Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 6300-6309
Marseille, 11-16 May 2020
(© European Language Resources Association (ELRA), licensed under CC-BY-NC

Synthetic Data for English Lexical Normalization: How Close Can We Get to
Manually Annotated Data?

Kelly Dekker, Rob van der Goot
University of Groningen, IT University of Copenhagen
k.dekker.5 @student.rug.nl, robv@itu.dk

Abstract

Social media is a valuable data resource for various natural language processing (NLP) tasks. However, standard NLP tools were often
designed with standard texts in mind, and their performance decreases heavily when applied to social media data. One solution to
this problem is to adapt the input text to a more standard form, a task also referred to as normalization. Automatic approaches to
normalization have shown that they can be used to improve performance on a variety of NLP tasks. However, all of these systems are
supervised, thereby being heavily dependent on the availability of training data for the correct language and domain. In this work, we
attempt to overcome this dependence by automatically generating training data for lexical normalization. Starting with raw tweets, we
attempt two directions, to insert non-standardness (noise) and to automatically normalize in an unsupervised setting. Our best results are
achieved by automatically inserting noise. We evaluate our approaches by using an existing lexical normalization system; our best scores
are achieved by custom error generation system, which makes use of some manually created datasets. With this system, we score 94.29
accuracy on the test data, compared to 95.22 when it is trained on human-annotated data. Our best system which does not depend on
any type of annotation is based on word embeddings and scores 92.04 accuracy. Finally, we perform an experiment in which we asked
humans to predict whether a sentence was written by a human or generated by our best model. This experiment showed that in most
cases it is hard for a human to detect automatically generated sentences.

Keywords: Social Media Processing, Statistical and Machine Learning Methods, Tools, Systems, Applications

wanting to
wanting to

make a yt vid
make a Youtube video

1. Introduction

With the emergence of social media, a novel type of lan-
guage evolved. This ‘online’ language contains many new
phenomena, like slang, acronyms and shortened words.
However, most natural language processing tools are de-
signed to process standard texts. Due to these differences,
performance of NLP tools often drop dramatically when
used on social media data (Liu et al., 2011; |Schulz et al.,
2016)

Multiple solutions have been proposed to tackle this prob-
lem of domain adaptation. These solutions can be broadly
divided in two categories: adapting the model to the new
data, or adapting the data to the model (Eisenstein, 2013).
In this work, we focus on lexical normalization, a solution
which adapts the data to the model by ‘translating’ words
to their standard form. This has the main advantage that
the adaptation only has to be done once for multiple types
of NLP applications. An example of a sentence annotated 2. How does the performance of training on data gener-

with its normalization is shown in Figure[T] ated with clean data as a basis compare to training data
However, one downside of this solution is that existing nor- based on noisy data?

malization systems are supervise(ﬂ and annotating such 3
data is expensive and time consuming. Currently, annotated

data is only available for a handful of languages. Further-

more, language develops continuously (especially on social
media), and there are multiple sub-domains online which

Figure 1: Example of an annotated tweet, top: original text,
bottom: normalized text

text and inserting noise, or the other way around. We will
try a variety of methods for both of these strategies to nor-
malize English tweets without training data. We opted to
use English tweets to ensure that the results can be com-
pared to previous work, and we can interpret the quality of
the generated data.

This leads to the following research questions:

1. To what extent can we replace human annotated data
with automatically generated training data for lexical
normalization?

. Is the automatically generated data of our best method
similar to human generated data?

2. Related Work

contain different types of language. For these reasons, we
focus on the task of automatically generating training data
for lexical normalization; the task is to generate pairs of
sentences like shown in Figure|l| Naturally, there are two
directions to generate these pairs, starting from the clean

!There are publications about ‘unsupervised normalization’,
however, this is usually focused only on the task of candidate se-
lection and can thus not be used in a real-world scenario where it
is unknown whether a word has to be normalized.

To the best of our knowledge, we are the first to automat-
ically generate and evaluate English training data for the
lexical normalization task. For other languages, we are only
familiar with work on Turkish (Colakoglu et al., 2019), in
which data is automatically generated by inserting spelling
variants and is then used to train a machine translation sys-
tem. However, for the two approaches mentioned in the in-
troduction (noisy—clean and clean—noisy) there is previ-
ous work for sub-tasks of lexical normalization for English,
which we will discuss in the following paragraphs.

6300

The noisy+—clean setting can be seen as a form of unsuper-
vised normalization in itself. In our setup, we will focus
mainly on precision instead of recall, since the quality of
the data is important and data is abundantly available, see
Section .2 for more details. Previous work on unsuper-
vised normalization focused mainly on finding the correct
replacement of words when it is already known that they
need replacement. For this task, a variety of approaches
are used; |Contractor et al. (2010) modify a statistical ma-
chine translation system to work in an unsupervised setting
by predicting word translations by a lexical similarity mea-
sure. [Han and Baldwin (2011)) use a combination of lex-
ical and phonetic edit distances between noisy words and
clean words to pick the correct replacement, whereas | Xu et
al. (20135)) consider similarities on the syllable level. Other
previous work constructs translation dictionaries in an un-
supervised setting (Gouws et al., 20115 |Han et al., 2012),
these can be used to efficiently convert noisy text, however
the recall will be limited. We will use existing methods
for unsupervised grammar correction as well as translation
dictionaries.

When transforming clean to noisy data, we are replacing
canonical words with non-canonical words. To the best of
our knowledge, this is not done before in the context of
normalization, however, [Foster and Andersen (2009) au-
tomatically generate grammatical errors on the character
level (based on insertion, deletion, substition and move)
and use this data to improve the detection of grammatical
sentences. [Kasewa et al. (2018) instead used neural ma-
chine translation to learn the distribution of naturally oc-
curring grammatical errors and leveraged this knowledge to
generate realistic grammar errors. We opt to use a method
similar toFoster and Andersen (2009) for simplicity and ef-
ficiency. It should be noted that grammatical error correc-
tion is a sub-task of normalization, and the aforementioned
approaches need to be supplemented. More recently, |Doval
et al. (2020) generated a confusion set for each word in a
sentence by deleting one character at a time. The resulting
set is then used to train word-embeddings, which showed to
be more robust (especially for social media data) compared
to training only on the original word.

For evaluation of our generated data, we need an automatic
normalization system. We decided to use MoNoise (van der
Goot and van Noord, 2017) because it achieved state-
of-the-art results on various corpora (e.g. LexNorml.2
and LexNorm2015) and the code is publicly available.
MoNoise is based on the observation that the normaliza-
tion problem consists of multiple sub-problems; for each of
these sub-problems specific modules are designed for the
generation and ranking of normalization candidates. The
most important modules are a spell-checker, word embed-
dings, a translation dictionary and N-gram probabilities.

3. Data

3.1. Raw data

For this research, we used English data collected from the
Twitter API during November 2016 based on the 100 most

frequent words of the Oxford English Corpu We dis-
carded truncated tweets, as we are mainly interested in
processing complete sentences, we also discarded tweets
containing URL’s to avoid tweets just mentioning articles.
Next, we removed duplicate tweets, as we require some va-
riety in our training data. Finally, we use the NLTK Tweet-
Tokenizer, to make the tokenization similar to the evalua-
tion datasets.

Then, we classify each tweet as being clean or noisy, result-
ing in two datasplits which we will refer to as respetively
CLEAN and NOISY data. To perform this split we use the
dictionary of the Enchant libra if all words of a tweet
occur in this dictionary, it is classified as clean. We re-
moved all single alphabetical characters from the vocabu-
lary, except ‘i’ and ‘a’ and treat usernames and hashtags as
in-vocabulary to improve the classification.

3.2. Evaluation data

To evaluate our generated data and the resulting normaliza-
tion model, we need some manually annotated lexical nor-
malization data. We will use the LexNorm1.2 data (Yang
and Eisenstein, 2013)) for final evaluation, as this does not
include multi-word normalizations (which we leave for fu-
ture work). This data consists of 549 tweets collected in
2012 from a random sample. For tuning the system we
use the same development data as |van der Goot (2019b),
taken from (L1 and Liu, 2014), for easy comparison and be-
cause it is annotated in a similar style. The development
data consists of 518 tweets (10,576 words) collected during
2009 and 2010 and filtered based on the probability that it
contains a certain amount of noisiness. In the development
data, 11.5% of the words is changed after normalization an-
notation.

4. Method

We propose two directions to automatically generate train-
ing data for normalization: clean +— noisy and noisy —
clean. In the next two subsections, we will describe a vari-
ety of methods for both directions.

4.1. Clean — Noisy

For the insertion of noise, we propose three approaches:
Brown clusters, word embeddings and a custom error gen-
eration tool.

4.1.1. Brown clusters

Brown clusters (Brown et al., 1992) can be trained on raw
data and provide an hierarchical ordering of words in a bi-
nary tree. Words which occur in similar contexts, end up in
similar clusters. Here, we are building on the assumption
that non-canonical words will end up in a cluster with their
normalized equivalent. We use the publicly available clus-
ters trained on Twitter data by (Owoputi et al. (2012). These
clusters are trained on more than 56 millions Tweets (over
847 million tokens) collected between 2008 and 2012.

To generate normalization pairs, random words are selected
from a clean tweet and converted to a noisy variant based

thtps ://en.wikipedia.org/wiki/Most__
common_words_in_FEnglish
Jhttps://abiword.github.io/enchant/

6301

https://en.wikipedia.org/wiki/Most_common_words_in_English
https://en.wikipedia.org/wiki/Most_common_words_in_English
https://abiword.github.io/enchant/

on its cluster. To make it more probable that we select a
lexical variant instead of a semantically related other word
we established some constraints:

e The candidate word should start with the same letter
as the original word OR the candidate word may start
with a digit (to include noisy words such as 2morrow)

o The candidate word should end with the same letter as
the original word OR the second-to-last letter should
be the same as the last letter of the original word OR
end with a digit (to include noisy words such as nol)

e The candidate word should not contain punctuation
marks (except ’) or emojif]

After the above rules were applied, every randomly selected
word gets a list of suggestions with noisy candidates. From
this list, a random noisy word was chosen for the normal-
ization pair.

4.1.2. Word Embeddings

Word embeddings are representations of words as vectors
of continuous values, these are commonly derived from
large amounts of raw texts. These embeddings spaces are
known to carry semantic as well as syntactic signal. In this
work, we will make use two different embeddings models:

e MoNoise embeddings: The embeddings used my
MoNoise (van der Goot and van Noord, 2017), which
are skip-gram embeddings trained on 760 million
tweets with the default settings of word2vec (Mikolov
et al., 2013)), except for a vector size of 400.

e GloVe Twitter embeddings: GloVe embeddings with
50 dimensions trained on 2 billion tweets (Pennington
et al., 2014).

For each of these models, we use a similar method as with
the Brown clusters. We pick random words from a clean
tweet and find the 40 closest words in the embeddings space
using cosine distance. The same constraints as used for the
Brown clusters are used to pre-filter the list of candidates,
and a random candidate is selected from the filtered list.

4.1.3. Custom error generation (CEG)

Finally, we will experiment with a more linguistically-
informed approach, a custom error generation method. To
make sure we generate all types of replacements which
are annotated for the normalization task, we will make
use of an existing categorization. We choose to use the
taxonomy by [van der Goot et al. (2018), as it is the most
fine-grained for this type of annotation. All multi-word
replacement categories are ignored, because they are not
annotated in the datasets we use, which leaves us with 10
categories. We assign every tweet in the CLEAN dataset
with one category and attempt to inject errors only from
that category. If this is impossible (for example, removing
an apostrophe when there is none), the tweet is kept as-is.
The 10 categories are described in more detail below:

“detected by the Python emoji library: https://pypi.
org/project/emoji/

Typographical error

A typographical error includes word errors which can
be the result of mistyping on a keyboard. To generate
these errors, we take random words from the tweets,
and substitute or insert a character (as deletion is already
handled by other categories). We use the QWERTY lay-out
to pick characters which are close to the original character,
to make the errors more ‘human-like’. Some examples:
nerved — nervwd amazing — anazing

Missing apostrophe

To generate the error of leaving out apostrophes in words,
random words which contain an apostrophe are selected
from the clean data set and the apostrophe has simply been
removed. Some examples:

Won’t —+ Wont Didn’t — Didnt

Spelling error

A spelling error is similar to a typographical error. How-
ever, it is not the result of mistyping a key on the keyboard,
but is an effect of a lack of grammatical/spelling knowl-
edge. To insert these errors, a look up list from Wikipedia
of common misspelled words (Wikipedia:Lists of common
misspellings, 2017) has been used. Some examples:
tomorrow — tommorrow until — untill

Repetition

People emphasize words on social media by repeating char-
acters. To artificially generate these repetitions, random
words were selected and also a random number (1-4), was
generated to specify the number of character repetitions.
This repetition was based on the last character of a word,
since other categories, like typographical error, spelling er-
ror and slang already covers repetition of characters mid-
words.

Some examples:

thing — thinggg No — Nooo

Shortening vowels

On social media, vowels are sometimes left out to shorten
a word. To make these kind of errors, random words were
selected and 1 or more vowels were left out. Some exam-
ples:

with — wth better — btter

Shortening end & Shortening other

Both the categories shortening end and shortening other
have been merged together in one module. This is done,
because for these categories a look-up list has been created
by scraping websitef] containing both these shortening cat-
egories. Some examples:

minutes — mins birthday — bday

5https://www.englishclub.com/ref/Slang/
Shortened _Words/
https://englishharmony.com/33-word—
shortenings/
https://www.npr.org/sections/
alltechconsidered/2014/01/16/263096375/
researchers—are-totes-studying-how-ppl-
shorten-words—-on-twitter

6302

https://pypi.org/project/emoji/
https://pypi.org/project/emoji/
https://www.englishclub.com/ref/Slang/Shortened_Words/
https://www.englishclub.com/ref/Slang/Shortened_Words/
https://englishharmony.com/33-word-shortenings/
https://englishharmony.com/33-word-shortenings/
https://www.npr.org/sections/alltechconsidered/2014/01/16/263096375/researchers-are-totes-studying-how-ppl-shorten-words-on-twitter
https://www.npr.org/sections/alltechconsidered/2014/01/16/263096375/researchers-are-totes-studying-how-ppl-shorten-words-on-twitter
https://www.npr.org/sections/alltechconsidered/2014/01/16/263096375/researchers-are-totes-studying-how-ppl-shorten-words-on-twitter
https://www.npr.org/sections/alltechconsidered/2014/01/16/263096375/researchers-are-totes-studying-how-ppl-shorten-words-on-twitter

Regular transformation

In social media it is common to transform the endings of
words. For English, common transformations are ‘ing’ —
‘in” and ‘er’ — ‘a’. Some examples:

thinking — thinkin forever — foreva

Slang

Novel words are constantly invented on the internet. For
this category we use the dictionary created by Tiwari
(2015)). In line with the normalization datasets we use, we
ignore all replacements which consist of multiple words.
Some examples:

What — Wut These — deez

Phonetic transformation

Words can be altered based on their pronunciation. (Proud-
foot, 2011) has analyzed this phenomenon for informal
SMS language and has identified multiple categories of re-
placements. To ensure that the replacements are used on the
correct pronunciations, the Python library pronouncindﬂ is
used. Some examples:

tomorrow — 2morrow welcome — welcum

4.2. Noisy — Clean

Instead of starting with clean data and artificially creating
errors, it is also possible to start with informal text itself
and automatically normalize it (unsupervised normaliza-
tion). When unsupervised normalization is used to gen-
erate data, precision should be preferred over recall, hence
our method should be conservative. We divide this task in
three steps: identification of words in need of normaliza-
tion, candidate generation, and candidate selection.

4.2.1. Out-of-vocabulary (OOV) word detection
The first step is to detect words in need of normalization.
We used the following constrictions to filter words:

e The word is not a punctuation mark
e The word is not in the dictionary (Pyenchant library)

e The word is not a common Twitter construction (RT,
hashtag, username)

e The word is not a phrasal abbreviation like: Imao, lol,
wtf, omg etc.

e The word is not a data value or metric unit, e.g. 4AM,
17:00 or 17km. (Regular expressions used)

After this detection, we first check whether character rep-
etition is used. If there is a sequence of more than two of
the same characters, we reduce this sequence to a length of
one and a length of two. If one of the generated options oc-
curs in the Pyenchant library, we consider the replacement
correct and skip the following steps.

4.2.2. Candidate generation
To ensure we generate candidates for a variety of replace-
ment types, multiple modules are used:

®https://pronouncing.readthedocs.io/en/latest/
"ist from Tiwari (2015) used to check

Brown SpellCheck Pyenchant MoNoise emb. GloVe emb. Lookup
holiday decay vacation vacation vacation vacation
carvery vacate vacate getaway

visitation vacancy vacant holiday

valentine away vacancy hols

vacation vary
and more..

Table 1: Example candidate generation using different
modules for the word: vacay

e Brown clusters: used similarly as described in Sec-

tion £ 1.1]

e GloVe Twitter embeddings:
scribed in Section £.1.2]

used similarly as de-

e MoNoise Embeddings: used similarly as described in

Section 4.1.2]
e Lookup dictionaries: similar as in Sectionf.1.3]
e Pyenchant Python library spellcheckelﬂ
e Spellchecker Python libraryﬂ

4.2.3. Candidate selection

All the methods mentioned in section generate a list
of candidates. To make a final decision whether a word is
replaced, we count for each candidate by how many meth-
ods it is generated. Then, we choose to normalize to the
most frequently generated candidate, if it is generated at
least twice. If there is a second candidate which is equally
frequently generated, we choose to keep the original word.
Table [T] gives a demonstration of candidates generated by
the different systems for the OOV word: ’vacay’. As can
be seen from this table, ’vacation’ is generated by at least
two modules and suggested the most (5 times) out of all
different suggestions given. So, the system selects this can-
didate for the training data.

4.3. Hybrid

To test whether our proposed methods are complementary,
we also evaluate a normalization model trained on the con-
catenation of the two best performing generation strategies.
Here, we use the CEG system, and the noisy > clean strate-
gies, and simply concatenate their generated data, and shuf-
fle before training the normalization model.

5. Results

After generating training data using different methods, the
data sets have been used to train a lexical normalization
model called MoNoise (van der Goot and van Noord,
2017). There seems to be no general agreement on what
evaluation metric should be used for the normalization task.
Various researchers have evaluated their models with dif-
ferent metrics. In this research, we use accuracy as main
evaluation metric, and precision and recall to gain a more
detailed picture. In consonance with (van der Goot, 2019a)),
a slightly different interpretation of the precision and recall

$https://pypi.org/project/pyenchant/
https://pypi.org/project/pyspellchecker/

6303

https://pypi.org/project/pyenchant/
https://pypi.org/project/pyspellchecker/

Acc. Prec. Rec. %Norm. Trainsize
Baseline 89.43 10.53 32,478
Upper bound 9593 85.05 74.59 10.53 32,478
Brown 92.12 7228 41.22 8.89 80,000
GloVe-w2v 92.08 68.97 45.55 4.35 50,000
MoNoise-w2v 92.59 6947 53.28 12.05 60,000
CEG 94.05 7497 65.57 5.1 60,000
Noisy—clean 9249 7436 44.15 4.67 40,000
Hybrid 93.47 17744 53.86 4.55 100,000

Table 2: Baseline, and results of MoNoise with human
annotated data (upper bound) and our various generated
datasets. Trainsize is reported in number of tokens, and is
motivated in Section %Norm.: percentage of words
normalized. Brown: brown clusters, Glove-w2v: glove
word embeddings, MoNoise-w2v: MoNoise word embed-
dings, CEG: custom error generation, Noisy +— Clean: un-
supervised normalization

metric will be used. In previous studies, a model was pe-
nalized twice after normalizing an error wrongfully. This
was accounted in both the precision (FP) and recall (FN).
In this evaluation however, these errors affect recall (FN)
only.

5.1. Development data

In this section, we report results for the normalization task
on the development data (Section[3.2)). As a point of refer-
ence, a baseline is set. The baseline considered for this re-
search is a model that returns the original word in all cases.
In other words, it does not do any normalization on the
given data which makes the baseline accuracy equivalent
to the proportion of words which are not normalized. The
development part of the LiLiu dataset (L1 and Liu, 2014)) is
used to tune the approaches. To see how MoNoise performs
with the generated training sets in comparison to a manu-
ally annotated training set, the LiLiu training split will be
used as reference as well. This can be considered a theoret-
ical upper bound.

As can be observed from table |2} the CEG tool for creating
errors in CLEAN data performs considerably better than all
other methods. The CEG approach is apparently better in
injecting common mistakes, but also diverse enough to help
MoNoise capture errors in the development set which other
approaches do not succeed in. The approach which lever-
ages the GloVe Twitter embeddings performs worst on the
development set. The MoNoise embeddings and the GloVe
approach are similar with the only exception being the word
embedding model they adopt. The difference in vocabulary
size has resulted in quite a difference in the percentage of
words normalized for each approach which, again, could
explain the differences in performance. We elaborate on
this in Section

The hybrid approach does not result in higher performance
compared to just using the CEG. This shows that the qual-
ity of the noisy+—>clean training data is not adequate enough
to boost the performance and even lowers the quality of
the training data. Additionally, datasets generated by the
different methods with clean data as a starting point have

Approach Acc. Prec. Rec.
CEG 94.29 75.64 7453
MoNoise-w2v ~ 92.04 73.60 48.40
Noisy — clean 91.54 7523 398
Baseline 88.45 - -
Upper bound 9522 79.04 79.69

Table 3: Performance of MoNoise on the test data

been concatenated and randomly shuffled to see how this
would influence the results. The sizes used for each corre-
sponding approach are the same as reported in table[2] All
possible combinations of the various approaches have been
tried. However, combining the datasets of the approaches
did not result in better performance compared to using the
CEG method alone.

5.2. Test data

On the test data, we compare the performance of the best
approach (CEG), to the best fully unsupervised method
(noisy +— clean, MoNoise-w2v). We also report the base-
line which copies the original word, and the upperbound,
which is MoNoise trained on manually annotated data. The
results of using CEG training data approaches the results
of the upper bound closely; it scores only 0.93 percentage
point lower on accuracy. These results also confirm that ad-
ditional resources are necessary to obtain results compara-
ble to using gold data, as the performance of MoNoise-w2v
is substantially lower.

6. Analysis

While generating training data showed promising results,
there is still plenty of room for improvement. In this sec-
tion we explore several factors that lead to a decrease in ac-
curacy for the different types of generated training data. In
Section [6.T] we list the types of mistakes which are made,
which are then discussed in more detail in their own sub-
section.

6.1. Type of errors

An aspect that could explain the lower accuracy for the gen-
erated training data is the presence of incorrect normaliza-
tion pairs. Since multiple approaches have been applied to
generate training data, we have composed four error cate-
gories to distinguish between several error types. Examples
are given in table

1. Incorrect error identification This category includes
examples where the model incorrectly classifies that a word
is in need of normalization. These incorrect cases are
mostly caused by the Enchant Library, since this library is
used to perform this check. However, when taking context
into account, it becomes clear that these words should have
been considered for normalization.

2. Incorrect normalization pairs generated with word
embedding models While both embedding models gen-
erates common anomalies, like rmrw or ppl, they also gen-
erate normalizations which are only semantically related,
and thus incorrect. In this category, we place all incorrect

6304

Category Examples
1. cant, ur, nite, wont
2. smiling— squinting, defend—demean,

description—depiction

swooning— sleeping, lifter— leader

4, kpop—pop, yay—hooray,
cus—rcause, fav—fave

w

Table 4: Examples of errors in the generated training data

normalization pairs produced by both embedding models
(MoNoise and GloVe).

3. Incorrect normalization pairs generated with Brown
clusters Similar to the word embedding models, using
Brown clusters also has the disadvantage that it generates
incorrect normalization pairs. Erroneous pairs generated
with Brown clusters are included in this category.

4. Unsupervised normalization This category includes
all cases where words did not need normalization, but are
normalized by the system, or cases which are normalized
incorrectly when using noisy data as a starting point.
While this category has some overlap with the first category
(both categories incorrectly identify words as errors), this
category contains wrong normalization pairs.

6.2. Vocabulary size of embeddings

Aside to generating incorrect normalization pairs, there is
also a huge difference between the performances of the
two word embedding models. The results showed that the
GloVe embeddings scores the worst out of all approaches.
This is due to the difference in vocabulary size. While
the MoNoise embeddings model has a vocabulary size of
approximately 4.5 million words, the GloVe embeddings
has a size of “only” 1.2 million. This is quite a substan-
tial difference. The difference in the percentage out-of-
vocabulary (OOV) words is one explanation. However, a
higher amount of OOV words doesn’t necessarily imply
that the performance will be better. That is why we have
looked at the training data in more detail of both generated
sets, and especially some common used words. For exam-
ple, the word before. The GloVe model didn’t generate at
least one pair, whereas the MoNoise embeddings generates
over 20 options of noise to insert (e.g. before—rbe4 or be-
fore—bfor). So this example shows that it misses some in-
teresting opportunities that other models do capture which
affects the quality of the data.

6.3. Performance per error category

In this section, the custom error generation tool is analyzed
in more detail. An ablation experiment has been run to
see which categories contributes to the normalization task
most. The results of this experiment are presented in figure
The bar graph shows that leaving out the *Missing apos-
trophe’ and ’Phonetic transformation’ class results in the
lowest accuracy. These categories seem therefore to be
most important for the normalization task. This can be ex-
plained by the fact that these categories appear more fre-

95
all

ef‘

Acc |ac,E 3]

; X
Q \5"’ 3 o '\.
.;& \\q;‘ 2 («. o ; (_
= & PO 5 ef‘b PCA &«
5

Figure 2: Performance on development data of CEG when
leaving a specific category out

quently in the corpora. This is also in line with the obser-
vations by (van der Goot et al., 2018)), who annotated the
LexNorm2015 dataset. The most common categories were:
phonetic transformation, phrasal abbreviation and missing
apostrophe. The phrasal abbreviation category is not in-
cluded in this research but the other two are.

The categories which have almost no influence at all are
typographical error, shortening vowel and repetition. With
the category typographical error, random typos are gener-
ated based on the keyboard layout. So the chance of a
specific typo appearing in the evaluation set is very small
which makes it harder for MoNoise to generate and/or se-
lect the correct candidate. For the category shortening
vowels, the category shortening other covers some of this.
The shortening other category is based on a lookup list,
which also includes pairs where vowels are left out, e.g.
abt—about. The repetition category is simply not so fre-
quent in the data to have a large effect on the performance.
Still, a combination of all categories is necessary to reach
the highest accuracy: 94.05%.

6.4. Amount of training data

Figure 3] shows the accuracy scores by the amount of train-
ing data generated by the different approaches. For each
approach, the training starts with 100 tokens. The learning
curve of the LiLiu training set is plotted as well for refer-
ence. The training set of LiLiu contains a total of 32,478
tokens. All the other approaches have been evaluated to a
maximum of 100,000 tokens.

From the graph in figure 3]it becomes clear that using more
data doesn’t necessarily lead to better scores. This is on
one hand unfortunate, since generating a lot of data in a
relatively small time period is one of the advantages of us-
ing an unsupervised approach. On the other hand, train-
ing MoNoise on a smaller set is more efficient. Only 5-
10 tweets (100 tokens) are necessary to beat the baseline.
There is also a huge improvement for both the LiLiu and
CEG when using 1000 tokens. The CEG method even
slightly outperforms the LiLiu dataset at that point, how-
ever, this is probably due to randomness (in data selec-

6305

96 - ~ —e - Gold
R — Brown
/../ MoNoise-w2v
. —— CEG
e
95 - < GloVe-w2v

/' Noisy — Clean
—— baseline

94 -

Accuracy
(]
w
\

©
N
'

40,000 60,000 80,000 100,000

Training data (words)

0 20,000

Figure 3: Effect of training data size on accuracy of
MoNoise on the development data. Gold: manually an-
notated normalization data.

tion, model training etc.). All accuracy lines show that it
doesn’t seem to matter how much data is generated. The
line is steep until 20,000 and after that point it becomes
rather shallow. For the evaluation (Section[5)), the amount
of training data used for each generated training set is the
point where the accuracy is the highest.

Some factors that could explain why more data does not
necessarily result in higher scores are:

e More data generation leads to more incorrect normal-
ization pairs (section[6.TJ)

e More data leads to more incorrect error identification
(section[6.T)

e More data leads to more normalization candidates for
certain anomalies

e More data creates more normalization pairs, but most
of these pairs are maybe rarely seen in social media
text

The first two factors mentioned above have already been
discussed in previous sections. The last two will be ex-
plained in more detail here. When generating more data,
some out-of-vocabulary (OOV) forms can be generated
multiple times, but refer to a different in-vocabulary (IV)
form. For example, with the MoNoise embeddings, the
OOV word kep is in a normalization pair with both the
IV words kept and keep. Another example is the OOV to-
ken wrd, which is either mapped to word or weird. Both
these cases are correct normalization pairs, but it can lead
to confusion for the model when presented with such a to-
ken since it has seen both pairs. So the model has to choose
between the two options and it can choose the wrong op-
tion.

Furthermore, while maybe more normalization pairs are
created, not all of them are of good quality or are rarely
ever used in the social media domain since they are quite
specific as an anomaly. This is especially the case with ty-
pos (e.g. theae or yzur). Even though adding errors like this
contributes to the variety of errors, these kind of pairs don’t
contribute to the performance.

7. Human evaluation

In the previous sections, we have shown that automatically
generated training data can lead to performance rather close
to the scores obtained when using a manually annotated
dataset for supervised lexical normalization. Next, we will
investigate whether the generated data is comparable to real
social media data. In other words; can humans distinguish
automatically ‘noisified’” tweets from real tweets?

7.1. Experimental setup

The CEG approach scored the best during evaluation and
will therefore be used for this experiment. A tweet which
is generated with the CEG approach will further on be re-
ferred to as a machine-generated tweet. To investigate if
the generated normalization pairs seem legit in tweets, hu-
man annotators have been entrusted with the task to dis-
tinguish between human-generated tweets and machine-
generated tweets. A human-generated tweet is a tweet from
the NOISY TWEETS which have been collected during this
research and was thus once really published on Twitter by
a user. These tweets are filtered to always contain at least
one OOV word.

For this experiment, a balanced sample of 100 tweets was
presented to a total of five annotators. The average age of
the annotators was 23 years and all annotators are native
speakers of Dutch, with an above average English profi-
ciency. Three annotators were male, two were female. Fur-
thermore, four of them are highly-educated, and four of
them are active on Twitter.

Every anomaly in the tweet was highlighted in bold to give
the annotator a clear indication where the mistake was. This
was done because some anomalies are only very small, like
a missing apostrophe, and could easily be missed by an an-
notator. An example from the experiment: I am very capa-
ble of doing this math work but i dont feel like it

After presenting such a tweet to an annotator, they were
asked to chose one out of the following three options:

e Human-generated
e Machine-generated
e [do not know

The first option is where the tweet is actually published
once by a Twitter user. The second option refers to tweets
which are mutated by the CEG tool during this research.
The annotators are also given the choice to indicate that
they have no idea to which class the tweet belongs to.

7.2. Results

The results of all the annotators are presented in table [3]
Since the 100 tweets contain 50 cases of both classes, a
majority-class baseline would reach an accuracy of 50%.
The total correct classifications are reported, but also the
amount of miss classification per class. The first two
columns in table [5] show the amount of cases which were
correctly identified by the annotators. The other columns
reveal which class is incorrectly classified by an other class.
The last column indicates the overall accuracy of each an-
notator. Interestingly, in general, the human annotators had
a bias towards classifying tweets as machine-generated

6306

H-H M-M H-M M-H H-ldk M-Idk Accuracy
1 30 33 20 17 0 0 63

2 26 31 24 19 0 0 57

3 31 35 19 15 0 0 66

4 29 34 19 12 2 4 63

5 32 43 18 7 0 0 75
Average ‘ 29.6 352 20 14 4 8 64.8

Table 5: Results of all annotators for classifying the human-
generated vs. machine-generated tweets. The category be-
fore the - denotes the real class and the category behind the
- is the classified class. H: human, M: machine-generated,
Idk: classified as unknown.

Precision Recall
Machine 63.77 70.4
Human 67.89 59.2

Table 6: Precision and recall for the two classes

From the observations reported in table [5 especially an-
notator 5 has scored quite good in correctly identifying
the machine-generated class. This annotator is an outlier
compared to the other four annotators. The other annota-
tors correctly identified between 31 and 35 of the machine-
generated classes, while annotator 5 had 43 correct. Still,
all annotators were able to beat the overall baseline of 50%.

7.3. Analysis

To analyse the results in more detail, the overall precision
and recall is calculated. This is only done for the two
most interesting classes: Human-generated and machine-
generated. The ‘I do not know’ class is never a gold option.
The goal of this experiment is to determine if human anno-
tators are able to spot the anomalies generated by the CEG
tool. So the precision and recall of the machine class is
the most interesting to consider. The precision of this class
is lower than the recall. This is due to a lot of annotators
misclassifying human tweets as machine-generated. The
following tweet is an example where all 5 annotators clas-
sified the tweet as machine-generated, but it was a human-
generated tweet: ”N ofc it had to be at a bus stop”.
During the experiment, there was not one tweet that
couldn’t be spotted as machine-generated by one of the an-
notators. So, all machine-generated tweets were at least
identified by one of the annotators. However, this was
mainly due to one annotator, namely annotator number 5.
This person was quite good at identifying the machine class
in some cases, while all the other annotators chose the
human-generated class. An example of such a tweet where
only annotator 5 was correct: "The last time I flew by my-
selfwe had to do an emergency landing cause of me... check
back for live updates this morning...”

Even though there were some hard cases and tweets where
the annotators were divided, there were also some easy in-
stances where every annotator classified the tweet correctly.
Some examples of correctly identified machine-generated
tweets by all annotators:

<USERNAME > lol sew true

<USERNAME> PS I wood appreciate if you
followed me as well.

RT <USERNAME> eyed give anything just to
forget

So, especially tweets containing a word which was replaced
by a homophone, were easily identified by the annotators.
Also, there were some tweets containing specific character-
istics that were all correctly identified as human-generated
by the annotators. Another interesting trend which was ob-
served is that some type of error categories were mostly
classified as human by the annotators. Tweets in the exper-
iment that contained a repetition of characters were anno-
tated mostly as human-generated. Also, when the mistake
is quite small, such as a missing apostrophe, the annota-
tors tended to opt for the human-generated class as well
even though they were not human-generated in some cases.
Some examples of human-generated tweets correctly clas-
sified by all annotators:

why didnt i listen to my gut

I am soo bad with money man it’s now past a joke
RT <USERNAME> <USERNAME> can’t
wait for the vid. #NeverBySons

When looking at the results, all annotators were able to beat
the overall baseline of 50%. When looking specifically
at the machine class, annotators were better able to spot
those than the human class. This was due to some anoma-
lies being quite obvious. To answer the question: “Is the
automatically generated data similar to human generated
data?”, it can be concluded that to extent point the machine-
generated tweets have similar characteristics to human-
generated tweets. While some tweets were very obvious
and correctly classified during the experiment, some char-
acteristics like g-dropping or a missing apostrophe were
mostly identified as human by the annotators even though
this was not always the case. Furthermore, tweets contain-
ing slang were also regarded as a human characteristic by
most annotators, and again, not all these instances were al-
ways human-generated.

8. Conclusion

Manually annotating data for the lexical normalization is
time consuming and expensive. To tackle this problem, we
have have focused on the task of automatically generating
training data for lexical normalization of English. We have
experimented with two directions to generate pairs of sen-
tences: starting with clean text and insert 'noise’, or the
other way around, which is a form of unsupervised normal-
ization itself. We compared a variety of methods/strategies,
and have exploited manually created resources as well as
fully unsupervised resources like brown clusters and word
embeddings.

To evaluate the training data generated with the differ-
ent methods, the performance of an existing normalization
model (MoNoise) on the generated sets was compared to a
manually annotated dataset. Automatically inserting noise
in clean text has shown to give the most promising results
when compared to the performance of training where noisy

6307

data is used as a basis. Our final system, which automati-
cally inserts non-standardness into sentences (RQ2), scores
94.29 accuracy on the test data, compared to 95.22 when
using manually annotated data. This indicates that the per-
formance of the generated data is remarkably close to a
model trained on human annotated data (RQ1). Our best
strategy that does not make use of manually created re-
sources scores is based on word embeddings, and scores
92.04 accuracy. Furthermore, an experiment has shown that
some anomalies created by our approach have human-like
characteristics and are hard to distinguish from human gen-
erated data (RQ3).

The source code of all experiments and a sample of the gen-
erated data is available at:
https://bitbucket.org/kellydekker/data—
generation-lexical-normalization/

Acknowledgements

We would like to thank Barbara Plank and the anonymous
reviewers for the valuable feedback.

9. Bibliographical References

Brown, P. FE., Desouza, P. V., Mercer, R. L., Pietra, V. J. D.,
and Lai, J. C. (1992). Class-based n-gram models of
natural language. Computational linguistics, 18(4):467—
479.

Colakoglu, T., Sulubacak, U., and Tantug, A. C. (2019).
Normalizing non-canonical Turkish texts using machine
translation approaches. In Proceedings of the 57th An-
nual Meeting of the Association for Computational Lin-
guistics: Student Research Workshop, pages 267-272,
Florence, Italy, July. Association for Computational Lin-
guistics.

Contractor, D., Faruquie, T. A., and Subramaniam, L. V.
(2010). Unsupervised cleansing of noisy text. In Pro-
ceedings of the 23rd International Conference on Com-
putational Linguistics: Posters, COLING 10, pages
189-196, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Doval, Y., Vilares, J., and Gémez-Rodriguez, C. (2020).
Towards robust word embeddings for noisy texts. arXiv
preprint arXiv:1911.10876.v3.

Eisenstein, J. (2013). What to do about bad language on
the internet. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
pages 359-369, Atlanta, Georgia, June. Association for
Computational Linguistics.

Foster, J. and Andersen, @. E. (2009). Generrate: gener-
ating errors for use in grammatical error detection. In
Proceedings of the fourth workshop on innovative use of
nlp for building educational applications, pages 82-90.
Association for Computational Linguistics.

Gouws, S., Hovy, D., and Metzler, D. (2011). Unsuper-
vised mining of lexical variants from noisy text. In Pro-
ceedings of the First workshop on Unsupervised Learn-
ing in NLP, pages 82-90. Association for Computational
Linguistics.

Han, B. and Baldwin, T. (2011). Lexical normalisation
of short text messages: Makn sens a# twitter. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies-Volume 1, pages 368-378. Association for
Computational Linguistics.

Han, B., Cook, P, and Baldwin, T. (2012). Automatically
constructing a normalisation dictionary for microblogs.
In Proceedings of the 2012 joint conference on empirical
methods in natural language processing and computa-
tional natural language learning, pages 421-432. Asso-
ciation for Computational Linguistics.

Kasewa, S., Stenetorp, P., and Riedel, S. (2018). Wrong-
ing a right: Generating better errors to improve gram-
matical error detection. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pages 4977-4983, Brussels, Belgium, October-
November. Association for Computational Linguistics.

Li, C. and Liu, Y. (2014). Improving text normalization
via unsupervised model and discriminative reranking. In
Proceedings of the ACL 2014 Student Research Work-
shop, pages 86-93.

Liu, X., Zhang, S., Wei, F., and Zhou, M. (2011). Rec-
ognizing named entities in tweets. In Proceedings of the
49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies - Vol-
ume 1, HLT *11, pages 359-367, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. Proceedings of Workshop at ICLR.

Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K., and
Schneider, N. (2012). Part-of-speech tagging for twitter:
Word clusters and other advances. School of Computer
Science.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation.

Proudfoot, C. (2011). An analysis of the relationship
between writing skills and Short Messaging Service
language: a self-regulatory perspective. Ph.D. thesis,
North-West University.

Schulz, S., Pauw, G. D., Clercq, O. D., Desmet, B., Hoste,
V., Daelemans, W., and Macken, L. (2016). Multimod-
ular text normalization of dutch user-generated content.
ACM Transactions on Intelligent Systems and Technol-
ogy (TIST), 7(4):61.

Tiwari, H. (2015). Internet slang dataset. https:
//floatcode.wordpress.com/2015/11/28/
internet-slang—dataset/. [Online; accessed
4-June-2019].

van der Goot, R. and van Noord, G. (2017). MoNoise:
Modeling noise using a modular normalization system.
Computational Linguistics in the Netherlands Journal,
7:129-144, 12/2017.

van der Goot, R., van Noord, R., and van Noord, G. (2018).
A taxonomy for in-depth evaluation of normalization for
user generated content. In Proceedings of the Eleventh
International Conference on Language Resources and
Evaluation (LREC-2018).

6308

https://bitbucket.org/kellydekker/data-generation-lexical-normalization/
https://bitbucket.org/kellydekker/data-generation-lexical-normalization/
https://floatcode.wordpress.com/2015/11/28/internet-slang-dataset/
https://floatcode.wordpress.com/2015/11/28/internet-slang-dataset/
https://floatcode.wordpress.com/2015/11/28/internet-slang-dataset/

van der Goot, R. (2019a). MoNoise: A multi-lingual and
easy-to-use lexical normalization tool. In Proceedings of
the 57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages 201—
206, Florence, Italy, July. Association for Computational
Linguistics.

van der Goot, R. (2019b). Normalization and parsing al-
gorithms for uncertain input. Ph.D. thesis, University of
Groningen.

Wikipedia:Lists of common misspellings. (2017).
Wikipedia:lists of common misspellings —

Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/wiki/Wikipedia:
Lists_of_common_misspellings. [Online;

accessed 8-May-2019].

Xu, K., Xia, Y., and Lee, C.-H. (2015). Tweet normal-
ization with syllables. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers),
pages 920-928, Beijing, China, July. Association for
Computational Linguistics.

Yang, Y. and Eisenstein, J. (2013). A log-linear model for
unsupervised text normalization. In Proceedings of the
2013 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 61-72.

6309

https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings
https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings
https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings

	Introduction
	Related Work
	Data
	Raw data
	Evaluation data

	Method
	Clean Noisy
	Brown clusters
	Word Embeddings
	Custom error generation (CEG)

	Noisy Clean
	Out-of-vocabulary (OOV) word detection
	Candidate generation
	Candidate selection

	Hybrid

	Results
	Development data
	Test data

	Analysis
	Type of errors
	Vocabulary size of embeddings
	Performance per error category
	Amount of training data

	Human evaluation
	Experimental setup
	Results
	Analysis

	Conclusion
	Bibliographical References

