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Abstract 
In this paper we present investigation of real-life, bi-directional conversations. We introduce the multimodal corpus derived from these 
natural conversations alternating between human-human and human-robot interactions. The human-robot interactions were used as a 
control condition for the social nature of the human-human conversations. The experimental set up consisted of conversations between 
the participant in a functional magnetic resonance imaging (fMRI) scanner and a human confederate or conversational robot outside the 
scanner room, connected via bidirectional audio and unidirectional videoconferencing (from the outside to inside the scanner). A cover 
story provided a framework for natural, real-life conversations about images of an advertisement campaign. During the conversations 
we collected a multimodal corpus for a comprehensive characterization of bi-directional conversations. In this paper we introduce this 
multimodal corpus which includes neural data from functional magnetic resonance imaging (fMRI), physiological data (blood flow pulse 
and respiration), transcribed conversational data, as well as face and eye-tracking recordings. Thus, we present a unique corpus to study 
human conversations including neural, physiological and behavioral data. 

Keywords: conversation, physiology, artificial agents

1. Introduction 

Reciprocal interactions with others allow humans to 
establish and maintain social bonds. We investigated 
human interaction using the most ubiquitous form of 
communication through language in conversation. Our 
objective was to characterize conversations through a 
multimodal approach for a comprehensive investigation of 
human interaction. As a control condition we used 
interaction with a conversational robot. This allowed us to 
change the social nature of the interlocutor, while 
preserving the reciprocal dynamics of social exchange. The 
social nature of the interaction with human derives from the 
assumption that humans adopt an intentional stance 
towards other humans, but not artificial agents, such as 
conversational robots. Adopting an intentional stance 
assumes that the interaction partner is capable of having 
mental states (Dennett, 1989). This allows the ascription of 
intentions and beliefs to explain the behavior of interaction 
partner (i.e., mentalizing (Frith & Frith, 1999)). We thus 
hypothesized that interaction with a human, as compared to 
a robot, would elicit both mentalizing mechanisms and the 
motivation to establish a relationship (i.e. social 
motivation).  

To investigate this, we collected multimodal data including 
neuro-physiological responses of functional magnetic 
resonance imagining (fMRI), as well as physiological data 
and observable behaviors such as gaze, facial expressions 
and verbal productions during conversation. All these 
modalities have been shown sensitive to social and 
emotional engagement in interactions. We compared 
conversations between  participants and another human 
(Human-Human Conversation, HHC) or a conversational 
robot (Human-Robot Conversation, HRC). This was done 
via life uni-directional videoconference and bi-directional 
audio connection between participants inside the scanner 

and a human or a conversational robot outside the scanner 
room.  

Analyses of neural data collected with fMRI revealed 
hypothesized activated brain areas related to mentalizing 
and social motivation during HHC as compared to HRC 
(for details see (Rauchbauer et al., 2019)). Rauchbauer et 
al. (2019) thus introduced a novel and innovative paradigm 
to study real-life reciprocal interaction, using HRC as a 
control condition to study the social aspects of human 
interaction. 

The aim of the present paper is to introduce the unique 
multimodal corpus of data collected in this study to a larger 
audience. The corpus comprises, apart from neural data, 
also conversational, physiological, eye-gaze and face-
tracking data. This multimodal data is made available in 
data repositories mentioned in the present article. It 
presents a unique combination of variables involved in 
real-life, natural conversation. This data may be used to 
combine for example, conversational features with neural 
data to gain a deeper insight into which characteristics of a 
conversation activate brain areas related, for example, to 
social motivation. In making the corpus available online, 
we also encourage other researchers to use this unique and 
innovative corpus to characterize and study human 
interaction, as well as interaction with a conversational 
robot from a multimodal perspective. The corpus allows to 
answer various research questions and may allow to predict 
a modality of conversation through one or a combination of 
recorded modalities. In this paper we will introduce in 
detail the experimental design, data recorded. 

2. Experimental design 

We recorded data of twenty-five native French-speaking 
participants (17 female, mean age 26.76 (SD=7.96)). The 
participants engaged in a natural, life conversation 
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alternating between another human (who, unknown to the 
participant, was working with the experimenter as a 
confederate) and a conversational, robotic head from 
Furhat robotics (https://www.furhatrobotics.com/; (Al 
Moubayed, Beskow, Skantze, & Granström, 2012)) during 
functional magnetic resonance imaging (fMRI).  

Participants were welcomed to the study and told the 
“cover story” of the experiment, which provided a fake 
rationale for the experiment and its set-up. Participants 
were informed that the study was sponsored by an 
advertising company to test the key message of a new 
campaign. The message was to be discovered through a 
conversation with another participant and a conversational 
robot, who also had information on the campaign and was 
able to speak autonomously (see Figure 1 for experimental 
design, taken from (Rauchbauer et al., 2019)). Participants 
were informed about the study design, which presented 
images of anthropomorphized fruits and vegetables of the 
forthcoming advertisement campaign. These fruits and 
vegetables were designed to look like superheroes or were 
rotten (see Figure 2, taken from (Rauchbauer et al., 2019)). 
The participants were told that they could talk naturally 
about the presented images with the other agent (alternating 
between the human and the robot), who would be outside 
the fMRI scanner room and connected via life-video stream 
and bidirectional audio. They were informed that each 
conversation would last one minute after which a new 
image would be presented, and the conversation partner 
would change. The robot was a conversational robotic 
head, who, as participants were told, had information on the 
advertisement campaign and could talk autonomously. 
Unknown to the participants, the robot was controlled by 
the human confederate and the robot’s arguments were pre-
written conversations based on a behavioral study 
(Chaminade, 2017). Participants were shown the 
conversational robotic head before being brought into the 
scanner room. At the end of the study, the participants were 
debriefed in an open format. Participants could voice their 
impression of the interaction with both the human and the 
robot. Also, it was verified that participants had believed in 
the autonomous speech of the robot and the cover story. 

 

 

Figure 1: Experimental set-up. Panel above: Shown is the 

communication between the scanned participant and the 

other conversation agent, either the confederate or the 

robot, as well as the recording modalities; Panel below: 

the timeline of the experiment showing the alternation 

between the stimuli and conversation periods, as well as 

the relative timing. The fruit pictures correspond to the 

images used in the cover story; the robot and confederate 

pictures illustrates episodes of live conversations (Image 

taken from (Rauchbauer et al., 2019)).  

 

Figure 2: Images presented in experiment. Fruits and 

vegetables depicted as (A) superheroes (in Sessions 1 & 

3) and (B) rotten (in sessions 2 & 4) (Image taken from 

(Rauchbauer et al., 2019)). 

 

Table 1: Order of images, respectively conversations. 
Shown is the order of presented images and respective 
conversational topics. 

 

2.1 Human and robotic conversational agent 

The human interlocutor (i.e.; the confederate) and the 
participant were always gender matched. Participants were 
told that the human interlocutor had already participated in 
the scanning part of the experiment. The participant and the 
confederate met briefly before the experiment. 

The conversational robotic head had a gender matched 
voice and face, which was retro-projected on a semi-
transparent plastic mask, in the shape of a human face. The 
robot was developed by Furhat robotics 
(https://www.furhatrobotics.com/; (Al Moubayed, 
Beskow, Skantze, & Granström, 2012)) including options 

Interaction type Sessions 1 & 3 
Superheroes 

Sessions 2 & 4 
Rotten 

Human-Human Eggplant Raspberry 
Human-Robot Apple Pear 
Human-Human Lemon Strawberry 
Human-Robot Eggplant Raspberry 
Human-Human Apple Pear 
Human-Robot Lemon Strawberry 

https://www.furhatrobotics.com/
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for autonomous or pre-written speech (using a Wizard of 
Oz (WOZ) procedure). For the experiment, as mentioned 
above, arguments were pre-written from human 
conversations recorded in a previous behavioral 
experiment using the same stimuli (Chaminade, 2017). 
This was done to highlight the artificial nature of the 
conversational robot, as compared to the social nature of 
the human. It also allowed the human confederate to control 
the statements of the robot in real-time from outside the 
scanner. This was done by using the WOZ user interface on 
a tablet connected to the robot’s intranet, which showed 
buttons corresponding to the pre-programmed statements. 
Thirty statements were used for each of the six images (see 
Table 2 for examples). To illustrate, the button “pear” 
would launch statements such as “This is a pear”, and the 
button “sad” would launch the statement “It looks sad” (all 
conversation in French). Feedbacks from the robot 
included general non-specific feedbacks (“yes”, “no”, 
“maybe”) identical across images, and statements related to 
specific images, as the example to the pear shows. The 
presentation of the images and the task to identify an 
advertising message allowed to control for content of the 
conversation. 

    

Bienvenue  Welcome 

Bonjour  Hello 

Salut  Hi 

Comment ça va?  How are you? 

Bon  Good 

Merci  Thank you 

Je m'appelle Furhat  My name is Furhat 

  

Poire Pear 

C'est une poire It's a pear 

C'est une poire jaune It's a yellow pear 

La poire semble triste The pear seems sad 

Elle n’a pas l'air contente It does not look happy 

Elle semble malheureuse It seems unhappy 

La poire a l'air malade The pear looks sick 

Elle paraît faible. It seems weak. 

Elle semble fatiguée. It seems tired. 

La poire semble triste The pear seems sad 

Elle n’a pas l'air contente It does not look happy 

Elle semble malheureuse It seems unhappy 
 

Table 2: Examples of pre-written feedback for the 
conversational robot in the original French; English 
translation in italics; 

 

Modality of data Extracted variables per 

conversation 

Neural data (fMRI) Begin and end of conversations 

from logfiles 

 BOLD signal for group and time 

series analysis 

Speech and 

transcribed data 

Number of IPUs and tokens 

 Time series and mean duration 

of conversational features: IPUs, 

overlap of speech, reaction time, 

lexical richness, filled breaks, 

lexical feedback items, discourse 

markers, particle items, laughter, 

sentiment analysis (subjectivity 

and polarity) 

Eye tracking data Time series on fixation (face, 

mouth, eyes), saccades, speed, 

blinks 

Face tracking data Facial landmarks, Head Pose, 

Facial Action Units, Emotions 

Physiological data Blood flow pulse, respiration 
 

Table 3: Multimodal data of the present study, presenting 
the modality of the data and the extracted variables per 
modality per conversation 

The experimental set up for fMRI was a within-subject 
block design with the CONVERSATIONAL AGENT 
(Human or Robot) as the experimental factor. This 
established HHC and HRC. The experimental paradigm 
was set up in four sessions, consisting of six one-minute 
conversation per CONVERSATIONAL AGENT. Both the 
order of the stimuli and the agents were not randomized but 
kept constant across participants. In terms of the images the 
first and the third block always presented “superhero” 
images and second and the fourth block images of “rotten 
fruits” (see Figure 3, taken from (Rauchbauer et al., 2019)); 
each of the images was presented twice in each block, once 
for the conversation with the human and once with the 
robotic agent. The CONVERSATIONAL AGENTS 
alternated, starting with the human confederate. 

2.2 Detailed protocol and data recording 

Images were presented for 8.3 seconds (see Figure 1)). 
After a 3.3-second-long black screen, live conversation 
with bi-directional audio and uni-directional live video 
from outside the scanner started. Due to technical 
constraints of the fMRI machine no video was possible 
from inside the scanner to outside, but data of participants’ 
eye movements was collected. After the one-minute 
conversation with one of the conversational agents, a black 
screen was presented for 4.6 seconds. The conversation 
was always started off by the participant in the scanner. We 
recorded three minutes of conversation per conversational 
agent in each block (6 minutes total in each block). Thus, 
for each participant twenty-four minutes of conversation 
were recorded. The bidirectional audio set-up enabling the 
live conversation between the scanner and the outside 
consisted of an active noise-cancelling MR compatible 
microphone (FORMI-III+, optoacoustics), to cancel out 
scanner noise and insert earphones from Sensimetrics. 
Webcams outside the scanner room allowed for uni-
directional video, which was projected onto a mirror on the 
antenna of the participant in the scanner. Participants’ 
direction of gaze on the projection mirror was recorded 
(Eyelink 1000 system, SR Research). The experimental 
paradigm and data recording were controlled via Labview 
(National Instrument). In addition to fMRI data, audio, eye 
movements, respiration and blood flow pulse of the 
participants, and video and audio data from the confederate 
(human and robotic) was recorded. Transcribed data of the 
conversation is available on Ortolang 
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(https://www.ortolang.fr) 
(https://hdl.handle.net/11403/convers 

2.2.1 fMRI data 

For details on the standard fMRI data collection and the 
preprocessing please refer to Rauchbauer et al. (2019). 
Data acquisition of Blood Oxygen-Level Dependent 
(BOLD) signal 3-dimensional images were obtained via 
whole brain scans every 1.205 seconds. fMRI 
preprocessing was carried out using SPM12 
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). This 
included correcting for time delays due to scanning the 
whole brain in consecutive slices (“slice timing”), 
realignment of images, corrections of magnetic field 
inhomogeneities, and normalization of the participant’s 
individual function and anatomical data to standard brains 
from the Montreal Neurological Institute (MNI) with 
DARTEL (https://neurometrika.org/node/34) (Ashburner, 
2007) and spatial smoothing using a 5-mm full-width half- 
maximum 3-dimensional Gaussian kernel. We extracted 
BOLD signal of regions of interest using the conn toolbox 
(https://web.conn-toolbox.org/) (Whitfield-Gabrieli & 
Nieto-Castanon, 2012). This includes denoising procedures 
such as linear detrending applying a high-pass filter 
(threshold of 128 seconds), the use of realignment 
parameters for the calculation of nuisance regressors due to 
participants’ movement inside the scanner and the removal 
of physiological artifacts (blood flow pulse and respiration) 
using the PhysIO toolbox 
(https://www.tnu.ethz.ch/de/software/tapas/documentation
s/physio-toolbox.html) (Kasper et al., 2017). This also 
comprises the extraction of the BOLD signal in white 
matter and cerebrospinal fluid and, in non-cortical brain 
tissue, the use of the 5 first eigenvariates of the time-series 
as nuisance, which represents signal fluctuations. Logfiles 
of the BOLD signal acquisition, containing information on 
parameters of the scanning session are in JavaScript Object 
Notation (.json). The logfiles in text format containing the 
onset of conditions for fMRI analyses have been uploaded 
on OpenNeuro (Gorgolewski, Esteban, Schaefer, Wandell, 
& Poldrack, 2017) (https://openneuro.org/): 
https://openneuro.org/datasets/ds001740 including all raw 
data acquired during fMRI scanning. fMRI group data can 
be found on Neurovault (https://neurovault.org/): 
/collections/ASGXRWEM/. 

2.2.2 Speech and Transcribed data 

Conversational data was preprocessed to extract noise from 
the conversation in the scanner (for participant data) using 
a noise reduction filter by Sox (http://sox.sourceforge.net). 
For this a float value was set individually for each 
participant between 0.01 and 0.5. Denoised data was 
furthermore pre-segmented into Inter-Pausal Units (IPUs), 
also using a coefficient set individually for each participant, 
with a float value between 0.2 and 0.95. This coefficient 
allowed the automatic determination of volume threshold 
for periods of “silence” and “IPU” in each analysis window 
and applies to the mean of the distribution of the root mean 
square (RMS) of the audio file. IPUs were defined as 
blocks of speech in between silences of minimum duration 
200 ms (Blache, Bertrand, & Ferré, 2009). IPUs were also 
extracted for the confederates’ audio files, yet no denoising 
was necessary, since these were recorded outside of the 
scanner room. Visual inspection of successful denoising 
and segmentation into IPUs was done using Praat 

(Boersma, 2002). Files  were furthermore  uploaded into 
SPPAS, version 1.9.9 (www.sppas.org/;(Bigi, 2015)) for 
transcription. Transcribed files of the participants’ and the 
two interlocutors speech have been deposited on the data 
repository Ortolang (https://www.ortolang.fr) 
(https://hdl.handle.net/11403/convers) (see examples 1 and 
2 for excerpt of transcription).  

Automatic Text normalization was performed using the 
SPPAS software tool (Bigi, 2011). From the normalized 
data the number of IPUs and tokens in the conversation 
were extracted (see Figure 3). Figure 3 shows that the 
number of IPUs (t = 24.461, p ≤ .001) and tokens (t = 
29.386, p ≤ .001) differed significantly between the human 
and the robot confederate. The number of tokens also 
differed between the HHC and HRC for the participant (t = 
5.858, p ≤ .001). Furthermore, we also calculated the time 
series of conversational features as well as their mean 
duration from the participants’ and the interlocutors’ 
speech separately using a Python Script. Extracted 
conversational features were IPUs, overlap of speech 
between the two interlocutors (i.e.; both speakers speaking 
at the same time) and reaction time of the start of 
conversation after the partner had finished his speech turn. 
Reaction times have positive values in case of a pause 
between turn taking, and negative values in case of 
overlapping speech of interlocutors. Lexical richness was 
computed considering the amount of spoken tokens and 
adjectives plus adverbs divided by a total number of 
extracted tokens (including adjectives, adverbs, auxiliary 
words, conjunction, determiners, nouns, prepositions, 
pronouns, verbs) (Ochs, Jain, & Blache, 2018). 
Furthermore we considered filled breaks (i.e., utterances 
like “mmh” during pauses of active speech) (Swerts, 1998) 
and lexical feedback items (Prévot, Bigi, & Bertrand, 2013; 
Prévot, Gorish, & Mukherjee, 2015), representing 
expressions to communicate perception and understanding, 
as well as reactions to what the conversational partner had 
said (E.g.; “yes”, “no”, “okay”, etc.) (Gravano, Hirschberg, 
& Beňuš, 2011). Additionally, we extracted discourse 
markers, used to organize the ongoing discourse, such as 
“so” or “therefore” (Schiffrin, 1987), particle items, which 
express the speaker’s mood  (Barnes, 1995) and also 
laughter (Ellis, 1997). We further calculated subjectivity 
and polarity of speech with the Pattern library (Smedt & 
Daelemans, 2012). This sentiment analysis is an automated 
process that extracts positive and negative feelings, 
emotions and opinions from speech. Polarity captures the 
expression of positive and negative feelings or opinions, 
such as anger (negative feeling) or happiness (positive 
feeling). Values range from 1 (expression of positive 
feeling) to -1 (expression of negative feeling). Subjectivity 
refers to the expression of subjective (as opposed to 
objective) content with scores between 0 (for objective 
content) and 1 (for subjective or personal content). An 
example for an objective opinion would be “The strawberry 
is red”, whereas a subjective opinion would be “The 
strawberry is ugly”.  

Analysis of conversational features was carried out per 
conversational agent and participant in the separate 
conditions (Human-Human Conversation participant 
(HHC_part), Human-Human Conversation confederate 
(HHC_conf), Human-Robot Conversation participant 
(HRC_part), Human-Robot Conversation robot 

https://web.conn-toolbox.org/
https://www.tnu.ethz.ch/de/software/tapas/documentations/physio-toolbox.html
https://www.tnu.ethz.ch/de/software/tapas/documentations/physio-toolbox.html
https://openneuro.org/datasets/ds001740
http://sox.sourceforge.net/
https://hdl.handle.net/11403/convers
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(HHC_robot)). This conversational data will be used 
jointly with the fMRI, physiological and behavioral data to 
characterize the multimodality of real-life conversations. 
As such, it could be hypothesized that certain 
conversational features, such as laughter or discourse 
markers, could predict activation in brain areas related to 
social motivation during HHC. This extensive corpus 
allows to investigate such questions. 

IPU 1: 1.15 - 3.95 

bon franchement franchement t'as déjà cueilli des fruits 

quand t'étais petit 

well frankly frankly did you already pick fruits when you 

were a kid 

  

IPU_1: 4.28 - 5.61 

j'en j'en ai dans mon jardin hein j'ai le cerisier on est train 

de faire la récolte de cerises en ce moment  

I I have some in my garden, huh, I have the cherry tree we 

are doing the cherry harvest right now 

  

IPU 2: 8.23 - 9.65 

ah ouais en plus en plus c'est la saison 

oh yep moreover moreover it is the season 

 

IPU_2: 9.95 - 10.17 

ouais  

yep  

 

IPU_3: 10.06 - 11.79 

c'est la saison elles sont elles sont bonnes en ce moment 

this is the season they are they are good right now 

  

IPU_ 3: 11.92 - 14.83 

elles sont elles sont petites elles sont brillantes comme la 

pomme  

they are they are small they are bright like the apple 

  

IPU_4: 15.28 - 18.07 

ouais ah et toi donc toi t'as des très très beaux fruits  

yep ah and you so you have very very beautiful fruits 

 
Example 1: Excerpt and visualization of transcribed 
human-human conversation. Original merged text file from 
Praat was simplified for visualization purposes; shown are 
Inter-Pausal Units (IPUs) with timestamps. Transcribed 
speech by the participant is presented in green, and by the 
confederate in blue; English translation is presented right 
below the corresponding statements in italics;  

 

IPU_1: 1.07 - 3.52 

 là encore une fois il s'agit de l'aubergine 

here again it’s about the eggplant 

 

IPU_2: 3.84 - 4.71 

euh 

hum 

 

IPU_1: 4.28 - 5.61 

elle ressemble à Batman  

it looks like Batman 

 

IPU_3: 5.83 - 7.53 

oui en effet elle ressemble à Batman 

yes indeed it looks like Batman 

 

IPU_4: 7.84 - 12.97 

ce que j'avais pas remarqué précédemment c'est que le 

pédoncule au dessus de l'aubergine 

what I had not noticed before is the peduncle on top of the 

eggplant 

 

IPU_5: 13.20 - 17.41 

lui donne comme une coupe de cheveux assez étrange qui 

ressemble pas à Batman 

gives it like a weird haircut that does not look like Batman 

 

IPU_2: 16.21 - 16.65 

Oui 

yes 

 

IPU_3: 16.88 - 17.57 

tu as raison 

you are right 

 
Example 2: Excerpt and visualization of transcribed 
human-robot conversation. Original merged text file from 
Praat was simplified for visualization purposes; shown are 
Inter-Pausal Units (IPUs) with timestamps. Transcribed 
speech by the participant are presented in green, and by the 
conversational robot in blue; English translation is 
presented right below the corresponding statements in 
italics; 

 

 

Figure 3: Mean number of Intra-Pausal Units (IPUs) and 
tokens. Figure displays the mean number of IPUs and 
tokens per Human-Human Conversations for the human 
confederate and the participant and per Human-Robot 
Conversation for the conversational robot and the 
participant; Error bars denote standard deviation of the 
mean; ** p ≤ .001 
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2.2.3 Face and eye-tracking data 

Eye-tracking data was collected from the participant while 

lying supine in the scanner, synchronized with fMRI data 

collection with an Eyelink 1000 Plus Long Range Mount 

(SR Research Ltd., Mississauga, Ontario, Canada, 

https://www.sr-research.com/products/eyelink-1000-plus/) 

with a temporal resolution of 1000 Hz. The eye position of 

the left eye was recorded using pupil and corneal tracking. 

5-point gaze-calibration was conducted at the beginning of 

the experiment, validated, and, if necessary, recalibrated 

before each run. Eye tracking raw data consists of files in 

European data format (.edf). These files were transformed 

into an American Standard Code for Information 

Interchange format (.ascii) using C. The files contain 

messages indicating the fixation, saccades and blinks along 

a standard coordinate system (x, y, z), as well as 

information on start and end time of the conversation. Raw 

data was processed using python for synchronization with 

video data frequency and for separation of speed, saccades, 

fixation and blinks per conversation. The coordinate 

system for Eyelink, as for OpenFace (see below) is based 

on the standard image coordinate system, defined by pixel 

location.  

Videos recorded from the human confederate and the robot 

were used for face-tracking analyses, recording frequency 

was 30Hz. We used OpenFace 

(https://cmusatyalab.github.io/openface/; (Amos, 

Ludwiczuk, & Satyanarayanan, 2016)) to analyze each 

video separately (see for example Figure 4). The output 

format of OpenFace is a .csv (comma separated value) 

containing 1800 observations which is equivalent to the 

number of images in the video (videos of conversation of 

60 sec; 30 images per second (i.e., 30 Hz)). The .csv output 

file contains the 68 facial landmarks, 17 FAUs, 3 features 

of gaze movements and 6 features of head pose rotations 

and translations, which were extracted using pre-trained 

models from OpenFace. Facial landmarks represent 

important facial regions, such as eyes, nose, mouth, jaw, 

eyebrows and face outline using shape prediction models. 

For this the face is localized in an image and salient facial 

structures detected. Pre-trained facial landmark detectors 

estimate the location of facial structures on a coordinate 

system (x,y). Detection of gaze movements show, along 

coordinates, where the confederate is looking. This is also 

done by applying pre-trained models to the images (Wood 

et al., 2015). This includes description of gaze angles in a 

change of looking from, for example, left to right, with an 

angle of 0 if the person is looking straight 

(https://github.com/TadasBaltrusaitis/OpenFace/wiki/Out

put-Format). The head pose measurements describe the 

head location in relation to the camera. Rotation is 

described in pitch, roll and yawn detection along 

coordinates (x, y, z). Pitch is rotation movement around the 

X-axis, describing up and downward head movement. Roll 

describes a rotation around the Z-axis, which is a tilting 

movement of the head. Yaw is a rotation of the head around 

the Y-axis, describing a right and left head movement. 

Translation is a head movement along the X, Y and Z axis. 

The Facial Action Coding System (FACS) describes facial 

movements. It encodes facial muscular movements upon 

appearance and deconstructs it into FAUs producing the 

expression. FAUs can represent the presence and intensity 

of facial muscular movements. Data will be uploaded on 

Openneuro (Gorgolewski et al., 2017) 

(https://openneuro.org/). 

Incorporating face and eye-tracking data into multimodal 

analysis of conversation will give insights, for example, 

into the interplay between conversational features and 

facial expressions. Using the example from above, 

combining face tracking data and conversational features to 

predict activation in brain areas related to social 

motivation, may offer a comprehensive picture into how 

human interactions are shaped. 

 

Figure 4: Example of face tracking data analysis of robot 

face using OpenFace.  

2.2.4 Physiological data 

Physiological data was recorded with the SIEMENS 
scanner’s own system. A photoplethysmography unit was 
positioned on the left-hand index fingertip to record pulse 
oximetry and a breathing belt was positioned at the chest 
level. Both were connected wirelessly through Bluetooth. 
Data was acquired continuously at the frequency of 200Hz. 
Data format being proprietary, a preprocessing is needed 
using a specific toolbox (PhysIO toolbox; 
https://www.tnu.ethz.ch/de/software/tapas/documentations
/physio-toolbox.html)(Kasper et al., 2017). The toolbox 
reads the data and synchronizes it with the acquisition. For 
the corpus, the output of this processing is saved as a matrix 
in a comma-separated value file (named 
subj01_sess01_physio.csv for session 1 of subject 1) which 
has three columns corresponding, respectively, to the time 
stamps of the observation, the cardiac signal and the 
respiration signal. With a session duration of 462.73 
seconds and 200Hz recordings, a maximum of 92546 time 
points can be recorded, yet some are missing. Figure 5 
indicates that for most participants, less than 1‰ of the data 
is missing, three outliers have around 3.5‰ missing data 
and one outlier (subj25) has 1.29% of missing data. It is 
therefore important to take into account the time stamps to 
keep the synchrony between the time series. 

Physiological data is very noisy, in particular because of 
the high magnetic field and because participants were 
prone to move peripheral limbs while discussing. The 
preprocessing toolbox can process the data further, 
including automatic enhanced peak detection for the blood 
pulse signal and discarding of erroneous recordings for the 
respiration (detached or saturated breathing belt for 
example). These steps are used to output nuisance 
covariates for the fMRI analysis such as cardiac and 
respiratory phases (described in section fMRI data), but as 
these can be recalculated from the raw data and are only 
meaningful in the context of fMRI analysis, they haven’t 
been included in the currently shared corpus. The raw 

https://www.sr-research.com/products/eyelink-1000-plus/
https://github.com/TadasBaltrusaitis/OpenFace/wiki/Output-Format
https://github.com/TadasBaltrusaitis/OpenFace/wiki/Output-Format
https://openneuro.org/
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physiological data will be uploaded on Openneuro 
(Gorgolewski et al., 2017) (https://openneuro.org/). Apart 
from acting as nuisance regressors to denoise fMRI data, 
physiological data can also be informative in the context of 
social dimensions of emotions (e.g., Britton, Taylor, 
Berridge, Mikels, & Liberzon, 2006) during a conversation. 
This illustrates that adding physiological data in the 
multimodal analysis of conversation can give a 
comprehensive view on social and emotional aspects of 
human interaction.  

 

Figure 5: Boxplot showing percentage of missing data 

(number of missing points divided by maximum number 

of data points in %) in our corpus. Note one striking 

outlier. 

3. Discussion 

This project aims to investigate the specificities of human 
interactions through conversations by using a human-robot 
interaction as a control condition. The HRC allows to keep 
the reciprocity of interaction intact, while changing the 
social motivation and adoption of an intentional stance in 
the interacting human. In a first study we showed that brain 
regions implicated in social motivation are involved in 
HHC. Yet, to characterize human interaction further, in the 
present paper we introduce the comprehensive corpus 
collected in the project. This multimodal corpus of natural 
conversations, including neural, physiological, behavioral 
and transcribed conversational data allows to combine 
these different modalities for a full picture of human 
conversation.  

With an innovative experimental set-up, we created a bi-
directional conversation between a human participant in a 
fMRI scanner and a human confederate or a conversational 
robot outside of the scanner. This allowed us to compare 
the social nature of a human interaction, characterized by 
the adoption of an intentional stance and social motivation 
compared to an interaction with a robot (non-social nature). 
A cover story framing the study as a neuromarketing 
experiment with the goal to extract the message behind a 
new advertisement campaign provided the topic of 
conversation.  

fMRI data was recorded from the scanned participant to 
identify objective neural responses during conversation 
with another human or a conversational robot (for details 
see (Rauchbauer et al., 2019)). Conversational data of the 
interlocutors has been transcribed and conversational 
features, as well as time-series and descriptive statistics of 

IPUs, filled breaks, feedbacks, discourse markers, particles 
and laughter extracted to characterize the difference of 
conversations between two humans and a human and an 
artificial agent and to align conversational with neural data. 
Furthermore, the multimodal corpus included 
physiological (blood flow pulse and respiration), as well as 
eye-gaze (from participant) and face-tracking data (from 
the confederates) to comprehensively describe natural 
conversation. Data analysis of this corpus aims to integrate 
the multimodal markers of conversation to 
comprehensively characterize human conversation and 
conversation with an artificial agent. Thus, the presented 
corpus allows, for the first time, to include multimodal 
conversational data in the investigation of bidirectional 
interaction.  

4. Conclusion 

We investigated natural bi-directional conversations 
between two humans and a human and a conversational 
robot. In this innovative study we collected a multimodal 
corpus of neural, physiological, eye- and face-tracking and 
transcribed conversational data. We present a unique 
approach to studying real-life conversations from a 
multimodal perspective. This allows comprehensive 
investigation of human conversation.  
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