing
slot-filling and intent classification corpora. We present a toolkit that includes (1) a new lightweight and readable data and file format
for intent classification and slot-filling corpora, (2) a new query language for searching intent classification and slot-filling corpora,
and (3) tools for understanding the structure and makeup for such corpora. We apply our toolkit to several well-known NLU datasets,
and demonstrate that our toolkit can be used to uncover interesting and surprising insights. By releasing our toolkit to the research
community, we hope to enable others to develop more robust and intelligent slot-filling and intent classification models.

Keywords: corpus, conversational systems/dialogue/chatbots/human-robot interaction, tools

1. Introduction
Contemporary task-oriented dialog systems rely on natural
language understanding (NLU) models to classify a user’s
utterance into an intent class (e.g., “what is my savings
account balance” → get balance) as well as to extract
important entities from the utterance (e.g., “savings ac-
count” → BANK ACCOUNT). While the choice of particular
NLU models for the tasks of intent classification and slot-
filling (also called slot or entity extraction) can depend on
factors such as the task domain, deployment environment,
and computational constraints, one thing that all machine
learning-driven NLU models have in common is that they
require large amounts of carefully annotated and curated
training data. Moreover, developing, debugging, improv-
ing, and maintaining such models in production environ-
ments requires rapidly searching through training corpora
to gain insights from the data. Such insights can help the
dialog system designer spot gaps and errors in the training
data, potentially improving system performance drastically.
As a motivating example, suppose a system designer/main-
tainer seeks to train an NLU system composed of intent
classification and slot-filling models. Given a dataset anno-
tated in a style similar to that shown in Figure 1, there are
many valuable insights that the designer/maintainer might
wish to understand, including:

A. The distribution of slot values for a given slot type. If
a particular slot type has only a few unique slot values
in a training set, then a slot-filling model trained on
this data will likely be overfit to those few values.

B. The composition and distribution of context words for
a particular slot type. For example, in the training ut-
terance

book me a flight from detroit
ORIGIN

to new york
TARGET

the left and right context 1-grams for the ORIGIN slot
(“detroit”) are “from” and “to”, respectively. Given

1. find me a flight to Paris
TARGET

with Ryanair
AIRLINE

on the 4th
DEPART

→ book flight

2. what time is DL582
FLIGHT

scheduled to land→ flight status

3. i ’m looking to leave tuesday
DEPART

and fly back the fifteenth
RETURN

→ book flight

4. what do i do if i think my luggage was lost → lost luggage

5. book a flight from detroit
ORIGIN

to new york
TARGET

please → book flight

6. hello there can you check if DL123
FLIGHT

is delayed→ greeting, flight status

7. find me airfare from ORD
ORIGIN

to LGA
TARGET

with United
AIRLINE

→ book flight

8. check what time UA682
FLIGHT

leaves for newark
TARGET

→ flight status

9. missing bags at the carousel, my flight was DL188
FLIGHT

→ lost luggage

Figure 1: Samples from a corpus of annotated slot-filling
and intent classification data used for training task-oriented
dialog systems. Any given training sample can contain a
number of annotated slots. Training samples can also have
membership to a single or multiple intent classes (e.g. in
the case of multi-label intent classification). This paper
presents a toolkit designed to enable the designer of task-
oriented dialog systems a way to gain insights from such
data.

a slot type in a corpus, low diversity of left and right
context windows could cause slot-filling models to be-
come overfit to certain contextual cues, which would
negatively impact model performance.

C. Distributions and frequency counts of tokens for each
intent class, where a low number of unique tokens for
an intent class could indicate that the data for that par-
ticular intent class is not diverse.

This paper introduces a toolkit designed to aid in data cu-
ration tasks for NLU data (including the insight tasks listed
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above). Our toolkit consists of several key features:

1. A data annotation format designed to be lightweight
and human readable. Our data format enables annota-
tion for intent and slot/entity data, all on a single line.

2. A query language to efficiently search and retrieve
subsets of an NLU dataset. Our query language is
modeled after our data format, allowing the user of the
toolkit to formulate queries using a familiar syntax.

3. A suite of data insight tools designed to aid the devel-
oper in understanding the nature of their dataset.

We demonstrate the utility of our toolkit by performing sev-
eral analyses on several existing intent classification and
slot-filling datasets. Using our toolkit, we uncover sur-
prising patterns and errors in several widely-used NLU
datasets, indicating the need for a careful reappraisal as to
how NLU datasets are collected and curated.

2. Data Query Language
This section introduces our query language, which is
specifically tailored to NLU corpora.

2.1. Data Format
Our query language mimics the file format we use for NLU
corpora, so this format is worth introducing here. In our
file format, each annotated sample is represented by a sin-
gle line. Labeled slots are denoted using the special char-
acters { and }, and slot labels are specified using the first
token inside the {·} expression. For example, the annotated
sample

please transfer { AMOUNT 40 bucks } -> transfer

indicates that the tokens “40 bucks” are labeled as the
AMOUNT slot. The IOB labels are implied by this format: the
first token after the slot label in each {·} expression cor-
responds to the B (begin) label, while everything after (but
still within the {·} expression) corresponds to the I (inside)
label. All other tokens are implied to be labeled with O (out-
side). We denote intent classification annotations with the
-> symbol. Intent annotations can take the form of single-
or multi-class labels. For example the annotated sentence

hello what is my balance -> greeting, balance

has the multi-class intent label of both the balance and
greeting intents.
Figure 2 shows several example annotated sentences in our
data format. Compare the brevity of this format against
sentences annotated in the MIT IOB (Liu et al., 2013) and
Snips (Coucke et al., 2018) formats, shown in Figures 3 and
4, respectively. The MIT IOB format (Figure 3) requires one
line per token, and does not provide intent information. The
Snips format (Figure 4) uses a JSON structure that requires
one line per label span. In contrast, our format allows for
the annotation of one sample per line.

2.2. Query Language
Our toolkit includes a query language to aid in the man-
agement of slot-filling corpora. The query language allows
the user to query an annotated NLU corpus using a syntax
that closely resembles the data format introduced in Sec-
tion 2.1. The query language allows the user to search for
token strings and sequences, slot types, slot-value pairs, and
slot sequences. Searching for combinations of these query
types is also possible using boolean expressions. Table 1
displays several example queries using our query language.
Our query language is regular: we use bottom-up parsing
on input query strings to build a parse tree consisting of
filtering criteria, which are successively applied to gather a
list of samples meeting the specified criteria (i.e. syntax-
directed translation).
We built a standalone parser in Python for this query lan-
guage. The language can be thought of as a layer atop a reg-
ular expression engine, though with some extensions (e.g.,
logical operators). Moreover, as we traverse the parse tree,
we interface with an efficient representation of our corpus
data using inverted indices, which enables rapid data filter-
ing and, in turn, a convenient tool for developing corpus
insights and debugging data issues. (Note that the parse
tree can be consumed by other applications and translated
into other query languages, such as SQL.) We describe the
syntactic features of our query language in this subsection.

2.2.1. Slot Query Syntax
To search for occurrences of labeled slots, the {·} syntax
introduced in Section 2.1. can be used. For instance, the
query

{ AMOUNT "40 dollars" }

would return all data samples where the token span “40 dol-
lars” is labeled as the AMOUNT slot.
Wildcards and regular expressions can be used in lieu of
specific slot values. For example,

{ AMOUNT "* dollars" }

searches for all samples where an AMOUNT slot fits the pat-
tern of any token(s) followed by “dollars”. Our query lan-
guage also supports regular expressions. For instance, the
query

{ AMOUNT r’checkings?|savings?’ }

searches for all samples where the AMOUNT slot is “check-
ing”, “checkings”, “saving”, or “savings”.
The wildcard can also be used to search for any occurrence
of a particular slot, no matter the annotated tokens. An ex-
ample of this is

{ AMOUNT * }.

Boolean expressions can also be constructed within slot
queries using the not, and, and or operators. For exam-
ple, we could use the or operator and query

{ TARGET "checking" or "savings" }

in order to search for cases where the TARGET slot is either
“checking” or “savings”,
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hi there what is my balance -> greeting , balance
please book me a spot for { PARTY_SIZE two } at { RESTAURANT City Tavern } -> book_restaurant
are there any { RESTAURANT arbys } { LOCATION with in ten miles of here } -> find_restaurant

Figure 2: Our data format for representing annotated NLU sentences. Our format allows for one line per annotated sentence.

O please
O book
O me
O a
O spot
O for
B-Party_Size two
O at
B-Restaurant_Name City
I-Restaurant_Name Tavern

Figure 3: Example annotated NLU sentence in the MIT IOB
format (Liu et al., 2013). This format requires one line per
token, and does not allow for intent classification labels.

{
"data": [
{

"text": "please book me a
spot for"

},
{

"text": "two",
"entity": "party_size"

},
{

"text": "at "
},
{

"text": "City Tavern",
"entity": "restaurant_name"

}
]

}

Figure 4: Example annotated NLU sentence using the Snips
file format (Coucke et al., 2018). This format uses one line
per annotated token span.

2.2.2. String Query Syntax
Strings, or sequences of tokens, can be searched using
quote marks. For instance,

"make a transfer"

searches for samples that contain that exact sequence of to-
kens.
Slot queries can be used within string queries. The query

"transfer { AMOUNT "40 dollars" } now"

specifies to search for that exact sequence of four tokens
and specifies that the span “40 dollars” must be labeled as
an AMOUNT slot. Boolean expressions can be used in string
queries as well, for instance

not "balance" and "money"

retrieves all samples that contain the token “money” but not
“balance”.

2.2.3. Combination Query Syntax
Searching for combinations of slots and strings can be ac-
complished by joining the two query types using boolean
expressions. For instance, the query

not "transfer to" and { AMOUNT * }

would return all samples without the string “transfer to” but
also containing an AMOUNT slot.

2.2.4. Sequence Query Syntax
Wildcards can be employed to mine a slot-filling corpus for
all samples that manifest a specific pattern of slots. Suppose
we were interested in finding all samples where AMOUNT,
TARGET, and SOURCE slots occurred in that specific order.
Then we could query

"* { AMOUNT * } * { TARGET * } * { SOURCE * } *".

2.2.5. Number Query Syntax
To retrieve all samples with a specific number of slots, one
can use the <, >, and = operators. For instance, to query for
all samples with more than one AMOUNT slot, the user can
query

{ AMOUNT * } > 1.

Wildcards can also be used for slot names. To retrieve sam-
ples that contain any slot, but less than 2 slots, one can
query

{ * * } < 2.

Strings can also be used along with the <, >, and = operators.
For example,

"this" = 2

would search for all samples containing two occurrences of
the token “this”.

2.2.6. Similarity Search
The toolkit provides an interface for users to define custom
similarity measures for string searches. Once a user defines
a similarity function that operates on two strings, the simi-
larity function is applied when the ∼ operator is used prior
to a string. For example,

{ AMOUNT ∼"40 dollars" }

searches for all data samples that have an AMOUNT slot sim-
ilar to “40 dollars” (as defined by the similarity function).
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1. show balance of both { ACCOUNT checking }
ACCOUNT

and { ACCOUNT savings }
ACCOUNT

-> balance

2. how much money do i have in my { ACCOUNT premier account }
ACCOUNT

-> balance

3. transfer { AMOUNT $80 }
AMOUNT

from { SRC checking }
SRC

to { DST savings }
DST

-> transfer

4. hello there -> greeting

5. i want to do a money transfer -> transfer

6. what’s the routing number for my { ACCOUNT savings }
ACCOUNT

-> routing

7. what is the balance of my { ACCOUNT checkings }
ACCOUNT

please -> balance

8. move money between two accounts please -> balance

9. hello please tell me my balance -> greeting, balance

10. transfer { AMOUNT 500 euros }
AMOUNT

out of { SRC savings }
SRC

-> transfer

Figure 5: Example annotated NLU corpus represented by our data format. The colored annotations have been added to
clarify syntactic elements of our format.

Query Retrieved Description of Retrieval Criteria

{ ACCOUNT "savings" } 1, 6 samples with an ACCOUNT slot with value “savings”
{ ACCOUNT * } > 1 1 samples that have more than one ACCOUNT slot
{ * * } = 0 4, 5, 8, 9 samples with no slots
"from { SRC * } to { DST * }" -> transfer 3 samples in the transfer intent with a specified slot pattern
"* { DST * } * { SRC * } * " -> transfer Ø samples in the transfer intent with a DST followed by a SRC

slot
{ AMOUNT "500 euros" or "$80" } 3, 10 samples with an AMOUNT whose value is “500 euros” or “$80”
"*" -> balance and greeting 9 samples that belong to both balance and greeting intent

classes
{ AMOUNT * } and not "transfer" -> transfer Ø samples in the transfer intent containing an AMOUNT slot, but

not containing the string “transfer”
"hello" -> greeting sortby:length 9, 4 samples belonging to the greeting intent class and containing

the string “hello”, sorted by length of sample

Table 1: Example queries showing the versatility of our data query language. The Query column indicates the syntax to
specify a query, whose behavior is summarized in the Description column. The Retrieved column refers to which samples
would be returned by that Query from the dataset shown in Figure 5.

2.2.7. Intent Search
If a corpus contains multiple intents, or contains samples
belonging to multiple intent classes, then it is natural for
the user to want to select from a subset of the intent classes.
The query language provides a way to do this using the ->
operator, which mimics how intents are specified in the data
format introduced in Section 2.1. To retrieve all samples
belonging to the transfer intent, for instance, the user can
query

* -> transfer.

Boolean operators can be used on the right side of the ->
operator, for instance

* -> balance and transfer

would return all multi-intent samples that belong to both
the balance and transfer intents.

2.2.8. Sorting Results
Retrieved samples can be sorted by appending the search
query with the sortby command. As an example, the query

* -> greeting sortby:length

would return all samples belonging to the greeting intent
sorted by length. The sorting functionality supports several
out-of-the-box sorting functions, including sorting alpha-
betically, sorting by length, and sorting by the number of
slots. Users can define additional sorting functions as well.

3. Corpus Tools
Our toolkit provides several tools for analyzing NLU cor-
pora. Included are data summarization measures (discussed
in Section 3.1.) as well as tools for pattern mining (dis-
cussed in Section 3.2.).
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Num. Num. Num. Vocab
Dataset Samples Intents Slots Size TTR Diversity Coverage
ATIS (Hemphill et al., 1990) 5,871 18 83 950 0.297 0.880 0.276
MIT Movie (Liu et al., 2013) 12,218 — 12 7,481 0.060 0.976 0.325
MIT Restaurant (Liu et al., 2013) 9,181 — 8 4,166 0.049 0.979 0.350
Snips (Coucke et al., 2018) 14,484 7 39 12,027 0.136 0.939 0.373
AskUbuntu (Braun et al., 2017) 162 5 3 471 0.486 0.961 —
WebApplications (Braun et al., 2017) 89 8 3 294 0.658 0.949 —
Chatbot (Braun et al., 2017) 206 2 7 184 0.134 0.837 —
Liu et al. (2019) 25,716 68 56 7,955 0.178 0.948 —
Larson et al. (2019) 23,700 150 — 8,376 0.149 0.914 0.361

Table 2: Summary statistics on several NLU benchmark datasets included in our toolkit. Coverage is computed on the
datasets with train-test splits. We set N = 3 in our computations of Diversity and Coverage (see Section 3.1.).

3.1. Summary Statistics
Functions for computing summary statistics of several
facets of NLU corpora are provided in the toolkit. These
summary statistics are centered around both intent and slot-
filling data, and include simple measures like average sen-
tence length and slot frequency counts.
The toolkit also supports several more advanced measures,
such as type-token ratio (ttr), which is defined as the num-
ber of unique token types divided by the number of tokens
in a document (Templin, 1957). This metric can be applied
to a corpus of data by averaging the type-token ratios for
each intent class (treating each intent class as a single doc-
ument by joining together all samples). That is, we define
the type-token ratio (TTR) for an NLU corpus C to be

TTR(C) =
1

|C|

|C|∑
i=1

ttr(Xi)

where |C| is the number of classes (i.e. number of intents)
that partition the corpus, and Xi is a class of the corpus.
The toolkit also provides functions for computing the di-
versity of a corpus, defined as

Diversity(X) =
1

|C|

|C|∑
i=1

1

|Xi|2

[ ∑
a∈Xi

∑
b∈Xi

D(a, b)

]
where a and b are samples from the corpus and

D(a, b) = 1− 1

N

N∑
n=1

|n-gramsa ∩ n-gramsb|
|n-gramsa ∪ n-gramsb|

where N is a positive integer and n-gramsa is the set of
n-grams in sample a. We also include a metric for measur-
ing how much overlap there is between two datasets X and
Y , called coverage, which is defined as

Coverage(X,Y ) =
1

|C|

|C|∑
i=1

1

|Yi|
∑
b∈Yi

max
a∈Xi

(1−D(a, b)).

Both Diversity and Coverage metrics were introduced in
Kang et al. (2018) and are useful for measuring the spread
and overlap of datasets, and in particular can be used to
measure how well a training set “covers” a test set. Table 2
lists summary statistics measured on several publicly avail-
able NLU corpora.

3.2. Pattern Mining Tools
We include several pattern mining tools that offer ways of
gaining insights from corpora beyond what the summary
statistics provide. These pattern mining tools include tools
for analyzing the relative weight of tokens in a dataset (e.g.
using tf-idf, as well as a slot context analysis tool aimed
at providing insights into the structure of texts in a corpus
with respect to slots.
As a concrete example, consider the following text:

book me flights from Paris
ORIGIN

to New York
TARGET

.

The context neighborhood of a slot is simply the left and
right n-grams surrounding the slot. In the example above,
the left 2-gram for the TO LOC slot is “flights from”, and the
right 1-gram is “to”.
Knowledge of the frequency of context neighborhoods of a
particular slot can shed light on the robustness of a corpus.
For instance, if the context neighborhoods of a given slot
are limited to very few sets of left- and right n-grams, then
models trained on the corpus are likely to be overfit to those
patterns. Examples of using these pattern mining tools are
discussed in Section 5.

4. Technical Details
Both the Data Query Language and Corpus Tools are imple-
mented as a package in Python. Both tools support Python
2 and Python 3. The tools are indexed in PyPI and can be
installed via pip by executing the following:

pip install nlu-dql

or by cloning the repository at www.github.com/clinc/
nlu-dql.
The tool suites come with several pre-existing datasets out-
of-the-box, including ATIS, Snips (Coucke et al., 2018),
and those from Liu et al. (2013), Braun et al. (2017), Liu
et al. (2019), and Larson et al. (2019). These datasets
are summarized in Table 2. Users can load a pre-existing
dataset using the Corpus class constructor:

atis = Corpus(’atis’)

The Corpus class provides an interface for filtering sam-
ples within by using our data query language. Alternatively,

www.github.com/clinc/nlu-dql
www.github.com/clinc/nlu-dql
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script.py

1© Query string

5© Insight reporting

Corpus Sample

2© Load corpus

3© Parse query string

Filter samples

4© Retrieve filtered samples

6© Modify/update

utterances/labels/intents

Figure 6: Workflow for our toolkit. A developer writes
a script that imports our library, where they develop a
Query Language string (annotation 1 ). This script uses
our Corpus class to load a corpus of utterances following
our data format in 2 . As the Corpus object is created, it
parses the query string and filters the samples in that cor-
pus ( 3 ). The Corpus object then exposes a list of filtered
samples ( 4 ) from which the developer can build insights
about samples in that query ( 5 ). Finally, the Sample class
exposes an interface for modifying utterances, slot informa-
tion, and intent classes directly ( 6 ).

these datasets can be installed independently of the Data
Query Language and Corpus Tools by executing

pip install nlu-data

or by cloning the repository at www.github.com/clinc/
nlu-data.

4.1. System Architecture
Figure 6 illustrates a standard workflow for using our cor-
pus tools. In particular, we provide Corpus and Sample
classes that expose interfaces for loading corpora, specify-
ing input queries following our query format (Section 2.),
and modifying token, intent, and slot information directly.
Using these corpus tools, developers can readily develop
insights from and debug issues with large corpora of NLU
data.

5. Example Use Cases
In this section we demonstrate both our data query language
and data insights tools on a suite of commonly used NLU
datasets. We demonstrate the utility of our tools by uncov-
ering annotation errors, analyzing common utterance struc-
ture, and performing token frequency analysis.

5.1. Analyzing Slot Context
The Airline Transportation Information System (ATIS)
(Hemphill et al., 1990) dataset1 has been used as a bench-
mark for the task of slot-filling for almost 3 decades.
The ATIS dataset contains utterances targeted at a flight-
booking intelligent digital assistant. Example slot types
from this dataset include origin and destination airports. As
of writing, slot-filling performance on the ATIS dataset has

1Here we investigate the ATIS configuration as used by Tur et
al. (2010).

been dominated by deep learning models such as RNNs,
LSTMs, and transformers, with state-of-the-art models
achieving F1 scores in the mid-to-high 90s (Qin et al.,
2019).
While there has been some analysis on the structure and
composition of ATIS itself, such analyses have been lim-
ited to categorizing output errors (Tur et al., 2010; Béchet
and Raymond, 2018). Here we provide a short pro-
gram to analyze the structure of two ATIS slot types: the
FROMLOC.CITY NAME and TOLOC.CITY NAME slots.

atis = Corpus(’atis -train’)
# Find how many samples contain both
# TOLOC.city_name and FROMLOC.city_name
q = ’{ FROMLOC.CITY_NAME * } and’ \

’{ TOLOC.CITY_NAME * }’
print(len(atis.query(q)))
# Find how many samples have the pattern
# "from FROMLOC.city_name to
# TOLOC.city_name"
q = ’"from { FROMLOC.CITY_NAME * }’ \

’ to { TOLOC.CITY_NAME * }"’
print(len(atis.query(q)))

In this program snippet, we first find all the sam-
ples in ATIS that contain both FROMLOC.CITY NAME and
TOLOC.CITY NAME slots. This number turns out to be 3,621.
Then, we retrieve all samples that contain the pattern:

from
ORIGIN

to
TARGET

This number is 2,922, which is 80.7% of all the samples
that contain TOLOC.CITY NAME and FORMLOC.CITY NAME.
Such a high percentage indicates that ATIS contains a large
amount of common patterns that are easily learned by mod-
ern slot-filling models.
Similarly, one can use our toolkit’s slot context analysis
tool to see the distribution of context words for a given slot.
The short program below performs context analysis on the
FROMLOC.CITY NAME and TOLOC.CITY NAME slots from the
ATIS corpus.

atis = Corpus(’atis -train’)
dist = atis.context(’FROMLOC.CITY_NAME ’)
print(dist)
dist = atis.context(’TOLOC.CITY_NAME ’)
print(dist)

The distributions of context words for these two slots are
shown in Figure 7 (overleaf). Again, we see that an over-
whelming portion of context words for these two slots are
either “to” or “from”, which could mean one reason that
models do so well on the ATIS dataset is because the there
are relatively few contextual cues for certain slots.

5.2. Slot Value Analysis
The previous examples investigated the context of particu-
lar slots, but suppose the user instead wanted to look at dis-
tributions of slot values instead. Here we present a Python
snippet that accomplishes this on the FROMLOC.CITY NAME
slot from the ATIS (train) dataset:

www.github.com/clinc/nlu-data
www.github.com/clinc/nlu-data
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(a) ATIS FROMLOC.CITY NAME query response.
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(b) ATIS TOLOC.CITY NAME query response.

Figure 7: Distribution of left 1-grams for the
FROMLOC.CITY NAME (Subfigure 7a) and TOLOC.CITY NAME
(Subfigure 7b) slots for the ATIS dataset, as produced by
our toolkit. Note that the data is plotted on a logarithmic
y-axis. We observe that an overwhelming majority of left
1-grams are “from” and “to”, which can cause slot-filling
models to overfit to these patterns.

atis = Corpus(’atis -train’)
slot = ’FROMLOC.CITY_NAME ’
d = atis.slot_value_distribution(slot)
print(d)

We present the output of this snippet as a histogram in Fig-
ure 8, in which we observe that over half of the dataset’s
FROMLOC.CITY NAME slot occurrences are due to just five
values. Given that the space of possible city names (even
those with airports) is very large, this finding helps indicate
to the system developer that more slot value diversity might
be necessary in order to develop a more robust slot-filling
model.

5.3. Finding Annotation Errors
High quality training data is important in developing robust
NLU models, yet annotation errors and inconsistencies can
and do often arise, especially when using multiple annota-
tors (e.g. in the case of crowdsourcing). In this section, we
introduce a way of finding annotation inconsistencies for
annotated slot-filling corpora.
The following code snippet analyzes the GENRE slot in the
MIT Movie (Liu et al., 2013) corpus. In this code snippet,
we first search for all samples where there is a GENRE slot
followed by the token “movie”.

mit_movie = Corpus(’MIT_Movie ’)
q = ’"{ GENRE * } movie"’
print(mit_movie.query(q))
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Figure 8: Distribution of slot values for the
FROMLOC.CITY NAME slot in the ATIS dataset. We
can see that slot values tend to be biased by very large or
populous cities, which may lead to overfitting in models
trained on such data. Our toolkit enables finding such
insights efficiently.

q = ’{ GENRE "* movie" }’
print(mit_movie.query(q))

In the second search, we find all samples that have the
“movie” token inside of the annotated GENRE slot. It turns
out that there are 1,159 of the former and 22 of the latter
case, indicating that these are not labeled consistently. The
MIT Movie corpus is not the only dataset with annotation
errors: we can do a similar analysis on the AskUbuntu cor-
pus from Braun et al. (2017) on the UBUNTUVERSION slot:
askubuntu = Corpus(’AskUbuntu ’)
q = ’ "ubuntu { UBUNTUVERSION * }"’
print(askubuntu.query(q))
q = ’{ UBUNTUVERSION "ubuntu *" }’
print(askubuntu.query(q))

˜

˜

Here we are using the ∼ similarity operator to find tokens
similar to “ubuntu”. Using this code snippet, we find that
there are 5 cases where “ubuntu” or similar (e.g. “lubuntu”
and “xubuntu”) are part of the UBUNTUVERSION slot and 20
cases where they are not, indicating annotation errors.

5.4. Fixing Annotation Errors
Suppose we wanted to programmatically fix the annotation
mistakes from Section 5.3. We can use the sub-corpus
returned from the query on the AskUbuntu dataset seen
earlier to find all the samples that contain the annotation
error. Then we can iterate through these erroneous sam-
ples and simply re-label the mis-labeled “ubuntu” token
as a UBUNTUVERSION slot, taking care to ensure that what
follows the “ubuntu” token remains part of the original
UBUNTUVERSION slot. The following Python code accom-
plishes just that:

askubuntu = Corpus(’AskUbuntu ’)
q = ’ "ubuntu { UBUNTUVERSION * }"’
samples = askubuntu.query(q)
slot = ’ubuntuversion ’
for s in samples:

annos = s.annotated_tokens
n = len(annos)
for i, a in enumerate(annos):

if ’ubuntu ’ in a.token and i+1<n:
if annos[i+1].label==’b-’+slot:
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a.set_label(’b’,slot)
annos[i+1].set_label(’i’,slot)

s.refresh ()
askubuntu.refresh ()

One could programmatically fix multiple annotation mis-
takes by wrapping the above code into a function, and run-
ning it for multiple token-slot combinations.

˜

5.5. Finding Key Tokens in Intent Classification
Data

Thus far the example use cases have been tailored toward
slot-filling applications. Here we give an example of find-
ing important tokens in intent classification data by inspect-
ing the tf-idf weights of the Snips dataset. This code snippet
is shown below:

snips = Corpus(’snips’)
# compute tf-idf weights for tokens in
# the getweather intent in the
# snips corpus.
weights = snips.tfidf(’getweather ’)
print(weights)
# see if the token "forecast" is in any
# intent besides the getweather intent.
q = ’"forecast" -> not getweather"’
print(len(snips.query(q)))

In this snippet, we inspect the tf-idf weights for the
getweather intent. The top 15 weights are displayed
in Figure 9, where we clearly see that the tokens “fore-
cast” and “weather” are dominant, with “forecast” holding
slightly more importance. The snippet then checks to see
if “forecast” appears in any intent other than getweather
using the query language. It turns out that “forecast” is ex-
clusive to getweather.
This type of insight—that is, finding key tokens—can help
find tokens on which an intent classification model might
be prone to overfitting. Moreover, knowledge of key tokens
can help inform and guide data collection and curation for
future datasets and model development.

6. Related Work
The development of query languages and search tools for
linguistic corpora has a rich history. Prior work include
GUI tools and languages for querying linguistically anno-
tated tree structures (Steiner and Kallmeyer, 2002; Resnik
and Elkiss, 2005; Zeldes et al., 2009; Augustinus et al.,
2012; Singh, 2012; Krause and Zeldes, 2016; Bladier et
al., 2018), but these languages and tools are tailored to gen-
eral annotation schemes (e.g. parse trees), rather than NLU
data.
Tools that are more closely aligned with areas that are
similar to NLU corpora include GUI tools for searching
FrameNet constructions (Sato, 2012) and Wikipedia enti-
ties (Klang and Nugues, 2018). The Corpus Query Lan-
guage2 is similar to our query language in that it allows
for word and contextual search, but its goal is in the re-
trieval of words and not whole documents (i.e. annotated

2https://www.sketchengine.eu/documentation/
corpus-querying/
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Figure 9: Distribution of tf-idf weight values for the Snips
getweather intent.

training samples) like our retrieval system. Other general
tools for searching and managing annotated corpora in-
clude the Corpus Query Processor (Christ, 1994; Evert and
Hardie, 2011), GATE (Cunningham, 2002) and Nothman et
al. (2014). However, none of the prior work discussed here
are specifically tailored to NLU corpora, nor offer ways of
extracting analyses from data.

7. Conclusion
In this paper we introduced tools to aid in the data explo-
ration and management work of curating datasets for the
tasks of slot-filling and intent classification. We showed
that our data query language can be used to uncover anno-
tation errors as well as over-abundant patterns in slot-filling
data. By releasing our tools to the public, we hope that our
tools can be used by others to speed up the development
process of making quality, robust, useable, and intelligent
task-oriented dialog systems.
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