Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 6795-6803
Marseille, 11-16 May 2020
(© European Language Resources Association (ELRA), licensed under CC-BY-NC

Unsupervised Argumentation Mining in Student Essays

Isaac Persing and Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas
Richardson, TX 75083-0688, USA
{persingq,vince} @hlt.utdallas.edu

Abstract
State-of-the-art systems for argumentation mining are supervised, thus relying on training data containing manually annotated argument
components and the relationships between them. To eliminate the reliance on annotated data, we present a novel approach to unsupervised
argument mining. The key idea is to bootstrap from a small set of argument components automatically identified using simple heuristics
in combination with reliable contextual cues. Results on a Stab and Gurevych’s corpus of 402 essays show that our unsupervised ap-
proach rivals two supervised baselines in performance and achieves 73.5—83.7% of the performance of a state-of-the-art neural approach.

Keywords: Opinion Mining / Sentiment Analysis, Discourse Annotation, Representation and Processing, Information Extraction,

Information Retrieval

1. Introduction

Recent years have seen a surge of interest in argumentation
mining (see Cabrio and Villata (2018) and Lawrence and
Reed (2019) for comprehensive surveys of this area of re-
search). Argumentation mining typically involves address-
ing two subtasks: (1) argument component identification
(ACI), which consists of identifying the locations and types
of the components that make up the arguments (i.e., major
claims, claims, and premises), and (2) relation identifica-
tion (RI), which involves identifying the type of relation
that holds between two argument components (i.e., support,
attack, none). As an example, consider the following text
segment taken from a corpus of student essays that Stab and
Gurevych (S&G) annotated with argument components and
their relations (Stab and Gurevych, 2017):

In my view point, (1) I would agree to idea of taking
a break before starting higher education. (2) Students

who take break benefit by traveling around the places

or by working. (3) They tend to contribute more due to

their real world experiences which makes them more

mature.

In this example, premise (3) supports claim (2), and (1) is a
major claim.

State-of-the-art argument mining systems are supervised,
adopting a feature-rich approach that typically include
large variety of structural, lexical, and syntactic features.
The plethora of features seem to suggest that argument-
annotated training data are indispensable for training these
systems, as they provide a supervised learner guidance on
which features are useful and how features should be com-
bined. Moreover, world knowledge and domain-specific
knowledge can potentially be learned from annotated data,
as can be seen from the aforementioned example.

A natural question, then, is: in the absence of argument-
annotated training data, is argument mining doomed to fail?
In particular, are argument-annotated training data as in-
dispensable as they seem in enabling state-of-the-art argu-
ment mining systems to achieve their current level of per-
formance? By blindly applying supervised approaches with

arich feature set, previous work has largely failed to answer
this question.

To shed light on this question, we propose a novel unsuper-
vised approach to argument mining, with the goal of deter-
mining how well we can do without argument-annotated
data. The key idea behind our approach is to bootstrap
from a small set of argument components that are auto-
matically identified and labeled using simple heuristics in
combination with reliable contextual cues. We compare
our approach against two supervised baselines and a state-
of-the-art neural model in a challenging evaluation setting,
the end-to-end setting, where we perform argument mining
on raw, unannotated text.! In an evaluation on a corpus of
402 essays annotated by S&G, our unsupervised approach
rivals its supervised counterparts in performance.

We believe that our findings have two important ram-
ifications. First, our competitive results call for a re-
examination of existing supervised approaches to argument
mining. Specifically, future work should seek to understand
what caused their performances to be rivaled by an unsu-
pervised system. For instance, is it the features that fail
to adequately capture the information provided by the an-
notated data or the learner that fails to effectively exploit
the annotated data? Or is the current amount of annotated
training data insufficient for effective learning? Second, our
promising results could spark interest in the development
of unsupervised and semi-supervised approaches to argu-
ment mining, which could reduce a system’s reliance on

"Many existing argument mining systems were evaluated in
a non-end-to-end setting (e.g., Stab and Gurevych (2014), Peld-
szus and Stede (2015), Wei et al. (2017)). For instance, Stab
and Gurevych (2014) trained an ACI classifier and applied it to
classify only gold argument components (i.e., text spans corre-
sponding to a major claim, claim, or premise in the gold standard)
or sentences that contain no gold argument components (as non-
argumentative). Similarly, they applied their learned RI classifier
to classify only the relation between two gold argument compo-
nents. In other words, they simplified both tasks by avoiding the
challenging task of identifying the locations of argument compo-
nents. Consequently, their approach cannot be applied in a realis-
tic setting where the input is an unannotated text.

6795

Essays: 402
Major claims: 751
Support relations: 3,613

Paragraphs: 1,833 Sentences: 6,741
Claims: 1,506 Premises: 3,838
Attack relations: 219

Table 1: Corpus statistics.

the expensive-to-obtain argument-annotated training data.
The rest of the paper is organized as follows. In Section 2,
we review related work on argument mining. Section 3 de-
scribes our evaluation corpus, the S&G corpus. Section 4
provides an overview of our supervised baselines. In Sec-
tion 5, we present our unsupervised approach. Finally, we
present evaluation results in Section 6 and our conclusions
in Section 7.

2. Related Work

Recall that identifying argumentative structures consists of
(1) identifying the locations and types of the argument com-
ponents, and (2) identifying how they are related to each
other.

Some researchers focused on argument location identifica-
tion, classifying whether a sentence contains an argument
(Florou et al., 2013; Moens et al., 2007; Song et al., 2014;
Swanson et al., 2015). Others focused on argument com-
ponent typing, determining the type of an argument com-
ponent. While the vast majority of previous works perform
argument component typing at the sentence level (Rooney
et al., 2012; Teufel, 1999; Burstein et al., 2003; Ong et
al., 2014; Falakmasir et al., 2014; Levy et al., 2014; Lippi
and Torroni, 2015; Lippi and Torroni, 2016; Rinott et al.,
2015), some recent work focused on the more difficult task
of typing argument components at the clause level (Park
and Cardie, 2014; Goudas et al., 2015; Sardianos et al.,
2015).

Some researchers focused on relation identification instead.
For instance, Nguyen and Litman (2016) showed how con-
text can be exploited to identify relations between argument
components. Stab and Gurevych (2014) and Peldszus and
Stede (2015), on the other hand, addressed both argument
component typing and relation identification, but simplified
the task by assuming as input gold argument components.
Finally, some work addressed all argument mining subtasks
(e.g., Persing and Ng (2016)). Unlike our system, however,
virtually all of the aforementioned systems are supervised.

3. Corpus

Our corpus consists of 402 persuasive student essays col-
lected and annotated by S&G. Some relevant statistics are
shown in Table 1. Each essay is an average of 4.6 para-
graphs (16.8 sentences) in length and is written in response
to a topic such as “competition or co-operation-which is
better?”.

This corpus is ideal for argumentation mining because (1)
student essays are more simply structured than professional
writing, making them appropriate for early work on the
task, (2) a major application for argumentation mining is
the evaluation of student essays, and (3) the corpus has been
previously annotated for argumentation mining.

(a) Potential left boundary locations

| Rule

Exactly where the S node begins.

2 | After an initial explicit connective, or if the connective
is immediately followed by a comma, after the comma.
3 | After nth comma that is an immediate child of the S
node.

After nth comma.

—

(b) Potential right boundary locations

| Rule

5 | Exactly where the S node ends, or if S ends in a punctu-
ation, immediately before the punctuation.

6 | If the S node ends in a (possibly nested) SBAR node,
immediately before the nth shallowest SBAR.

7 | If the S node ends in a (possibly nested) PP node, imme-
diately before the nth shallowest PP.

Table 2: Rules for extracting ACC boundary locations.

The corpus annotations describe the essays’ argument
structure, including the locations and types of the compo-
nents that make up the arguments, and the types of rela-
tions that hold between them. The three annotated argu-
ment component types include: major claims, which ex-
press the author’s stance with respect to the essay’s topic,
claims, which are controversial statements that should not
be accepted by readers without additional support, and
premises, which are reasons authors give to persuade read-
ers about the truth of another argument component state-
ment. The two relation types include: support, which in-
dicates that one argument component supports another, and
attack, which indicates that one argument component at-
tacks another.

4. Supervised Baseline Systems

Next, we describe two state-of-the-art supervised baselines
to end-to-end argument mining.

4.1. Pipeline (PIPE)

Our first baseline is a pipeline-based argument mining sys-
tem previously developed by us (Persing and Ng, 2016)
(henceforth P&N). It is a pipeline system because it solves
the ACI and RI subtasks sequentially.

4.1.1. Argument Component Identification

PIPE’s approach to the ACI subtask, in turn, also consists of
two steps. In the first step, PIPE identifies a set of argument
component candidates (ACCs), sequences of text that could
potentially be argument components, from a paragraph. To
do this, it first parses each of the paragraph’s sentences us-
ing the Stanford CoreNLP toolkit (Manning et al., 2014).
Then it applies a set of low precision, high recall heuristic
rules that we developed based on the sentence’s syntactic
parse tree to extract the ACCs. These rules are shown in
Table 2: they are able to identify an ACC with the same
exact boundaries as 92% of all argument components.
Given this set of extracted ACCs, PIPE trains a classifier
for ACI using MALLET’s (McCallum, 2002) implementa-
tion of maximum entropy classification to label the ACCs

6796

with argument component labels. Each ACC serves as an
instance whose class label is the same as that of the argu-
ment component sharing its exact boundaries (major claim,
claim, or premise). If there is no AC sharing the ACC’s
exact boundaries, it is labeled “non-argumentative”. Each
instance is represented using S&G’s structural, lexical, syn-
tactic, indicator, and contextual features for solving (a sim-
plified version of) the same problem. Briefly, the struc-
tural features describe an ACC and its covering sentence’s
length, punctuations, and location in the essay. Lexical fea-
tures describe the 1—3 grams of the ACC and its covering
sentence. Syntactic features are extracted from the ACC’s
covering sentence’s parse tree and include things such as
production rules. Indicator features describe any explicit
connectives that immediately precede the ACC. Contextual
features describe the contents of the sentences preceding
and following the ACC primarily in ways similar to how
the structural features describe the covering sentence.

4.1.2. Relation Identification

After the classifier in Section 4.1.1. predicts which ACCs
in a paragraph represent real argument components as well
as their labels, PIPE is ready to determine how the ACCs
are related to each other. It considers RI between pairs of
ACC:s a five class classification problem. Given a pair of
ACCs A; and A; where A; occurs before As in the essay,
either they are unrelated, A; supports As, A5 supports Ay,
A attacks Ay, or Ao attacks A;.

To solve this problem, PIPE also learns an RI maximum
entropy classifier. Each training instance, called a relation
candidate (RC), consists of a pair of ACCs and one of the
above five labels. By default, the instance’s label is “no re-
lation” unless each ACC has the exact boundaries of a gold
standard argument component and one of the remaining
four relations holds between the two gold argument com-
ponents.

To train the classifier, an RC corresponding to each of the
gold relations in all paragraphs is created as an instance
of one of the four argumentative labels mentioned above.
From this gold relation, PIPE also creates four additional
“no relation” RCs by replacing each of the original rela-
tionship’s participating ACs with nearby ACCs. PIPE rep-
resents each RC using S&G’s feature set for (a simpler ver-
sion of) the same task. This feature set consists of struc-
tural, lexical, syntactic, and indicator features. Briefly, RC
structural features describe many of the same things about
each ACC as did the ACC structural features, though they
also describe the difference between the ACCs (e.g. the
difference in punctuation counts). Lexical features consist
primarily of the unigrams appearing in each ACC and word
pairs, where each word from one ACC is paired with each
word from the other. Syntactic and indicator features en-
code the same information about each ACC as the ACC
syntactic and indicator features did.

Since information about gold ACs is not available in the
test set, test RCs must be created differently. PIPE gener-
ates test RCs from all possible pairs of ACCs in the same
paragraph that the ACI system predicted as something other
than “non-argumentative”.

4.2. Integer Linear Programming (ILP)

Two problems with the PIPE approach outlined above are
that errors made by the ACI subsystem propagate to the
RI task, thus reducing RI performance, and there are con-
straints on the annotations in S&G’s corpus that aren’t en-
forced by PIPE.

To solve both of these problems, we employ as our second
baseline an ILP approach to argument mining previously
proposed by us (Persing and Ng, 2016), which performs
ILP-based joint inference over the outputs of the ACI clas-
sifier and the RI classifier used in PIPE. Unlike in PIPE,
where ACI influences RI (but not vice versa), in a joint in-
ference approach, both tasks can influence each other. For
instance, if a paragraph contains an RC that is very likely to
be a support relation (according to the RI classifier), but one
of its participating ACCs’ probability of being argumenta-
tive according to the ACI classifier is just barely too low
for the PIPE system to label it as such, the ILP system can
choose to label the ACC with one of the argumentative ACI
labels in order to allow it to participate in the relationship.
In other words, the final ACI decisions and RI decisions
will be made jointly by the two components by considering
the confidence values they individually assign to the extrac-
tion decisions.

In order to benefit from this kind of reasoning, the ILP sys-
tem cannot use the same set of ACCs and RCs used by
PIPE, as PIPE excludes from consideration any RCs that
can be generated from ACCs that are most probably non-
argumentative. To account for this, the ILP system selects
(1) the 3 most likely premise ACCs from each sentence, (2)
the 5 most likely claim ACCs from each paragraph, and (3)
the 5 most likely major claim ACCs from each essay occur-
ring in the first or last paragraph.? It then constructs RCs
from all pairings of these ACCs occurring in the same para-
graph as long as at least one was chosen because it might
be a premise and neither one was chosen because it might
be a major claim, since the corpus adheres to the constraint
that all premises are in a relationship and all major claims
are not. The test RCs generated in this way are presented to
the RI maximum entropy classifier normally.

This introduces the problem that the RI classifier may posit
a relationship between incompatible ACCs (e.g. one might
be labeled non-argumentative). ILP addresses this kind of
problem by enforcing consistency constraints on the out-
puts. The constraints that we employ are all constraints
on the annotations in S&G’s corpus. In particular, these
constraints ensure that (1) each ACC is assigned exactly
one type, (2) each RC is assigned exactly one type, (3) if
there is a relationship between two ACCs, the ACCs must
both be assigned argumentative types (i.e. they can’t be la-
beled non-argumentative), (4) major claims can only occur
in the first or last paragraphs, (5) major claims have no par-
ents, (6) a premise must have a parent, (7) argumentatively
labeled ACCs cannot overlap in the text, (8) a paragraph

>The ILP system selects more premise than claim ACCs (3
per sentence vs 5 per paragraph) because the corpus contains over
twice as many premises as claims. The corpus constrains major
claims so that they may only appear in an essay’s first or last para-
graph.

6797

contains at least one claim or major claim, and (9) a sen-
tence must not have more than two argumentatively labeled
ACCs. ILP can then be used to perform joint inference sub-
ject to these constraints.

We claimed above that ILP can be used to find the best as-
signment of labels to our ACCs and RIs, but did not define
how to measure an assignment’s quality. Because perfor-
mance on end-to-end argument mining is evaluated as the
average of ACI and RI F-scores, the ILP system’s objective
function is constructed to maximize this number. Recall
that the general F-score formula can be simplified to:

r_ 2TP
2TP+ FP+ FN

where TP, FP, and FN are counts of true positive, false pos-
itive, and false negative predictions respectively. An inte-
ger linear program cannot directly maximize this formula
for any task because division cannot be encoded into an
objective function and TP, FP, and FN can only be calcu-
lated if the system has access to gold standard test data. For
this reason, ILP instead encodes % as the objec-
tive function its integer linear program maximizes, where
G ac1 and G gy are the values of G below as calculated on
the ACI and RI tasks respectively:

G = a2TP. — (1 — a)(FP. + FN,)

where T'P., F'P,, and F'N,, are expected values for T'P,
FP, and F'N respectively, and « attempts to balance the
importance of maximizing the numerator vs minimizing the
denominator in the F-score formula.> These expected val-
ues for a complete labeling of all ACCs and RCs are cal-
culated based on the probabilities assigned to the labeled
instances as returned by the ACI and RI classifiers.

5. Unsupervised Argumentation Mining

Our unsupervised approach to argument mining first uses
the same set of heuristics as the two baselines to identify a
set of ACCs that can potentially be argument components
from an essay, as described in Table 2. It then operates in
four steps, as described below.

5.1. Step 1: Heuristic Labeling

Our approach begins by heuristically labeling a subset
of these ACCs with argument component labels. These
heuristics rely on three factors: (1) the number of the para-
graph the ACC appears in (i.e., whether it is the first, last,
or a middle paragraph), (2) the location of the sentence the
ACC appears in within its paragraph (i.e., whether it is the
first, last, or a middle sentence), and (3) the context n-grams
surrounding the ACC. These context n-grams, as well as
our heuristics, were designed based on the observations we
made on 200 unannotated essays taken from another es-
say corpus, the International Corpus on Learners’ English
(Granger et al., 2009).

5.1.1. Heuristically Labeling Major Claims
The reason our heuristics depend on an ACC’s paragraph’s
location within an essay is that the typical argumentative

3We tune «, allowing it to take any value from 0.7, 0.8, or 0.9,
as this range tended to perform well in early experiments.

(a) Preceding AC

Major Claim Claim Premise
consequently consequently | for instance ,
contend that contend that further ,
feel that feel that furthermore ,
i agree finally , in addition ,
i believe first , in fact ,
i feel first of all , indeed ,
i think firstly , moreover ,
in conclusion , iagree since
i believe to illustrate ,
maintain that i feel
my opinion i think
my view in conclusion ,
) in short ,
suppose that last,
therefore lastly ,
think that maintain that
thus , my opinion
my view
second ,
secondly ,
SO
suppose that
therefore
think that
third ,
thirdly ,
thus ,
(b) Succeeding AC
Major Claim | Claim Premise
because because , SO
that is , thatis, | , therefore

Table 3: Context n-grams used to heuristically label argu-
ment components of each type. Subtables (a) and (b) show
the context n-grams preceding and succeeding an AC, re-
spectively.

structure of, for example, the first paragraph, looks very
different than the typical argumentative structure of a body
paragraph (which occurs between the first and last para-
graph). Indeed, there is a hard constraint on this corpus
that major claims can only appear in the first and last para-
graphs, which makes sense because essays are often intro-
duced with a thesis statement (a major claim), and often
conclude with one. So for this reason, we search only the
first and last paragraphs for ACCs to heuristically label as
major claims.

To find major claims in the first paragraph, we first ob-
serve that each type of argument component is often in-
troduced using some discourse marker like those shown in
Table 3. In particular, major claims often follow the phrases
in the first row of the major claim column. For this rea-
son, we identify the last occurrence of one of these connec-
tives within an essay’s first paragraph (because introductory
paragraphs are more likely to conclude with a major claim
than they are to begin with one). We then find the ACC that
appears most closely after the phrase which ends at the end
of a simple, declarative clause (as determined by a syntactic
parse of the sentence), heuristically labeling this ACC as a

6798

major claim.

If no major claim can be identified in this way, we search
the essay for the last occurrence of one of the n-grams in
major claim’s succeeding row in Table 3. The last ACC
occurring before this n-gram that exactly covers a simple,
declarative clause is heuristically labeled as a major claim,
as n-grams in this cell frequently indicate that whatever pre-
ceded them is about to be further explained or reasoned
about, which in turn indicates the importance of the pre-
ceding text to the argument.

If no major claim ACC can be identified in either of these
ways, we simply do not heuristically label any major claims
from this paragraph.

Essays’ last paragraphs tend to be structurally very simi-
lar to their first paragraphs, containing major claims and
little else. For this reason, we follow the same procedure
outlined above for identifying major claims in an essay’s
last paragraph. However, since major claims are sometimes
expressed without any nearby discourse markers like those
shown in Table 3, it is important for us to identify a few
major claims without them in order for our eventual learned
system to generalize about major claim structure.

Since it is a little bit more common for last paragraphs to in-
clude major claims than it is for first paragraphs to include
them, and since a paragraph’s last sentence is more likely to
include a major claim than its first, we employ the following
additional rule for identifying major claims in the last para-
graph. If an essay’s last paragraph is very short, including
two or fewer sentences, and we are not able to heuristically
label any other major claims from this last paragraph using
any of the methods described above, we heuristically label
the longest simple, declarative clause in the last sentence as
a major claim.

5.1.2. Heuristically Labeling Claims

While claims can occur in any paragraph, we only attempt
to heuristically label claims occurring in body (middle)
paragraphs. To understand the reason why we do this, it
is helpful to compare the first two columns of Table 3. No-
tice that the columns’ contents are identical except that the
discourse markers preceding claims include ordinal mark-
ers (e.g., first, second, last). This is because, just as major
claims express the main purpose of an essay, claims express
the main purpose of a paragraph. Thus, they tend to be in-
troduced using similar phrases. This makes it difficult to
distinguish between claims and major claims occurring in
an essay'’s first or last paragraphs.

Because of this similarity between claims and major claims,
the way we heuristically identify claims in a body para-
graph is identical to the way we identify major claims in
the first paragraph except for the following two differences.
First, we use discourse markers from the claim column of
Table 3 rather than ones from the major claim column. Sec-
ond, we exclude from consideration any ACCs occurring
outside of the paragraph’s first or last sentences. We do
this because, while claims can occur in any sentence, body
paragraphs tend to either begin or conclude by stating the
claim the paragraph is about. The remaining sentences tend
to be filled with premises that support the claim.

5.1.3. Heuristically Labeling Premises

Since premises are rare in first or last paragraphs, we also
only heuristically label premises occurring in body para-
graphs. We also exclude from premise labeling consider-
ation any ACCs occurring in a paragraph’s last sentence
because, even if we cannot heuristically identify a claim in
a last sentence, there is too strong a chance that the rea-
son for this is because our claim labeling heuristics do not
have a high enough recall and simply failed to recognize an
existing claim’s presence.

With those exceptions, our premise labeling heuristics are
very similar to our claim and major claim labeling heuris-
tics. We first find all occurrences in an essay of preceding
premise discourse markers from Table 3. For each of these
occurrences, we find the closest following ACC that ends at
the end of a simple declarative clause and heuristically la-
bel it as a premise. We then find all occurrences in an essay
of succeeding premise discourse markers from the table.
For each of these occurrences, we heuristically label as a
premise the nearest preceding ACC having the same bound-
aries as a simple declarative clause. The selected preceding
or succeeding ACC can neither overlap with a previously
heuristically labeled ACC nor occur in a different sentence
than the discourse marker that triggered its labeling.

As can be seen in the description in the previous paragraph,
our heuristics for labeling premises are not limited to label-
ing one premise per paragraph. The reason for this is that
it is most common for a paragraph to contain one or fewer
claims or major claims, but body paragraphs tend to contain
very few non-argumentative sentences. Those body para-
graph sentences that do not contain a claim usually contain
a premise.

Despite being more permissive than the claim and major
claim heuristics, this premise labeling method still fails to
capture that most sentences contain a premise. To improve
our recall on heuristically extracting premises, we search
all body paragraph sentences except the last sentence for
occurrences of any of the phrases from Table 3. If we do not
find any of these phrases, we take this as a strong indication
that the sentence itself is a premise, since the presence of
one of these phrases might indicate that we just failed to
identify an argument component that is actually present for
reasons of precision. We therefore heuristically label the
longest ACC occurring in such a sentence as a premise.
An exception to the last premise labeling heuristic is that,
if the sentence begins with some introductory phrase mea-
suring three tokens or less followed by a comma, we in-
stead label the longest ACC occurring after this phrase as
the premise. We do this because there are too many phrases
that can be used to introduce a premise for us to enumer-
ate, but as we can see from the premise column of the table,
when they do exist, they are usually short and end with a
comma.

5.2. Step 2: Classifier Training

A problem with the labels we applied in the previous sub-
section is that they are intended to be high precision but
low recall. Ideally, an ACI system will strike an appropriate
balance between precision and recall in order to maximize
its ACI F-score. For this reason, our ACI system needs to

6799

be more general than the hand-constructed heuristics de-
scribed above. So rather than treating our heuristic labeling
as an ACI system’s predicted labels, we instead employ the
heuristically labeled data as our initial training data to train
a classifier.

More specifically, we first extract all the ACCs from an
unannotated training set. We label all instances that can
be labeled heuristically with the appropriate ACI class la-
bel (major claim, claim, or premise), and label the remain-
ing ACCs as probably non-argumentative. Given this set
of extracted ACCs, we train a four class maximum entropy
classifier for ACI using MALLET. Each instance is repre-
sented using S&G’s structural, lexical, syntactic, indicator,
and contextual features for solving (a simplified version of)
the same problem, as described at the end of Section 4.1.1.

5.3. Step 3: Self-Training

The result of the previous step is a maximum entropy classi-
fier that can assign a probability distribution to any ACC de-
scribing how likely it is to be a major claim, claim, premise,
or non-argumentative. A problem with this classifier is that,
recall, it was trained on data wherein the non-argumentative
training instances may have been labeled as such simply
because we could not heuristically determine with enough
confidence that they should have an argumentative label.
For this reason, we seek to improve the classifier via self-
training. Specifically, we apply the classifier to the non-
argumentatively labeled training ACCs. We select the 10 of
these instances that the classifier is most confident are argu-
mentative if it assigns at least an 80% probability to one of
the argumentative classes. We then label these ACCs with
the labels that the classifier indicates are appropriate and
add them to the heuristically labeled dataset before training
a new maximum entropy classifier on this labeled data. We
repeat this process until there are no more training ACCs
labeled with the non-argumentative label that can be rela-
beled in this way (i.e., the classifier assigns none of them an
80% probability of belonging to one of the argumentative
classes).

5.4. Step 4: Building the Argument Tree

After applying the ACI classifier to the first or last para-
graph in an essay, we use the resulting predictions to con-
struct a candidate argument tree (CAT) for the paragraph
in the following way. Because the only ACs appearing in
most first or last paragraphs are major claims, and because
it is uncommon for more than one major claim to appear
in one of these paragraphs, we heuristically label the ACCs
in such paragraphs as follows. First, we identify the ACC
that is most likely to be a major claim, as indicated by the
ACI maximum entropy classifier. If its probability of being
a major claim is > 0.5, we label it as a major claim. Other-
wise it is labeled as non-argumentative. All other ACCs in
the paragraph are labeled non-argumentative.

After applying the ACI classifier to a body paragraph, we
use the resulting predictions to construct a CAT for the
paragraph in the following way. As we discussed earlier,
body paragraphs are structured differently. A typical body
paragraph contains only one claim and many premises that
support it. Major claims are not permitted in body para-

graphs as per the annotation guidelines for this corpus. For
this reason, to construct our body paragraph CAT, we first
identify the ACC in the body paragraph with the highest
probability of being a claim, as determined by the ACI max-
imum entropy classifier. We label this ACC as a claim. We
then rank all remaining ACCs by their probability of be-
ing a premise, from most probable to least probable. Pro-
gressing through the ranked list sequentially, we label each
ACC as a premise if it meets two conditions. First, it must
not overlap with any previously-labeled ACC. Second, its
probability of being a premise according to the ACI clas-
sifier must be greater than both its probability of being a
claim and its probability of being a major claim. For each
ACC we label as a premise, we add a support relationship
between the premise and the ACC we labeled as the para-
graph’s claim.

6. Evaluation

In this section we discuss our evaluation of our unsuper-
vised approach to argument mining.

6.1. Experimental Setup

Corpus. As mentioned before, we use as our corpus the
402 essays annotated with argumentative discourse struc-
tures by S&G. All of our experiments are conducted via
five-fold cross-validation on this corpus. For the supervised
baselines, we reserve 60% of the essays for training, 20%
for development, and 20% for testing in each fold experi-
ment. For our unsupervised approach, no annotated data is
needed for training and development.

Evaluation metrics. To calculate F-score on each task,
we need to explain what constitutes a true positive, false
positive, or false negative on each task. Given that j is a
true argument component and ¢ is an ACC, the formulas for
the ACI task are:

TP = {7 | 3i lgi(s) = pi(i) i =)] M
FP = |{i| pl(i) £ n A 35 | 1) = pl) A =} @
PN = |{7] i l9l(i) = pi(i) A = 3} &)

where gl(j) is the gold label of 7, pl(3) is the predicted label
of 7, n is the non-argumentative class, and ¢ = 7 means ¢
is a match for j. Two text spans ¢ and j are considered
an exact match if they have exactly the same boundaries,
whereas they are considered an approximate match if they
share over half their tokens.

We perform most of our analysis on approximate match
results rather than exact match results as it can be diffi-
cult even for human annotators to identify exactly the same
boundaries for an argument component.* We use the same
formulas for calculating these numbers for RI except that j
and 7 represent a true relation and an RC respectively, two
relations approximately (exactly) match if both their source
and target ACCs approximately (exactly) match, and n is
the no-relation class.

* Approximate match has been used in evaluating opinion min-
ing systems (e.g., Choi et al. (2006), Yang and Cardie (2013)),
where researchers have also reported difficulties in having human
annotators identify exactly the same boundaries for an opinion ex-
pression and its sources and targets.

6800

ACI RI Avg
Metric | System MCF|CF|PF| P | R | F |[SF|AF| P | R | F F
PIPE 440 [36.1]69.8 752493 [59.6[20.1]000([2237]174]1957]395
Approx | IEP 507 [42.6 | 76.7 | 61.0 [66.9 | 63.8 | 325 [01.4 | 23.9 | 475 [31.8 | 4738
U 249 | 422 [772735 [57.6 | 64.6 | 37.9 | 00.0 | 382 | 355 | 36.8 | 50.7
Egeretal. 2017) | - - -1 - - |72 - -1 - - | 501637
PIPE 39.6 [339617 [640 [458 [534 [172000 [18.6 [152] 167 [35.1
Exact ILP 417 [349635 | 50.6 | 55.1 | 527 [23.0 | 00.0 | 169 | 334 [22.4 | 37.6
U 19.0 [364 [59.6 | 57.7 | 452 50.7 [26.0 | 00.0 | 26.2 [243 | 25.2 | 38.0
Egeretal. (2017) - - - - - 70.8 - - - - 45.5 | 58.2

Table 4: Results of argument component identification (ACI) and relation identification (RI). Column abbreviations are
major claim F-score (MC-F), claim F-score (C-F), premise F-score (P-F), Precision (P), Recall (R), F-score (F), support

F-score (S-F), and attack F-score (A-F).

6.2. Results and Discussion

Approximate and exact match results of the pipeline ap-
proach (PIPE), the joint inference approach (ILP), and our
unsupervised approach (U) are shown in Table 4. In ad-
dition, we show the results taken verbatim from Eger et
al. (2017).> Briefly, by employing a neural approach to
argument mining that jointly performs ACI and RI using
a sequence tagging model (LSTM-CRF), Eger et al. have
achieved the best supervised results to date on this dataset.
Note that Eger et al.’s partition of the available essays into
a training set and a test set is different from ours; in par-
ticular, unlike us, they did not perform any cross-validation
experiments. Hence, their results can be used as a reference
point but are not directly comparable to ours.

As we can see, using approximate matching, our unsuper-
vised system achieves better results than the two supervised
baseline by a variety of measures. The most important of
these results is shown in the last column, where our unsu-
pervised approach, despite using no labeled training data,
achieves performance that is 2.9% higher than that of the
better baseline (the ILP baseline). This column measures
the average F-score between the two subtasks (ACI and RI).
Our unsupervised system also achieves results that are bet-
ter than the better baseline on each of the subtasks, scoring
5.0% and 0.8% more in F-score than the ILP system on the
RI task and the ACI task, respectively. The other measures
on which our unsupervised system’s approximate perfor-
mance is similar to the better baseline are claim F-score,
premise F-score, and attack F-score.

Due to the difficulty of heuristically detecting an AC’s ex-
act boundaries, our unsupervised system’s exact matching
performance is only marginally better than the baseline per-
formances. By the most important measure, however, our
unsupervised system scores only 0.4% more than the ILP
baseline system in absolute average F-score.

While our unsupervised system performs as least as well
as the two supervised baselines, it is outperformed by Eger
et al.’s supervised system. Using approximate matching,
our system achieves 83.7% of Eger et al.’s F-score on ACI
and 73.5% of their F-score on RI. Using exact matching,
our system achieves 71.6% of Eger et al.’s F-score on ACI

50Only ACI and RI F-scores were reported in Eger et
al.’s (2017) paper.

and 55.3% of their F-score on RI. These results suggest
that the performance gap between our system and Eger et
al’’s system is bigger for approximate matching than for ex-
act matching. This should perhaps not be surprising: as
mentioned before, identifying argument component bound-
aries without labeled data is a very challenging task. Over-
all, we believe that our being able to achieve 83.7% (ACI)
and 73.5% (RI) of Eger et al.’s F-scores (w.r.t. approximate
matching) without using any labeled data is a result that
would be of interest to argument mining researchers. In
particular, our unsupervised approach can be fairly easily
adapted to identify argumentative structures in essays writ-
ten in languages for which argument-annotated data is not
readily available.

6.3. Additional Experiments

Recall that our unsupervised approach is composed of four
steps. To better understand the contribution of the vari-
ous steps, we conduct two experiments. In the "No Self-
Training” (No ST) experiment, we rerun our unsupervised
system without step 3 (self-training), so it will allow us to
assess the usefulness of self-training. In the "Heuristic” (H)
experiment, we only run step 1 of our approach, so it will
allow us to assess the contribution of the heuristics.

Results of these two experiments are shown in Table 5. A
few points deserve mention. First, since there are no heuris-
tic rules for identifying relationships without using an ACI
classifier’s output, the RI results of the H experiment are all
0.0. Second, note that the difference in the ACI results be-
tween the H experiment and the No ST experiment can be
attributed entirely to step 2 (classifier training). As we can
see, step 2 improved ACI F-score by 1.7—1.9 points. Fi-
nally, comparing the No ST results with the U results in Ta-
ble 4, we can see that leaving out self-training only causes
ACI and RI F-scores to drop by no more than 0.3 points.
Moreover, comparing the H results with the U results re-
veals that step 1 is largely responsible for the ACI results
achieved by our approach. Overall, these results suggest
that the data automatically annotated during self-training
provided little knowledge beyond that already acquired in
the first two steps of our approach.

6801

ACI RI Avg
Metric | System | MC-F | C-F | P-F | P | R | F |[SF|AF| P | R | F F
Avorox | HL 497 1307 [748 [762] 53.1 [62.6 [00.0 [00.0 | 00.0 [00.0 [00.0 [31.3
PP NoST | 272 | 41.8 [768 | 73.6 [57.1 | 643 | 37.6 | 0.0 [382 | 35.0 | 365 | 504
Exact B 29.1 [26.8 [59.1 [59.1 [41.2] 48.6 [00.0 [00.0 | 00.0 [00.0 [00.0 [24.3

NoST [193 [363594 [57.7 | 448 [505 [263 | 0.0 [267 [244 | 255 [380

Table 5: Results of two ablated versions of our unsupervised approach for ACI and RI. Column abbreviations are the same

as those in Table 4.

6.4. Error Analysis and Future Work

It is obvious from Table 4 that our system has considerably
more difficulty with the RI task than with the ACI task, re-
gardless of whether evaluation occurs in an exact or approx-
imate match setting. Indeed, this is also true of the baseline
systems. The RI task is inherently more difficult than the
ACI task because, in order to correctly identify a relation-
ship, an argument mining system must also correctly iden-
tify the two participating argument components.

While this observation is correct, what it misses is that there
do not currently exist high quality features for RI that per-
form better than heuristically constructing a support rela-
tionship between every premise and some claim in the same
paragraph. Additional experiments revealed that removing
all of the features designed by S&G specifically for the RI
task from an argument mining system results in only a tiny
drop in performance. The reason for this is that, unlike
ACs, argumentative relations are often not triggered by dis-
course markers in the text. This is largely because argumen-
tative relationships can occur between ACs in non-adjacent
sentences. Thus a deeper semantic understanding of ACs
is necessary in order to develop features or heuristics for
detecting argumentative relationships between them.
While our unsupervised approach outperforms the two
baselines on both subtasks w.r.t. the approximate metric, it
underperforms them on the ACI task w.r.t. the exact metric.
This is largely due to the fact that it is difficult to develop
heuristics for finding the exact boundaries of an AC. There
are simply too many ways for an author to introduce and
trigger the termination of an argument component. Indeed,
this is why we needed to develop the complicated bound-
ary detection rules illustrated in Table 2. This is a subtask
on which some annotated training data may be useful, so
a semi-supervised approach that focuses on annotating es-
says having a wide variety of sentence structures may help
improve our exact matching performances most.

7. Conclusions

We developed a novel unsupervised approach to the chal-
lenging task of end-to-end argument mining in persuasive
student essays. In an evaluation on version 2 of Stab and
Gurevych’s corpus of 402 argument-annotated essays, our
unsupervised approach rivaled two supervised baselines in
performance and achieved 73.5-83.7% of the performance
of a state-of-the-art neural approach. We believe that these
results would be of interest to argument mining researchers,
as our approach can be fairly easily adapted to identify ar-
gumentative structures in essays written in languages for
which argument-annotated data is not readily available.

Acknowledgments

We thank the three anonymous reviewers for their detailed
and insightful comments on an earlier draft of the pa-
per. This work was supported in part by NSF Grants IIS-
1528037 and CCF-1848608. Any opinions, findings, con-
clusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views
or official policies, either expressed or implied, of NSF.

Bibliographical References

Burstein, J., Marcu, D., and Knight, K. (2003). Finding
the WRITE stuff: Automatic identification of discourse
structure in student essays. IEEE Intelligent Systems,
18(1):32-39.

Cabrio, E. and Villata, S. (2018). Five years of argument
mining: A data-driven analysis. In Proceedings of the
27th International Joint Conference on Artificial Intelli-
gence, pages 5427-5433.

Choi, Y., Breck, E., and Cardie, C. (2006). Joint extraction
of entities and relations for opinion recognition. In Pro-
ceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing, pages 431-439.

Eger, S., Daxenberger, J., and Gurevych, I. (2017). Neu-
ral end-to-end learning for computational argumentation
mining. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pages 11-22.

Falakmasir, M. H., Ashley, K. D., Schunn, C. D., and Lit-
man, D. J. (2014). Identifying thesis and conclusion
statements in student essays to scaffold peer review. In
Intelligent Tutoring Systems, pages 254-259. Springer
International Publishing.

Florou, E., Konstantopoulos, S., Koukourikos, A., and
Karampiperis, P. (2013). Argument extraction for sup-
porting public policy formulation. In Proceedings of the
7th Workshop on Language Technology for Cultural Her-
itage, Social Sciences, and Humanities, pages 49-54.

Goudas, T., Louizos, C., Petasis, G., and Karkaletsis, V.
(2015). Argument extraction from news, blogs, and the
social web. International Journal on Artificial Intelli-
gence Tools, 24(5).

Granger, S., Dagneaux, E., Meunier, F., and Paquot, M.
(2009). International Corpus of Learner English (Ver-
sion 2). Presses universitaires de Louvain.

Lawrence, J. and Reed, C. (2019). Argument mining: A
survey. Computational Linguistics, 45(4):765-818.

Levy, R., Bilu, Y., Hershcovich, D., Aharoni, E., and
Slonim, N. (2014). Context dependent claim detection.

6802

In Proceedings of the 25th International Conference on
Computational Linguistics, pages 1489—-1500.

Lippi, M. and Torroni, P. (2015). Context-independent
claim detection for argument mining. In Proceedings of
the 24th International Joint Conference on Artificial In-
telligence, pages 185-191.

Lippi, M. and Torroni, P. (2016). Argument mining from
speech: Detecting claims in political debates. In Pro-
ceedings of the 30th AAAI Conference on Artificial Intel-
ligence, pages 2979-2985.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,
Bethard, S. J., and McClosky, D. (2014). The Stan-
ford CoreNLP natural language processing toolkit. In
Proceedings of 52nd Annual Meeting of the Association
for Computational Linguistics: System Demonstrations,
pages 55-60.

McCallum, A. K. (2002). MALLET: A Machine Learn-
ing for Language Toolkit. http://mallet.cs.
umass.edu.

Moens, M.-F., Boiy, E., Palau, R., and Reed, C. (2007).
Automatic detection of arguments in legal texts. In Pro-
ceedings of the 11th International Conference on Artifi-
cial Intelligence and Law, pages 225-230.

Nguyen, H. and Litman, D. (2016). Context-aware argu-
mentative relation mining. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1127-1137.

Ong, N., Litman, D., and Brusilovsky, A. (2014).
Ontology-based argument mining and automatic essay
scoring. In Proceedings of the First Workshop on Argu-
mentation Mining, pages 24-28.

Park, J. and Cardie, C. (2014). Identifying appropriate sup-
port for propositions in online user comments. In Pro-
ceedings of the First Workshop on Argumentation Min-
ing, pages 29-38.

Peldszus, A. and Stede, M. (2015). Joint prediction in
mst-style discourse parsing for argumentation mining. In
Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 938-948.

Persing, 1. and Ng, V. (2016). End-to-end argumentation
mining in student essays. In Proceedings of the 2016
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, pages 1384—1394.

Rinott, R., Dankin, L., Alzate Perez, C., Khapra, M. M.,
Aharoni, E., and Slonim, N. (2015). Show me your evi-
dence - an automatic method for context dependent evi-
dence detection. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing,
pages 440-450.

Rooney, N., Wang, H., and Browne, F. (2012). Applying
kernel methods to argumentation mining. In Proceed-
ings of the 25th International Florida Artificial Intelli-
gence Research Society Conference.

Sardianos, C., Katakis, I. M., Petasis, G., and Karkalet-
sis, V. (2015). Argument extraction from news. In Pro-
ceedings of the 2nd Workshop on Argumentation Mining,
pages 56—66.

Song, Y., Heilman, M., Beigman Klebanov, B., and Deane,

P. (2014). Applying argumentation schemes for essay
scoring. In Proceedings of the First Workshop on Argu-
mentation Mining, pages 69-78.

Stab, C. and Gurevych, I. (2014). Identifying argumen-
tative discourse structures in persuasive essays. In Pro-
ceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, pages 46-56.

Stab, C. and Gurevych, I. (2017). Parsing argumentation
structures in persuasive essays. Computational Linguis-
tics, 43(3):619-659.

Swanson, R., Ecker, B., and Walker, M. (2015). Argument
mining: Extracting arguments from online dialogue. In
Proceedings of the 16th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, pages 217—
226.

Teufel, S. (1999). Argumentative Zoning: Information Ex-
traction from Scientific Text. Ph.D. thesis, University of
Edinburgh,.

Wei, Z., Li, C, and Liu, Y. (2017). A joint frame-
work for argumentative text analysis incorporating do-
main knowledge. Technical report, arXiv preprint
arXiv:1701.05343.

Yang, B. and Cardie, C. (2013). Joint inference for fine-
grained opinion extraction. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1640—1649.

6803

