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Abstract
Most supervised word sense disambiguation (WSD) systems build word-specific classifiers by leveraging labeled data. However, when
using word-specific classifiers, the sparseness of annotations leads to inferior sense disambiguation performance on less frequently
seen words. To combat data sparsity, we propose to learn a single model that derives sense representations and meanwhile enforces
congruence between a word instance and its right sense by using both sense-annotated data and lexical resources. The model is shared
across words that allows utilizing sense correlations across words, and therefore helps to transfer common disambiguation rules from
annotation-rich words to annotation-lean words. Empirical evaluation on benchmark datasets shows that the proposed shared model
outperforms the equivalent classifier-based models by 1.7%, 2.5% and 3.8% in F1-score when using GloVe, ELMo and BERT word

embeddings respectively.
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1. Introduction

Word sense disambiguation (WSD) aims to automatically
identify the correct meaning of a word in a particular con-
text and is essential for many downstream natural lan-
guage processing tasks, including information extraction,
text classification, information retrieval, and machine trans-
lation.

Most existing data-driven approaches for Word sense dis-
ambiguation (WSD) build word-specific classifiers to pre-
dict the right sense of a word instance, which lack the capa-
bility to generalize across words and therefore require suf-
ficient sense-annotated data for every word (de Lacalle and
Agirre, 2015)) in order to disambiguate them well. Con-
sequently, the model’s performance decreases significantly
when there is a lack of training data for a word or some
of its senses. As shown in Table |1} the state-of-the-art
word-specific classifier model (Luo et al., 2018b)) is able
to achieve over 90% F1 score on senses with more than 200
training instances. But the performance of the model drops
quickly on annotations-lean senses, especially on senses
with less than 10 training instances.

Essentially, the design of word-specific -classifiers
overlooks the correlations among senses of different
words. Studies on systematic polysemy (Apresjan, 1974
Rumshisky and Batiukova, 2008}, |Boleda et al., 2012) have
shown that similar senses exist widely between words
denoting objects of the same category, e.g., as shown in
Table 2] the words “bank” and “school” can both refer to a
building and an institution; similarly, the verbs “digest” and
“swallow” share two related senses depending on whether
the argument refers to concrete objects or abstract con-
cepts. Modeling systematic polysemy (Pustejovsky, 1995;
Utt and Pado, 2011)) and accurately identifying words with
similar senses is challenging though, which is not our focus
here. Instead, we aim to directly address the limitation
of word-specific classifiers for WSD that completely
isolate a word from others and build a single classifier for

No. 12 35 6-10 11-40 41-70 71-200 > 200
F1 138 397 31 63.9 86.1 89.1 93

Table 1: Performance of the state-of-the-art word-specific
classifier model (Luo et al., 2018b) on word senses with
a different number of training instances. The model was
trained and evaluated on standard WSD training and test
datasets, described further in the Evaluation Section.

WSD that is shared across words and senses. The shared
model allows utilizing sense correlations across words
and therefore allows to transfer common disambiguation
rules learned from disambiguating annotation-rich words
and applies the rules for improving the disambiguation
of annotation-lean words that share a sense alternation
pattern.

Specifically, we build a single neural network model for
WSD that derives sense representations and meanwhile en-
forces congruence between a word instance and its right
sense, by using both lexical resources and sense-annotated
data. Using this shared model to measure the resemblance
between each word sense and a word context, WSD be-
comes a ranking task that selects the word sense having the
maximum similarity score with a word context. The shared
model, agnostic to distinct words and word senses, can be
trained using the entire sense-annotated corpus, which al-
lows capturing correlations between senses across words
and key attributes (e.g., concrete vs. abstract arguments)
separating related word senses.

In principle, this approach is similar to knowledge-based
approaches for word sense disambiguation, especially the
classic algorithm Lesk and its extensions (Lesk, 1986
Agirre et al., 2014} Basile et al., 2014), that apply a com-
mon strategy to disambiguate any word by referring to
sense representations and measuring overlaps between a
word context and sense representations. However, differ-
ent from the previous knowledge-based approaches that
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Sense Group ~ Lexemes Glosses Examples
building bank (n) a building in which the business of banking the bank is on the corner of Nassau and Wither-
transacted spoon
school (n) a building where young people receive educa-  the school was built in 1932
tion
institution bank (n) a financial institution that accepts deposits and  he cashed a check at the bank
channels the money into lending activities
school (n) an educational institution the school was founded in 1900
concrete digest (v) convert food into absorbable substances I cannot digest milk products
arguments swallow (v)  pass through the esophagus as part of eating or  swallow the raw fish—it won’t kill you!
drinking
abstract digest (v) arrange and integrate in the mind I cannot digest all this information
arguments swallow (v)  believe or accept without questioning or chal- am I supposed to swallow that story?

lenge

Table 2: Examples illustrating correlation among word-senses, both Nouns and Verbs. The bolded parts of glosses indicate
the sense group and the underlined texts of example sentences illustrate key syntactic and semantic constraints of a sense.

directly use sense representations provided by lexical-
semantic resources, we leverage sense-annotated corpus as
well in a data-driven manner to learn to build sense repre-
sentations and learn to measure the overlap between a word
context and a sense representation.

In addition, the sense inventory WordNet (Miller et al.,
1990) contains an example for many word senses and the
well-composed example (Table [2) can precisely illustrate
essential semantic or syntactic constraints in adopting a
word sense. Therefore, we use the example of a word
sense, if available, as a prototype in a regularization com-
ponent of the shared model for guiding the WSD system to
concentrate on most relevant segments of a word context.
Empirical evaluation shows that our approach outperforms
previous models on the benchmark English all-words WSD
data-sets, and improves WSD performance on annotation-
lean words.

2. Related Work

Knowledge-based word sense disambiguation approaches
(Lesk, 1986; |Agirre et al., 2014; Basile et al., 2014) rely
on sense definitions and lexico-semantic resources to mea-
sure overlap between sense representations and a word con-
text, which is flexible to handle infrequent words. How-
ever, in the absence of any supervision, knowledge-based
approaches may suffer from a mismatch between sense rep-
resentations and a word context and their performance con-
sistently falls behind the data-driven approaches.
Data-driven methods (Zhong and Ng, 2010; |Shen et al.,
2013; |{lacobacci et al., 2016) mostly build word specific
classifiers (word-experts). Recent neural network models
(Raganato et al., 2017a; Kagebick and Salomonsson, 2016;
Vial et al., 2018) use common first layers for all words and
learn generalized low-level context representations. How-
ever, while using common context encoding layers, neural
network models build word specific sense prediction layers
and none of them completely pull out from the word ex-
pert notion. The crucial limitation of word expert models
is their lack of capability of generalizing across words and
their senses.

In line with the recent neural network-based models, Luo
et al. (2018b) and |[Luo et al. (2018al) use both sense

definitions and sense-annotated data in a neural network
classifier-based models. Further, |Vial et al. (2019) merges
senses across words guided by the hypernym-hyponym re-
lation in WordNet to ease the problem of sparsity, but the
fundamental generalization issue that results from word
specific sense prediction layers remains.

The proposed shared model for word sense disambiguation
combines the best of both types of approaches. Specifi-
cally, by utilizing both the available sense-annotated data
and knowledge resources, the sense-context resemblance
model learns to generate and attend to word sense represen-
tations for disambiguating a word context. Similar to our
approach, a concurrent work by [Kumar et al. (2019) has
also shown the benefit of learning sense embeddings in a
shared model with common parameters for zero-shot WSD.
In addition, we study how correlated and uncorrelated word
senses, identified based on VerbNet, contribute to the im-
provement in the model’s performance on annotation-lean
word senses.

3. A Shared Neural Network Model for
Word Sense Disambiguation

Our approach for word sense disambiguation measures the
appropriateness of a word sense in a word context through
a unified neural network that uses the same set of param-
eters for all the words and senses. Specifically, as shown
in Figure |1} like the previous neural network-based meth-
ods (Raganato et al., 2017a; |Luo et al., 2018b; [Luo et al.,
2018al), we use bidirectional LSTMs (bi-LSTMs) (Hochre-
iter and Schmidhuber, 1997) for encoding a word context,
sense definitions and a prototype example sentence for each
sense. Next, we calculate dot product similarities and ab-
solute differences between a gloss encoding and the target
word encoding. We also calculate dot product similarities
and absolute differences between a sense prototype encod-
ing and the word context encoding, with the prototype and
context encodings attended by the gloss encoding. Then,
we further apply a two layer fully connected feed-forward
neural network over the four vectors recording similarities
and differences, to predict the right sense for the target
word. In all our discussions and experiments, we consider a
word context as a sentence containing an ambiguous word.
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Figure 1: The Architecture of the Shared Neural Network Model. The model uses glosses and sense examples for measuring

the correspondence between a word sense and a context.

3.1. The Gloss Encoding Module

The gloss encoding module represents each sense as a vec-
tor in a shared semantic space, distinguished from the pre-
vious data-driven methods that represent each sense as an
orthogonal one-hot vector. It uses a simple bi-LSTM to en-
code a gloss and learn contiguous representations for word
senses. We first transform the sequence of words in a gloss
to pre-trained word embeddings in the embedding layer and
then apply bi-LSTM (biL.ST M;0ss) over the sequence of
word embeddings to obtain their hidden states. Let ng
denote the number of words in a gloss GG, we obtain the
gloss representation g by using the last hidden state of bi-
LSTM. Empirically, we found that the sense representation
obtained by the simple bi-LSTM performs comparably to
the ones obtained through complex operations such as pool-
ing and self-attention.

Hg = biLST M55 (G) € R™o>2drnn

1
9= Holng) € mo

Note that this module is used to transform any sense to a
vector representation in the same semantic space provided
with its gloss.

3.2. The Target Word Encoding Module

Like the gloss encoding module, we use a separate bi-
LSTM encoder (bi LST M ontert) to obtain the target word
encoding. Let C represent the sequence of words in a word
context (a sentence) with n. words and let n,, be the po-
sition of the ambiguous word in C. The biLST M ontext
transforms the sequence of words in a word context to their
hidden states H. We obtain the target word representa-
tion, T, by using the hidden state of bt LST M onteqt at the
position n,,, which allows incorporating local contextual
information into the target word representation.

HC = biLSTMcontewt (C) S RnCXZdT""

2
T = He[ny,| € R4

3.3. Regularization Using Sense Prototypes

The example provided by the sense inventory WordNet
(Miller et al., 1990) for each word sense, if available,
clearly illustrates essential semantic or syntactic constraints
for adopting a word sense in a real sentence. Therefore, the
shared model measures correspondence between a sense
prototype and a word context as well, with both the proto-
type and context encodings attended by the gloss encoding.

First, we use the same bi-LSTM context encoder,
biLST M onterst, to obtain the sense prototype encod-
ing. Specifically, let P represent the sequence of words
in a sense prototype sentence with n, words. The
biLST M conteqt transforms the sequence of words to their
hidden states Hp.

Hp = biLSTMcontext (P) S Rnpxgd”‘" 3)

Then, we use the gloss encoding ¢ to calculate attention
scores over words in Ho and H p, by calculating element-
wise product and absolute difference (Mou et al., 2015])) be-
tween g and each word of Ho and and Hp. The atten-
tion mechanism from the gloss embedding to H¢ and and
Hp allows the model to concentrate on context segments
that are essential for recognizing the right word sense. The
word context representation and sense prototype represen-
tation, Ec and Ep, are finally generated by summing over
the products of attention weights Ao and Ap with hidden
states H and H p respectively.

helil = [Helil - g; |[Heli]) — g € R
Oécm = ng(tanh(nghc[i] + bsg)) + bsl € R
Ac = softmaz(ac) € R*  (4)

Ec = Z Ac [Z}HC [Z] € de""”
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hpli] = [Hpli] - g; | Hp[i] — g| € R**™]
Oép[ﬂ = WSl(tanh(Ws2hP[i] + bs2)) + bsl €ER
Ap = softmaz(ap) € R" (5)

Ep =Y Apli]- Hpli] € B>

Enforcing correspondence between the word context rep-
resentation and the sense prototype representation helps in
identifying specific syntactic or semantic constraints useful
for disambiguating a word.

3.4. The Correspondence Calibrating Module

To measure the correspondence between a word sense and
a word context, we first calculate element wise product
scores and absolute differences between a gloss encoding
and the target word encoding as well as between a sense
prototype encoding and the word context encoding.

I=[T-g;lg—T|:Ep- Ec:|Ep — Ecl] € R*" (6)

Next, we apply a two layer fully connected feed-forward
neural network over the four vectors.

F =tanh(WI + by) € R*¥rnn

7
score = sigmoid(WF +b) € R 2

It is critical for the correspondence calculation module to
effectively learn discriminative features and assign a higher
correspondence score to the true word sense over all the
other senses for a given word. By using element wise prod-
uct scores and absolute differences to directly measure the
similarity and differences between two vectors, the follow-
ing feed-forward neural network can effectively distill es-
sential features for calibrating the relevance of a word sense
wrt. a word context.

Note that the neural network parameters W and b are shared
across all words and senses. This is in contrast to the pre-
vious models that create separate W and b for each of the
words and their senses. In addition, unlike previous ap-
proaches, the correspondence calculation module does not
learn to directly label the target word with one of its senses.
Rather, the module learns to associate the target word with
its senses, considering one sense at a time. The correspon-
dence score calculated for each sense, essentially, repre-
sents the extent to which the sense adheres to the target
word in a particular context.

3.5. Learning and Inference

The optimization objective requires the shared model to as-
sign a higher score to the true sense over all the other senses
for a given word. Let Ty and F represent the score of
the true sense and the scores of false senses for the target
word respectively. We estimate the parameters of the shared
model, ©, by minimizing the following loss function:

losse = —(log(Ts) + D (1—log(fs))  (®)

fs€F,

This loss function aims to maximize the predicted score for
the true sense while minimizing the scores to zero for false
senses.

3.6. The Single Classifier for All Ambiguous
Words

Once we have optimized the shared model (©) on the train-
ing dataset, we use it to calculate a score for each of the
senses of a given word that measures the correspondence
between a word sense and the target word. Suppose we are
given an ambiguous word 7" and its context sentence C', as
well as all its senses .S, each with a gloss G and a sense
prototype P, we infer the most probable sense as p, having
the maximum predicted correspondence score.

Ps = a'rgmax<G,P>ES@(C7 T7 < G7 P >) (9)

The single classifier approach uses all the words and senses
to train a shared neural network model, which can better
capture structural regularities across correlated senses and
sense alternation patterns across words. Meanwhile, the
shared model uses many less parameters in a single neural
net, unlike the word expert approach that uses word-specific
classifiers and the parameters grow linearly with the num-
ber of ambiguous words.

4. Evaluation

4.1. Dataset

Training: We use the SemCor (Miller et al., 1993)) dataset
for training our neural network. SemCor is the largest man-
ually annotated English corpus for word sense disambigua-
tion. It consists of 352 documents from the Brown cor-
pus with 226,036 sense annotations based on WordNet 1.6
(Miller et al., 1990) which was later mapped to WordNet
3.0 (Raganato et al., 2017Db)).

Validation and Evaluation: We evaluate our models
on the benchmark fine-grained English all-words WSD
dataset that includes test datasets from Senseval-2 (Ed-
monds and Cotton, 2001), Senseval-3 (Mihalcea et al.,
2004), SemEval-2007 (Pradhan et al., 2007), SemEval
2013 (Navigli et al., 2013) and SemEval-2015 (Moro and
Navigli, 2015)). All these test sets were originally annotated
with different versions of WordNet senses which were later
standardized to WordNet 3.0 by [Raganato et al. (2017b).
Since both the training and test datasets are mapped to
WordNet 3.0, we use WordNet 3.0 for extracting sense def-
initions and an example sentence for each sense, if avail-
able. Also, following the previous work on supervised
WSD (Luo et al., 2018aj [Luo et al., 2018b; Raganato et
al., 2017a)), we use the SemEval-2007 dataset, the smallest
among all, for validation and parameter tuning.

4.2. Model Settings and Model Training

We determine model hyper-parameters based on the Se-
mEval 2007 dataset. In all our neural net model we use
single layer BILSTM with 512 hidden dimensions for en-
coding gloss and context. Both BiLSTMs, biLST M55
and biLST M ontert, Use orthogonal initialization, and all
linear layers (W1, Wyo, Wi, W) use uniform initializa-
tions. All the models are trained with mini-batch size of 8

"Models based on GloVe and ELMo embeddings are imple-
mented using Pytorch 0.4.1 and AllenNLP. BERT embedding
based models are implemented using Pytorch 1.2.0 and pytorch-
transformers (Wolf et al., 2019).
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using ADAM (Kingma and Ba, 2014) optimizer with learn-
ing rate set to 0.0001. For regularization, we use dropout
rate (Srivastava et al., 2014) of 0.5 on the output activa-
tions of all encoders and neural layers. We use pre-trained
word embeddings which are kept fixed during training. To
ensure fair comparison with previous works, we evaluate
our system using GloVe (Pennington et al., 2014), ELMo
(Peters et al., 2018) and BERT (Devlin et al., 2019)) word
embeddings. Training runs for 20 epochs for models with
GloVe embeddings and 6 epochs for models with ELMo
and BERT embeddings.

4.3. Baseline Systems

We compare our proposed model with a heuristic baseline,
recent knowledge based methods and data-driven methods.

1. Heuristic MFS predicts the most frequent sense of a
word in the training dataset.

2. Leskegttemp uses a word similarity function de-
fined in distributional semantics space to score gloss-
context overlap and uses that to identify the most ap-
propriate sense (Basile et al., 2014). Our models are
directly comparable to this system, except that we
leverage sense-annotated corpora to learn to attend to
gloss.

3. Babelfy creates semantic interpretations of the input
text and uses a densest subgraph heuristic to jointly
perform WSD and entity linking (Moro et al., 2014)).

4. IMS uses linear support vector machines on lexical
and syntactic features defined on the context of target
word (Zhong and Ng, 2010).

5. BILSTM, o4t +.Ex+Pos combines BILSTM model
with self-attention and uses multi-task learning frame-
work for WSD, parts-of-speech tagging and semantic
labeling (Raganato et al., 2017a).

6. GAS models semantic relationship between the con-
text, gloss and hyper- and hypo-nyms of target word
using memory modules in a word-specific classifier
framework (Luo et al., 2018b)).

7. HCAN extends the GAS model and uses the sophis-
ticated hierarchical co-attention mechanism to gen-
erate gloss and context representations that attend to
each other at both word and sentence embedding lev-
els (Luo et al., 2018al).

8. Sense-Compression clusters different word-senses
using hyper- and hypo-nym relations to reduce the
number of word-senses in WordNet and improve cov-
erage of supervised WSD systems. This is still a
word-specific classifier model, and also the previous
best performing model on the all-words WSD English
benchmark datasets (Vial et al., 2019).

4.4. Proposed Single Classifier-based Models

1. Single ClassiﬁerBl-LSTMJrGloserEmmple: the pro-
posed shared neural network model for WSD that uses
glosses and sense examples for measuring the corre-
spondence between a word sense and a context.

2. Single Classifiers;rsrnr+Gioss: @ variation of the
shared model, with no regularization based on sense
examples.

In addition, we implemented our own word-specific model,
Word-Specific Classifiers;rs7nr+Gioss, Which is equiv-
alent to the Single Classifierz;rsrir+Gioss, except that
the word-specific model uses word-specific sense predic-
tion layers. This model can be seen as a simplified imple-
mentation of the previous system GAS (Luo et al., 2018b)
after ignoring hyper- and hypo-nyms and memory modules.

4.5. Results

The first section of Table 3] shows results of the Heuris-
tic baseline and previous classic WSD models that rely
on either a knowledge base or sense annotated cor-
pus. The second section shows results of neural net-
work models that leverage both knowledge base and an-
notations and use GloVe word embeddings. Using a
much simpler architecture for encoding the gloss and con-
text, the Word-Specific Classifier 5,1 5711+ Gioss approach
catches up with the complex memory augmented GAS
model that additionally exploits hyper- and hypo-nym rela-
tions. The Single Classifierz;7.s71/+c10ss approach out-
performs its equivalent word expert model Word-Specific
Classifier ;1. s7ar+Gloss across all the four test datasets
and with an improvement of 1.1% in the combined test
set. The Single Classifierp;rsTr+Gloss approach can
better disambiguate all types of words including nouns,
verbs, adjectives and adverbs. Further, by using an exam-
ple sentence for regularization, the complete model Single
Classifier g; 1,57 M+Gloss+Ezample generalizes more easily
and better captures essential syntactic and semantic con-
straints for recognizing a word sense, which improves the
overall F1 scores by an additional 0.6%.

When using more powerful contextualized ELMo and
BERT word embeddings (the third and fourth section of
Table [3] respectively), we observe similar trends but with
larger performance gains overall. Specifically, compared
to its equivalent word expert model Word-Specific Clas-
sifier g; 1570+ Gloss, the Single Classifier g; 15711 +Gloss
achieved clear performance gains of 2.1% and 2.0% in F1-
score on the combined test set, when using ELMo em-
beddings and BERT embeddings respectively. In addi-
tion, adding regularization based on sense examples further
boosts the WSD performance when using either ELMo or
BERT word embeddings. For instance, with BERT em-
beddings, the regularization yields a performance gain of
1.8% in Fl-score on the combined test set and notice-
able improvements across all the individual test sets and
across several word types. Overall, the complete model
Single ClaSSiﬁerBiLSTJ\l«kGloserEzample consistently out-
performs the previous state-of-the art word-specific model
Sense-Compression by 1.3%, 1.5% and 1.2% in F1 score,
when using GloVe, ELMo and BERT embeddings respec-
tively.

4.6. Analysis

In order to evaluate the capabilities of single-classifier mod-
els in utilizing sense correlations and transferring com-
mon sense disambiguation rules from annotation-rich to
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Models Test Datasets Combined Test Datasets

SE2 | SE3 | SE13 | SE15 | All | Noun | Verb | Adj | Adv
Heuristic MFS 65.6 | 66.0 | 63.8 67.1 | 655 | 67.7 | 498 | 73.1 | 80.5
Leskezt+emp (Basile et al., 2014) 63.0 | 63.7 | 66.2 646 | 642 | 70.0 | 51.1 | 51.7 | 80.6
Babelfy (Moro et al., 2014) 67.0 | 635 | 66.4 70.3 | 664 | 68.9 | 50.7 | 73.2 | 79.8
IMS (Zhong and Ng, 2010) 709 | 69.3 | 65.3 69.5 | 68.9 | 70.5 558 | 75.6 | 82.9
BiLSTM+att.+LEx+Pos (Raganato et al., 2017a) | 72.0 | 69.1 66.9 71.5 69.9 71.5 57.5 | 75.0 | 83.8

GloVe Word Emeddings
GAS (Luo et al., 2018b) 722 | 70.5 | 67.2 726 | 70.6 | 722 | 577 | 76.6 | 85.0
HCAN (Luo et al., 2018al) 72.8 | 70.3 | 68.5 72.8 | 71.1 72.7 58.2 | 774 | 84.1
Sense-Compression (Vial et al., 2019) - - - - 70.8 - - - -
Word-Specific Classifierg; . sTrv+Gloss 72.6 | 70.3 | 66.8 713 | 704 | 72.0 | 58.0 | 752 | 84.0
Single ClassifiergirsTm+Gloss 733 | 71.0 | 69.3 717 | 71.5 | 73.6 | 58.1 | 76.4 | 84.1
Single Classifierg; .57 M +Gloss+Ezample 74.0 | 70.8 | 70.3 73.0 | 72,1 | 742 | 58.0 | 78.1 | 84.4
ELMo Word Embeddings
Word-Specific Classifierg; . sTr+Gioss 741 | 71.3 68.8 72.5 71.8 72.6 61.8 | 76.9 | 85.1
Single ClassifiergirsTrm+Gloss 753 | 73.1 | 71.8 75.6 | 739 | 75.5 633 | 777 | 844
Single Classifierg; 1. s7M+Gloss+Ezample 752 | 741 | 71.8 769 | 743 | 75.8 | 649 | 77.8 | 83.4
BERT Word Embeddings

Word-Specific Classifierg;r.sTam+Gloss 745 | 724 | 70.6 745 | 73.0 | 74.8 60.6 | 77.8 | 84.8
Single Classifier i sTm+Gloss 76.7 | 742 | 74.1 74.1 | 75.0 | 77.1 63.0 | 785 | 85.8
Single Classifier gi ST M +Gioss+ Ezample 777 | 75.8 | 75.1 79.2 | 76.8 | 78.7 66.5 | 79.5 | 86.5

Table 3: Fl-scores for different baselines and proposed models on benchmark datasets for fine-grained English all-words
WSD. SE2, SE3, SE13 and SE15 denote senseval-2, senseval-3, semeval 2013 and semeval 2015 datasets respectively.
Most frequent sense is assigned to words for which none of its sense has been observed during the training. For direct
comparison against|Luo et al. (2018b) and [Luo et al. (2018a)), we have adopted their data filtering and evaluation settings

exclusively for GloVe word-embedding based models.

6-10
12.7

>10
65.7

# of Training Instances | 1-2  3-5
Percentage 109 10.7

Table 4: Segments of senses based on the number of train-
ing instances, and the size (percentage) of each segment of
senses in the test set.

annotation-lean senses, we compare their performance
against the word-specific classifier model on senses with
different levels of annotation support. First, we remove test
instances which use MFS-based back-off strategy and rank
the remaining word senses based on the number of training
instances each sense has. Then, we segment word senses
into four portions with a reasonable density (> 10% of the
test set) and ensure that senses with the same number of
training instances are in one segment. Table [4| shows the
four segments of senses and the percentage of each segment
of senses in the test set.

As seen in Table [5| the performance gains for the Sin-
gle Classifierp;;s7r+Gioss model mostly come from
recognizing annotation-lean word senses (senses hav-
ing 10 or less training instances).  Through shared
parameters, the single classifier model exploits sys-
tematic correlations across word-senses and thus effec-
tively ease data-sparsity issues. = The model Single
Classifier ;1,57 M +Gloss+Ezample further constrains the
context encoder to focus on relevant contextual cues
through the prototype sentence-based regularization. The
improvements are consistent when using all the three word-
embeddings and are strengthened by utilizing better contex-
tualized word embeddings.

In addition, we further conduct experiments to study how
additional training instances from other words help in dis-
ambiguating sparsely annotated word-senses. The hypoth-
esis is that while the single classifier shared across words
can enable learning from any additional training instances,
training instances from words with well correlated word
senses are more useful than instances from other words.
Since recognizing and evaluating systematic polysemy is
beyond the scope of this work, we use VerbNe (Kipper
et al., 2006; [Loper and Bird, 2002)) to approximately iden-
tify verbs that have correlated word senses. Specifically,
we first identify verbs that have five or less training in-
stances for each of its senses. In total, we identified 114
such annotation-lean verbs and they have 138 instances in
the test set. Then, we use VerbNet to group the other verbs
found in the training set into in-class and out-of-the-class
verbs, depending on whether a verb is in the same verb class
with one of the identified annotation-lean verbs. Coinciden-
tally, the number of training instances of in-class verbs and
out-of-the-class verbs are comparabl

Table [6] compares the performance of three models trained
on in-class and out-of-the-class verb instances. We observe
that the word-specific classifier model obtains compara-
ble performance when trained with either in-class or out-
of-the-class verb instances. However, the single-classifier
models are able to effectively transfer common syntactic

2VerbNet is a broad-coverage verb lexicon that groups verbs
into fine-grained verb classes extending Levin classes to achieve
syntactic and semantic coherence among members of a class.

3Specifically, there are 28,640 and 26,923 training instances
for in-class and out-of-the-class verbs respectively.
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Models GloVe ELMo BERT

1-2 3-5 6-10 | >10 | 1-2 3-5 6-10 | >10 | 1-2 3-5 6-10 | >10
Word-Specific ClassifiergiLsTar+Gioss 13.8 | 39.7 | 51.0 | 76,5 | 16,6 | 404 | 54.0 | 79.1 | 24.1 | 41.8 | 57.1 | 80.5
Single ClassifiergiLsTam+Gioss 243 | 40.2 | 569 | 77.2 | 282 | 487 | 623 | 79.9 | 369 | 49.6 | 64.3 | 80.6
Single Classifierg;r.sTM+Gloss+Example | 25.8 | 43.3 | 60.6 | 77.2 | 31.1 | 53.1 | 619 | 799 | 38.7 | 59.3 | 68.6 | 82.2

Table 5: F1-scores of the word-specific classifier and the two proposed single-classifier systems, evaluated separately on

senses with different numbers of training instances.

Models In Out
Word-Specific Classifierg;r.sTr+Gloss 34.8 | 34.1
Single ClassifiergirsTM+Gloss 42.0 | 37.7
Single Classifier gi ST +Gloss+Ezample | 44.9 | 40.6

Table 6: The performance (F1 scores) of BERT word
embedding based models on the identified annotation-lean
verbs, when only using training instances of In-class (In)
verbs or Out-of-the-class (Out) verbs.

(and semantic) alternation patterns across verbs in the same
VerbNet class and, thus, significantly improve the perfor-
mance when trained on in-class verb instances. In addition,
the single classifier models are able to leverage out-of-the-
class verb instances to learn to better measure the corre-
spondence between word sense and word context represen-
tations, outperforming the word-specific classifier as well,
but the improvements of performance are less than the sin-
gle classifier models trained using in-class verb instances.

5. Conclusions

Improving the word sense disambiguation performance on
resource-low senses is necessary to build practically useful
systems. We have presented a novel single classifier ap-
proach for word sense disambiguation that is distinguished
from word-specific classification approaches and allows to
capture sense correlations across words. In the future, we
will continue to improve the performance of word sense
disambiguation, especially on rare senses, by exploring
semi-supervised learning. We are keen to incorporate word
sense disambiguation into real applications as well.
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