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Abstract
We present a new resource for German causal language, with annotations in context for verbs, nouns and adpositions. Our dataset
includes 4,390 annotated instances for more than 150 different triggers. The annotation scheme distinguishes three different types of
causal events (CONSEQUENCE, MOTIVATION, PURPOSE). We also provide annotations for semantic roles, i.e. of the cause and effect
for the causal event as well as the actor and affected party, if present. In the paper, we present inter-annotator agreement scores for our
dataset and discuss problems for annotating causal language. Finally, we present experiments where we frame causal annotation as a se-
quence labelling problem and report baseline results for the prediciton of causal arguments and for predicting different types of causation.
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1. Introduction
Understanding causality is crucial for making sense of the
world around us. Thus, understanding causal expressions
in text is an important prerequisite for Natural Language
Understanding (NLU). Causality, however, is also known
to be a concept that defies an unambiguous definition, thus
posing a challenge not only for automatic NLU systems but
also for human annotators.
Several proposals have been made that describe causality
from a philosophical point of view, such as the Counterfac-
tual Theory of causation (Lewis, 1973), theories of proba-
bilistic causation (Suppes, 1970; Pearl, 1988) and produc-
tion theories like the Dynamic Force Model (Talmy, 1988).
Counterfactual Theory tries to explain causality between
two events C and E in terms of conditionals such as “If C
had not occurred, E would not have occurred”. However,
psychological studies have shown that this not always coin-
cides with how humans understand and draw causal infer-
ences (Byrne, 2005). Probabilistic Dependency theories,
on the other hand, try to explain causality based on the un-
derlying probability of an event to take place in the world.
The theory that has had the highest impact on linguistic an-
notation of causality is probably Talmy’s Dynamic Force
Model which provides a framework that tries to distinguish
weak and strong causal forces, and captures different types
of causality such as “letting”, “hindering”, “helping” or “in-
tending”.
While each of these theories manages to explain some as-
pects of causality, none of them seems to provide a com-
pletely satisfying account of the phenomenon under con-
sideration. This problem of capturing and specifying the
concept of causality is also reflected in linguistic annota-
tion efforts. Human annotators often show only a moderate
or even poor agreement when annotating causal phenomena
(Grivaz, 2010; Gastel et al., 2011), or abstain from report-
ing inter-annotator agreement at all.
A notable exception is the work of Dunietz et al. (2015;
Dunietz et al. (2017b) who, inspired by the theory of con-
struction grammar (Goldberg, 1995), aim at building a con-
structicon for English causal language. When annotating

these pre-defined contructions in text, Dunietz et al. (2015)
obtain high agreement scores for human annotation. In the
paper, we adapt their approach and present a new dataset
for German causal language, with annotations in context
for verbs, nouns and adpositions.
The remainder of the paper is structured as follows. First,
we review related work on annotating causal language (sec-
tion 2.). In section 3., we present the annotation scheme
we use in the paper. Section 4. describes the annotation
process and discusses problems for annotating causal lan-
guage. We present baseline results for a causal tagger on
our new dataset in Section 5. and end with conclusions and
suggestions for future work.

2. Related Work
In this section, we give an overview over previous work on
annotating causal relations.

Temporal and causal relations It has often been noted
that the concept of causality is closely linked to temporal
relations, as a causal relation requires the temporal order
of the two events involved, and many studies have looked
at both phenomena together. Mirza et al. (2014) have an-
notated causal relations in the TempEval-3 corpus (UzZa-
man et al., 2013), with an annotation scheme inspired by
TimeML (Pustejovsky et al., 2010). Based on Talmy (1988)
and Wolff et al. (2005), they also distinguish whether the
first event causes, enables or prevents the second event.
Their annotations cover different parts of speech such as
verbs, adpositions, adverbials and discourse connectives.
In follow-up work (Mirza and Tonelli, 2016) they present a
sieve-based system that jointly predicts temporal and causal
relations in the TempEval-3 data and the TimeBank cor-
pus (Pustejovsky et al., 2003). Their system makes use of
a rich feature set, including morpho-syntactic information,
syntactic dependencies, event order, WordNet similarity as
well as the annotations that exist in the TimeBank corpus
such as TIMEX3 attribute types or temporal signals.

Implicit vs. explicit causality It is well known that the
description of causal events is not always expressed by
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means of an explicit causal trigger in the text, and humans
have no problem interpreting even implicit causal relations.
This is exemplified in the Causality-by-default hypothesis
(Sanders, 2005) that has shown that humans, when pre-
sented with two consecutive sentences expressing a relation
that is ambiguous between a causal and an additive reading,
tend to interpret the relation as causal, as in (1).

(1) She went to the pub last night. This morning, she
was late for work.

The annotations in the Penn Discourse treebank (Prasad et
al., 2008; Prasad et al., 2018) accomodate this phenomenon
by the use of implicit discourse relations where the missing
trigger is inserted by the annotators. Other work chooses
to restrict themselves to annotating causal language, i.e.
to those relations that are explicitly expressed in the text
(Dunietz et al., 2015; Mirza et al., 2014). We follow the
latter approach and only consider causal events that are
grounded in lexical expressions in the text, ignoring im-
plicit causal relations such as in (1) above.

Bootstrapping causal relations Many studies have tried
to bootstrap causal relations, based on external knowledge
bases (Kaplan and Berry-Rogghe, 1991; Girju, 2003) or on
parallel or comparable corpora (Versley, 2010; Hidey and
McKeown, 2016; Rehbein and Ruppenhofer, 2017).
Girju (2003) has tried to detect instances of noun-verb-noun
causal relations in WordNet glosses, such as starvationN

causes bonynessN. After identifying noun pairs that might
express a causal relation, she uses the extracted pairs to
search for verbs in a large corpus that might link the nouns
and express the causal relation. She then collects these
verbs and obtains a list of ambiguous verbs that might ex-
press causality. To disambiguate them, Girju extracts sen-
tences from a large text corpus and manually annotates
them, according to whether or not they have a causal mean-
ing. The annotated data is then used to train a decision tree
classifier.
In previous work, we adapt this approach to a multilingual
setup where we use the English verb cause as a seed to
identify transitive causal verbs (Rehbein and Ruppenhofer,
2017). In contrast to Girju’s monolingual WordNet-based
approach, we use a parallel corpus and project the English
tokens to their German counterparts, in order to extract and
annotate causal verbal expressions for German. The ex-
tracted verbs are included in our corpus and are now aug-
mented by additional annotations of causal nouns and ad-
positions.
A similar, but monolingual approach was taken by Hidey
and McKeown (2016) who use two comparable English
corpora, English Wikipedia and simple Wikipedia, to boot-
strap causal relations. As seed data they use explicit dis-
course connectives from the PDTB (Prasad et al., 2008),
with the aim to identify alternative lexicalisations for causal
discourse relations.
Also focussing on explicit discourse relations, Vers-
ley (2010) presents a multilingual approach for data pro-
jection. He classifies German explicit discourse relations
without German training data, solely based on the English
annotations projected to German via word-aligned parallel

text. He also presents a bootstrapping approach for a con-
nective dictionary that relies on distribution-based heuris-
tics on word-aligned German-English text.
Other studies on German have also been focussed on dis-
course connectives. Stede et al. (1998; 2002) created a
lexicon for German discourse markers, augmented with se-
mantic relations (Scheffler and Stede, 2016). Gastel et al.
(2011) present annotations for discourse connectives in the
TüBa-D/Z (Telljohann et al., 2004), including a small num-
ber of causal connectives. A rule-based system for detect-
ing a set of 8 causal German discourse connectives in spo-
ken discourse has been presented by Bögel et al. (2014).
Their system predicts whether or not a connective is causal
and they also try to predict the causality type, i.e. Reason
or Result.

Automatic prediction of causal relations in text Duni-
etz et al. (2017a) present a classical feature-based system
for causal tagging, trained on the annotations in the Be-
Cause corpus. Their system uses rich syntactic and lexical
information and outperforms a naive baseline.
In follow-up work, Dunietz et al. (2018) model the pre-
diction of causal relations as a surface construction la-
belling task which can be seen as an extension of shal-
low semantic parsing to more complex multi-word triggers
with non-contiguous argument spans. Their new system
is a transition-based parser, extending the transition sys-
tem of the Propbank semantic parser of Choi and Palmer
(2011) for the prediction of causal constructions. The tran-
sition system is integrated in the LSTM parser of Dyer et al.
(2015) which is used to compute the features for the tran-
sition system. The system operates in two steps. First, it
tries to identify the causal triggers in the text, and then it la-
bels the argument spans, i.e. cause, effect and means. The
new system not only makes the time-consuming feature-
engineering of earlier work superfluous, it also outperforms
the previous system by a large margin.
Another neural approach for causal language detection is
presented by Dasgupta et al. (2018) who extract cause-
effect relations from text. They combine a bidirectional
LSTM with linguistic features and use word and phrase em-
beddings to model the similarity between different causal
arguments of the same type, e.g. the similarity between the
two events ’engine failure’ and ’engine breakdown’.

3. Annotation Schema

Our annotaiton scheme is adapted from Dunietz et al.
(2015), but with an extended set of arguments. While Duni-
etz et al. (2015) annotate exactly two arguments, namely
CAUSE and EFFECT, we also consider the ACTOR and the
AFFECTED party of the causal event. The motivation be-
hind our decision to extend the argument set is that we
would like to add some FrameNet flavor to the PDTB-
style annotations of Dunietz et al. We thus aim at pro-
viding a description of causal events and their participants,
similar to FrameNet-style annotations (Ruppenhofer et al.,
2006) but at a more coarse-grained level. FrameNet offers
a high number of different causal frames with detailed de-
scriptions of the actors, agents and entities involved in the
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Type Definition
CONSEQUENCE instances assert that the Cause naturally leads to the Effect via some chain of events, without

highlighting the conscious intervention of any agent. The majority of instances are Consequences.
MOTIVATION instances assert that some agent perceives the Cause, and therefore consciously thinks, feels, or

chooses something. Again, what is important for this scheme is how the relationship is presented,
so an instance is Motivation only if it frames the relationship in a way that highlights an agent’s
decision or thought.

PURPOSE instances assert that an agent chooses the Effect out of a desire to make the contents of the Cause
span true. What distinguishes Purposes from Motivations is whether the motivating argument is
a fact about the world or an outcome the agent hopes to achieve.

Table 1: Definition of the three types of causation (see Dunietz 2018, pp.33).

event.1 For instance, FrameNet captures details such as the
intentionality of the triggering force, to express whether or
not the action was performed volitionally.
In our work we aim at a more generic representation that
captures different types of causality, and that allows us to
generalise over the different participants and thus makes it
feasible to train an automatic system by abstracting away
from individual lexical triggers. The advantage of such an
approach is a greater generalisability and thus higher cov-
erage. Our annotation scheme includes the following four
participant roles:

1. CAUSE – a force, process, event or action that pro-
duces an effect

2. EFFECT – the result of the process, event or action

3. ACTOR – an entity that, volitionally or not, triggers
the effect

4. AFFECTED – an entity that is affected by the results of
the cause

We hoped that distinguishing between CAUSE and AC-
TOR will help the system to learn selectional preferences
that some causal triggers have for specific participant roles,
and also provide more informative output for applications.
Compare, for instance, examples (2) and (3). The two ar-
gument slots for the verbal triggers erzeugen (produce) and
erleiden (suffer) are filled with different roles. The subject
slot for erzeugen expresses either CAUSE or ACTOR and
the direct object encodes the EFFECT. For erleiden, on the
other hand, the subject typically realises the role of the AF-
FECTED entity, and we often have the CAUSE or ACTOR
encoded as the adpositional object of a durch (by) PP.

(2) Elektromagnetische FelderCause können
KrebsEffect erzeugen.
Electromagnetic fields can
cancer produce.
“Electromagnetic fields can cause cancer.”

(3) Länder wie IrlandAffected werden durch die
Reform massive NachteileEffect erleiden.
Countries like Ireland will by the
reform massive disadvantages suffer.

1 Also see Vieu et al. (2016) for a revised and improved treatment
of causality in FrameNet.

“Countries like Ireland are to be badly affected by
the reform.”

Given that there are systematic differences between proto-
typical properties of the participants (e.g. an ACTOR is usu-
ally animate and a sentient being), and also in the way how
they combine and select their predicates, we preserve this
information and see how this affects results when training
an automatic system (see Section 5.).
In addition to the participants of a causal event, we follow
Dunietz et al. (2015) and distinguish three different types of
causation (CONSEQUENCE, MOTIVATION, PURPOSE; see
Table 1), and two degrees (FACILITATE, INHIBIT). The de-
gree distinctions are inspired by Wolff et al. (2005) who
see causality as a continuum from total prevention to to-
tal entailment, and describe this continuum with three cate-
gories, namely CAUSE, ENABLE and PREVENT. Dunietz et
al. (2015) further reduce this inventory to a polar distinction
between a positive causal relation (e.g. cause) and a nega-
tive one (e.g. prevent), as they observed that human coders
were not able to reliably apply the more fine-grained inven-
tories.2 The examples below illustrate the different types of
causation.3

(4) Auch für die WirtschaftAffected habeSupport

diesCause bedenkliche Folgen. CONSEQUENCE

“ThisCause wouldSupport also haveSupport

serious consequences for the economyAffected.”

(5) Diese StationActor hatte bei den ukraini-
schen MachthabernAffected offensichtlich
MissfallenEffect erregt. MOTIVATION

“This stationActor had obviously aroused
displeasureEffect among the Ukrainian
rulersAffected.”

(6) Mehr Gewinn und mehr ArbeitCause durch
VermeidenEffect PURPOSE

“ More profit and more workCause by
avoidingEffect”

2 For the polar distinction, they report perfect agreement.
3 For more details on the annotation scheme, we refer the reader

to Dunietz et al. (2015; 2018).
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Figure 1: Causal annotations for the verb bereiten, visualised in the annotation tool Webanno.

While the first version of the BeCause corpus included the
label INFERENCE for epistemic uses of causality, this la-
bel was given up in version 2.0 of the corpus (Dunietz et
al. (2017a). We decided to follow their decision and only
consider three types of causality.

4. Annotating German Causal Language
This section presents the data and annotation setup as well
as inter-annotator agreement scores for the annotation of
German causal language.

4.1. Data
The data we annotate comes from two sources, (i) newspa-
per text from the TiGer corpus (Dipper et al., 2001) and (ii)
political speeches from the Europarl corpus (Koehn, 2005).
We chose those two sources as we wanted to include me-
dially written and spoken data, and we selected corpora
that allow us to make the annotated data available to the
research community.

4.2. Annotation Experiment
The annotation was done by three annotators, two expert
annotators and one advanced student of Computation Lin-
guistics. Each instance included only one causal trigger to
be annotated. The triggers were marked and the annotators
had been instructed to ignore other potentially causal ex-
pressions in the same sentence. For annotation, we used the

Source POS Args (κ) Types (κ) # types
Europarl verb 0.94 0.695 912
TiGer noun 0.98 0.900 1,158
Europarl adp 0.93 0.782 977
TiGer adp 0.93 0.810 1,272

Table 2: IAA (Fleiss’ κ) for annotation of verbs, nouns and
adpositions for causal arguments and causal types.

online tool WebAnno (Yimam and Gurevych, 2013) (Fig-
ure 1). Each instance in the dataset was annotated by at
least two annotators, and after the annotation process was
completed, all disagreements were resolved by the two ex-
pert annotators. Table 2 shows inter-annotator agreement
(IAA) scores for the different subsets of our data. We re-

Confusion matrix for causal types (verbs)

ANNOT 1 CONSEQ. MOTIV. PURPOSE NONE

ANNOT 2
CONSEQ. 498 14 1 3
MOTIV. 75 76 0 0
PURPOSE 7 1 11 1
NONE 41 8 0 176

Confusion matrix for causal types (adpositions)

ANNOT 1 CONSEQ. MOTIV. PURPOSE NONE

ANNOT 2
CONSEQ. 337 45 7 42
MOTIV. 54 353 1 16
PURPOSE 7 8 163 37
NONE 28 28 31 1,126

Confusion matrix for causal types (nouns)

ANNOT 1 CONSEQ. MOTIV. PURPOSE NONE

ANNOT 2
CONSEQ. 328 11 0 10
MOTIV. 37 370 0 5
PURPOSE 0 0 47 0
NONE 7 9 1 333

Figure 2: Confusion matrices for causal type annotations
for verbs, nouns and adpositions.
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Source POS # forms # instances % causal Consequence Motiv. Purpose
Europarl verb 112 932 78.9 76.3% (561) 22.0% (162) 1.6% (12)
TiGer noun 21 1,178 69.3 43.9% (359) 50.2% (410) 5.9% (48)
TiGer adp 26 983 40.9 43.3% (174) 42.3% (170) 14.4% (58)
EuroParl adp 26 1,297 54.7 39.3% (279) 36.1% (256) 24.5% (174)
Total 159 4,390 60.7 51.5% (1,373) 37.5% (998) 11.0% (292)

Table 3: Corpus statistics for the annotations of the German Causal Constructicon (version 1.0).

port Fleiss’ κ4 for the different annotation layers (Table 2).
As shown in Table 2, the annotation of causal arguments
seems to be much easier than determining the causal type.
For causal participants, we achieve IAA scores in the range
of 0.93–0.98 Fleiss’ κ. For the three causal types, however,
agreement is much lower. While for nouns and adpositions
the agreement for causal types was satisfactory (0.78–0.90
Fleiss’ κ), IAA for verbs was substantially lower with a
Fleiss’ κ of 0.69. Below we discuss hard cases that caused
disagreemets between the human annotators.

4.3. Discussion: Hard Cases
While the agreement for nouns and adpositions is fairly
high, we notice many disagreements for verbs. The confu-
sion matrix for verbs shows that here the annotators seemed
to struggle between the causal types CONSEQUENCE and
MOTIVATION (Figure 2).
When looking into the data, we see that one reason for the
lower agreement for verbs are cases where the definition
for MOTIVATION in our guidelines was not specific enough
and has thus been interpreted differently be the annotators.
Our definition followed the one of Dunietz (2018) below.

“MOTIVATION instances assert that some
agent perceives the Cause, and therefore con-
sciously thinks, feels, or chooses something.
Again, what is important for this scheme is
how the relationship is presented, so an instance
is Motivation only if it frames the relationship
in a way that highlights an agent’s decision or
thought.” Dunietz (2018, p.33)

We observe that the following verbs auslösen, hervor-
rufen, stiften, erregen, bereiten (trigger, elicit, cause, at-
tract, cause) are frequently used in contexts where a stim-
ulus provokes an experiencer to react emotionally or psy-
chologically (Examples 7 a-e).

(7) a. Die Möglichkeit übermäßig komplizierter
administrativer Anforderungen bereitet mir
Sorge.

“The possibility of excessively complicated ad-
ministrative requirements worries me.”

b. Dieser Unfall versetzte die Welt in Angst und
Schrecken.

“This accident frightened the world.”

4 We use the R package ’irr’ for computing inter-annotator
agreement: https://cran.r-project.org/web/
packages/irr/index.html.

c. Die Spannungen haben Unbehagen in Europa
hervorrufen.
“The tensions have caused unease in Europe.”

d. Die Unfälle haben die Aufmerksamkeit der
Union erregt.
“The accidents have attracted the attention of
the Union.”

e. Dieses Thema hat große Besorgnis in der
Bevölkerung ausgelöst.
“This issue has caused great concern among the
population.”

One annotator interpreted those instances as MOTIVATION,
based on the fact that they highlight an agent’s (or a group
of agents’) state of mind. The second annotator, however,
assumed that instances of MOTIVATION would require an
agent’s thought process that resulted in an intentional ac-
tion or decision (which is not the case for the examples
above) and thus annotated the same instances as CONSE-
QUENCE. Given that these cases are quite frequent in our
dataset, they account for a large part of the disagreements
between the annotators. During adjudication, we specified
the guidelines and decided to consider those instances as
cases of MOTIVATION.

4.4. A Corpus of German Causal Language
The new resource comprises 4,390 annotated instances with
more than 5,000 annotated causal arguments for three dif-
ferent parts of speech (verbs, nouns and adpositions) Table
4 shows the number of annotated causal arguments in the
corpus. The distribution of different types of causation in
the new dataset can be seen in Table 3. The data is avail-
able in WebAnno TSV 3.2 format, a tab-separated format
similar to CoNLL.5

POS Actor Affected Cause Effect All
verb 96 235 625 711 1,667
noun 64 77 511 514 1,166
adp 16 0 1,087 1,100 2,203
Total 176 312 2,223 2,325 5,036

Table 4: Distribution of causal arguments across different
parts-of-speech.

5. Experiments
In this section, we present first experiments on automat-
ically predicting German causal language. We split the

5 The data is available from https://github.com/
josefkr/causal_annotations_DE.

https://cran.r-project.org/web/packages/irr/index.html
https://cran.r-project.org/web/packages/irr/index.html
https://github.com/josefkr/causal_annotations_DE
https://github.com/josefkr/causal_annotations_DE
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problem into two tasks, (i) the prediction of causal argu-
ments such as CAUSE, EFFECT, ACTOR and (ii) predicting
the type of causality, i.e CONSEQUENCE, MOTIVATION or
PURPOSE. We describe our training and test data and intro-
duce our system before we present baseline results for both
tasks on our new dataset.

5.1. Data and Model
Data preparation We divided the data into training, de-
velopment and test set with 86,797 / 3,899 / 35,803 tokens,
respectively. The distribution of (causal and non-causal)
triggers in the data is shown in Table 5.6

Tokens Sent. Trigger causal non-causal
train 86,797 2,915 2,937 1,787 1,150
dev 3,899 151 151 78 73
test 35,803 1,336 1,377 873 504

Table 5: German causal annotation dataset split into train-
ing/development/test sets.

Model: A BERT-based causal sequence tagger We
model the task of causal language prediction as a sequence
labelling problem, following related work on local seman-
tic role labelling employing syntax-agnostic neural meth-
ods (Collobert et al., 2011). Our system is a neural se-
quence tagger based on Bi-directional Encoder Represen-
tations from Transformers (BERT) (Devlin et al., 2019).
Recently, transformers have pushed the state of the art for
many NLP applications by learning context-sensitive em-
beddings with different optimisation strategies and then
fine-tuning the pre-trained embeddings in a task-specific
setup. BERT embeddings are usually trained on large
amounts of data, incorporating word embeddings with po-
sitional information and self-attention. The representations
are trained in two different task setups, i.e. by predicting
masked words based on their left and right context and by
classifying two sentences based on how probable it is that
the second one immediately succeeds the first one in a text
document. As a result, the learned embeddings encode in-
formation about the left and right context for each word
which makes them superior to most previous representa-
tions.
Devlin et al. (2019) have proposed a BERT architecture
for sequence tagging on the CoNLL-2003 NER shared task
data (Sang and Meulder, 2003). The model uses the pre-
trained BERT embeddings for initialisation and then fine-
tunes the representations by adding a simple classification
layer on top of the pre-trained BERT model and jointly fine-
tuning the model parameters on the downstream task. Each
BERT model provides its own tokenisation which splits
longer words into sub-tokens. The sequence tagger uses
only the first sub-token as the input to the classifier, which
then predicts a label for each token.

6 The mismatch between the number of sentences and triggers is
caused by German particle verbs where the particle can be split
from the verb stem. This results in two trigger words per sen-
tence, as in the example for auslösen (trigger): Der Brand löste
eine Explosion aus. (The fire set off an explosion).

We use the HuggingFace transformers library (Wolf et al.,
2019) that provides pre-trained transformer models for dif-
ferent languages and tasks. The model we choose for
our experiments is the pre-trained German uncased BERT
model (bert-base-german-dbmdz-uncased).7

5.2. Prediction or Causal Arguments
For causal argument prediction, we provide the tagger with
the lower-cased word forms. In each training, development
and test sentence there is exactly one target token that we
mark in the input so that the tagger can learn that this to-
ken is a potential trigger. An exception are sentences with
split particle verbs, as in Example (8) below. Here we mark
both, the verb stem and the separated particle, in the input.
However, only the verb stem is tagged with a causal label in
the gold standard while the verb particle is labelled as ’O’
(outside of any causal argument).

(8) der Schiffbruch löste eine Welle der Empörung aus
the shipwreck triggered a wave of indignation PTCL

Please note that not all marked words have a causal mean-
ing. The tagger has thus to determine whether or not the
marked word form is causal (TRIGGER) or not (NONE).8

We let the tagger predict the causal arguments at the same
time, and also predict the auxiliary tags SUPPORT and
CONTROLLER.
These auxiliary tags are used to mark support and control
predicates that are outside of the maximal projection of the
causal trigger (see Examples 9 and 10). Our approach is
similar to the treatment of support and control predicates in
the German SALSA corpus (Rehbein et al., 2012).
For verbs, the causal arguments are almost always inside
the maximal syntactic projection of the trigger. This, how-
ever, is not the case for nouns where the causal participants
are not always governed by the nominal trigger (Examples
9 and 10). The support and control predicates thus allow us
to annotate all causal arguments, even those that are outside
the trigger’s projection.

(9) Der Anlass für den Volkszorn warSupport der Tod
eines Kindes.
“The reason for the people’s anger was the death of
a child.”

(10) Zwei Studien nennenController für den Wäh-
lerschwund alsController Grund auch unprofes-
sionelle Führung.
“Two studies cite unprofessional leadership as a
reason for voter shrinkage.”

This gives us the following label set for the tagger to pre-
dict: TRIGGER, CAUSE, EFFECT, ACTOR, AFFECTED,

7 The model has been trained by the MDZ Digital Library team
(dbmdz) at the Bavarian State Library on 2,350,234,427 to-
kens of raw text, including Wikipedia, the EU Bookshop cor-
pus, Open Subtitles, CommonCrawl, ParaCrawl and News
Crawl. For details see https://github.com/dbmdz/
german-bert.

8 Note that NONE signifies the trigger words that have a non-
causal meaning while O refers to all tokens that are neither a
potential trigger word nor inside any causal argument.

https://github.com/dbmdz/german-bert
https://github.com/dbmdz/german-bert
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ID F1 Trigger Cause Effect Actor Affected None O Support Controller
1 72.8 91.0 83.3 83.3 4.1 65.0 88.4 94.2 77.7 68.5
2 71.5 91.0 82.6 83.2 0 62.6 88.1 94.2 76.4 65.7
3 74.4 91.8 83.8 84.0 14.6 63.1 89.3 94.4 78.8 70.1
4 70.2 90.8 82.5 83.4 0 57.8 87.4 93.8 74.1 62.0
5 72.3 91.3 83.2 83.8 0 61.9 87.3 94.3 76.5 72.7
avg. 72.2 91.2 83.1 83.5 3.7 62.1 88.1 94.2 76.7 67.8

Table 6: Results for the prediction of causal triggers and causal arguments on the new dataset.

SUPPORT, CONTROLLER, NONE, O (see footnote 8).
Table 6 shows results for each of the causal participants.
Our results show that the tagger is able to learn to predict
most of the tags with a reasonable performance. Exceptions
are the semantic roles ACTOR and AFFECTED for which
we only have a small number of training instances (176 in-
stances of ACTOR and 312 instances of AFFECTED in the
combined train/dev/test data).
The tagger is also able to distinguish between causal and
non-causal uses of triggers, with an F1 of 91.2% for causal
and an F1 of 88.1% for non-causal readings.

5.3. Prediction of Causal Types
Next we try to predict the causal types of our trigger words.
We use the same sequence tagging architecture but this time
we remove all argument labels from the training data but
add the causal types for each trigger. The task of the tagger
is now to decide whether a trigger word has a causal or non-
causal reading in a particular context, and also to predict the
type of causality for the causal triggers. This gives us five
labels: CONSEQUENCE, MOTIVATION, PURPOSE, NONE,
O. Again, we mark the trigger words in the input to let the
tagger know which token(s) are potential causal triggers.
We report results for a most frequent sense (MFS) base-
line where we map each word form to their correspond-
ing lemma form and, for each lemma, always predict its
most frequent sense in the training data (including NONE
for non-causal readings). For lemmas not seen in the train-
ing data, we predict the NONE class. This gives us a strong
baseline with an overall F1 of 81.17% and an F1 for the
three causal labels between 72.5% and 78.9% F1 (Table 7).
The high score for the PURPOSE class is due to the fact
that we have some nouns and adpositions that are always
causal and only invoke the PURPOSE sense (e.g. for ad-
positions: halber, zwecks (for the sake of, in order to), for
nouns: Zweck (purpose)). This makes the MFS baseline for

ID F1 CONSEQ. MOTIV. PURPOSE NONE

MFS 81.17 72.47 74.78 78.87 79.75
1 86.25 83.19 80.29 78.91 88.87
2 84.69 81.63 77.72 77.33 86.78
3 87.75 85.14 82.39 82.67 88.56
4 85.72 82.81 79.57 78.38 87.84
5 85.46 83.33 79.36 75.91 88.69

avg. 85.97 83.22 79.87 78.64 88.15

Table 7: Most frequent sense (MFS) baseline and results
(F1) for the prediction of causal types on causal/non-causal
triggers.
xx

PURPOSE particularly hard to beat.

Table 7 shows results for the prediction of causal types on
non-gold triggers, i.e. where the tagger also has to decide
whether the trigger is causal or not, in addition to predicting
the correct causal type. Not surprisingly, we get best results
for the most frequent label (CONSEQUENCE, F1 83.22%).
Results for the other two labels, MOTIVATION and PUR-
POSE, are also quite high with 79.87% and 78.64% F1, re-
spectively. For PURPOSE, however, we fail to outperform
the MFS baseline while for the other two classes our tagger
shows improvements over the baseline of around 5% (for
MOTIVATION) and 10% (for CONSEQUENCE).

We also present an experiment on gold triggers where we
only mark input triggers that, in this particular context, have
a causal meaning. The objective of this experiment is to
find out how well the classifier performs under optimal con-
ditions. This could be seen as an upper bound for the pre-
diction of causal types.

Confusion matrix for causal types (MFS baseline).

ACTUAL CONSEQ. MOTIV. PURPOSE NONE

PREDICT

CONSEQ. 308 38 2 107
MOTIV. 45 212 0 37
PURPOSE 6 1 56 14
NONE 36 22 7 439

Confusion matrix for causal types (w/o gold triggers).

ACTUAL CONSEQ. MOTIV. PURPOSE NONE

PREDICT

CONSEQ. 391 27 3 34
MOTIV. 54 224 0 16
PURPOSE 8 1 58 10
NONE 32 12 9 451

Confusion matrix for causal types (with gold triggers).

ACTUAL CONSEQ. MOTIV. PURPOSE

PREDICT

CONSEQ. 421 29 5
MOTIV. 62 231 1
PURPOSE 9 1 67

Figure 3: Confusion matrices for the prediction of causal
types (most frequent sense (MFS) baseline, w/o and with
gold trigger information).
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ID F1 CONSEQ. MOTIVATION PURPOSE

1 90.37 88.91 83.24 89.33
2 88.74 87.49 80.58 86.90
3 91.82 90.73 87.52 89.04
4 90.59 88.87 84.47 89.04
5 90.70 88.84 83.68 90.28

avg. 90.44 88.97 83.90 88.92

Table 8: Results (F1) for the prediction of causal types on
gold causal triggers.

Results for the prediction of causal types on gold triggers
(where the tagger knows which triggers are causal and only
has to predict the type of causality) are shown in Table
8. As expected, results for gold triggers are substantially
higher than for predicted ones. Here scores increase by 4 to
10 % F1.
Figure 3 shows confusion matrices for causal types for (i)
the most frequent sense baseline, (ii) for automatically pre-
dicted causal types without and (iii) with gold trigger infor-
mation. We can see that the tagger also struggles to discrim-
inate between CONSEQUENCE and MOTIVATION senses,
as did our human annotators.

6. Conclusion
We presented a new resource for German causal language,
with annotations of causal events and their participants.
Our annotations distinguish between cause and effect, and
also annotate the actor and affected party of the events. The
dataset includes 159 distinct causal triggers (nouns, verbs
and adpositions) and 4,390 instances of those triggers, an-
notated in context. While our IAA was satisfactory, we
showed that in particular the distinction between CONSE-
QUENCE and MOTIVATION is often hard not only for hu-
mans but also for automatic systems.
Further, we presented experiments on automatically pre-
dicting German causal language. We trained a neural se-
quence tagger, based on bidirectional transformers, on our
data and showed that this syntax-agnostic system is well
suited to learn the annotations in our dataset, given that we
have enough training instances for each category.
In future work, we would like to add more annotations es-
pecially for the causal arguments ACTOR and AFFECTED
in order to improve the accuracy for automatic predictions
of those roles. We will make our annotations freely avail-
able and hope that the new dataset will trigger more work
on annotating and predicting causal language.
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