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Abstract
In this paper, we present an analysis of computationally generated mixed-modality definite referring expressions using combinations of
gesture and linguistic descriptions. In doing so, we expose some striking formal semantic properties of the interactions between gesture
and language, conditioned on the introduction of content into the common ground between the (computational) speaker and (human)
viewer, and demonstrate how these formal features can contribute to training better models to predict viewer judgment of referring
expressions, and potentially to the generation of more natural and informative referring expressions.
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1. Introduction
Multimodality has been a topic of study in computational
linguistics and natural language processing since at least
the mid-1990s (Johnston et al., 1997), but has seen in-
creased interest from the CL/NLP communities in recent
years. This has been due to a number of factors, including
the increase in processing power; the availability of large
datasets of text, images, and video; the rise of depth sensors
(e.g., Microsoft Kinect); and the availability of GPUs for
deep model training. This has resulted in a number of new
datasets and approaches to cross-modal linking (Yatskar et
al., 2016; Goyal et al., 2017), shared tasks (Barrault et al.,
2018), and grounding tasks (Beinborn et al., 2018; Zhou et
al., 2018).
The most common modalities under study in the CL/NLP
communities are text, audio/speech, and images/video, but
“modality” can in principle refer to any channel of infor-
mation. Therefore, multi-channel transmission of informa-
tion can be separated by channel into the particular infor-
mation transmitted by each modality (i.e., objects depicted
in images with their descriptions in text, or spoken demon-
stratives with aligned deixis via a gesture). Such disjunct
mechanisms allow us to package, quantify, measure, and
order our experiences, creating rich conceptual reifications
and semantic differentiations. By examining the nature of
these differentiations, we can study the conceptual expres-
siveness of these systems (Pustejovsky, 2018).
Demonstrating such knowledge is needed to ensure a
shared understanding between interlocutors, and when one
such interlocutor is a computer whose multichannel expres-
sions are quantitatively defined, this allows us to measure
certain aspects of the computational common ground cre-
ated by the computer’s representation of information it has
shared with its interlocutors, including humans.
When two agents are co-situated and attending to the same
situation (co-attending), it is the introduction of such in-
formation into the discourse that creates the “shared situ-
ated reference” (Pustejovsky et al., 2017) between them,
and the introduction of particular information into the com-
mon ground may be more or less informative depending not
only on the prior contents of the common ground but also
the modality through which the new information is intro-
duced. The task is then to assess this, either quantitatively

or formally.
In this paper, we present an analysis of the common ground
structures presented in a dataset of Embodied Multimodal
Referring Expressions (EMRE) (Krishnaswamy and Puste-
jovsky, 2019a). These are references to definite objects
performed by an avatar in a simulated world using ges-
ture, language, or both. The appropriateness of each re-
ferring technique depicted was then evaluated by annota-
tors on Amazon Mechanical Turk. The virtual environ-
ment allows saving a number of quantitative and qualita-
tive parameter values for each depicted referring technique,
allowing further analysis, including for our purposes here,
of the introduction of elements between the avatar and the
annotators (as proxy for the human interlocutors), and the
subsequent update to the common ground caused by each
new element. We analyze both the formal parameters of
the common ground updates, and their quantitative effects
on annotator preferences for referring techniques within the
data.

2. Related Work
Referring expressions of course pervade natural language
dialogues and are a prominent subject of study in natural
language processing (Krahmer and Van Deemter, 2012).
Dale and Reiter (1995) identify a successful referring ex-
pression as one that identifies the intended target to the
hearer without introducing false implicatures a la Grice
(1975). Paraboni et al. (2007) discuss generating refer-
ring expressions in hierarchically structured domains, and
explore the hypothesis that reducing search for the identify-
ing referent with a referring expression can be improved by
including logically redundant information, such as denot-
ing the same content using different methods. Thus a suc-
cessful referring expression a la Dale and Reiter may not
necessarily be quantitatively optimal as long as it is suffi-
ciently Gricean.
Current approaches to referring expressions include neu-
ral approaches with high-dimensional word embeddings
(Ferreira et al., 2018) and spatial expression generation
in human-robot interaction (Wallbridge et al., 2019)—
including grounding referring expressions in an environ-
ment using visual features and attributives (Shridhar and
Hsu, 2018; Cohen et al., 2019; Magassouba et al., 2019).
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Studies in the interaction between language and ges-
ture also have a long history in computational linguis-
tics (Claassen, 1992; Bortfeld and Brennan, 1997; Van
Der Sluis and Krahmer, 2001; Krahmer and van der Sluis,
2003; Funakoshi et al., 2004; Viethen and Dale, 2008). De-
spite this, there has been comparatively little research from
the community into the ways that multiple modalities inter-
act during real-time communication and how to replicate
such structures computationally. Most work in this area
originated in the psychology and cognitive science commu-
nities, and has been explored in related communities such
as robotics (Petit et al., 2012; Matuszek et al., 2014; Whit-
ney et al., 2016; Kasenberg et al., 2019), but has direct rel-
evance to computational language understanding and gen-
eration.
McNeill (2000) argues that thought is multimodal, and
that the combinatorics of gesture do not correspond to the
syntagmatic values that emerge from the combinatorics of
speech. Quek et al. (2002), holds that speech and gesture
are coexpressive and processed partially independently, and
therefore complement each other. Thus, if interlocutors
agree that the meaning of a gesture in a description and
the meaning of accompanying speech share the same refer-
ent, this must be tested to see if 1) the gesture and speech
align, and 2) they share the same denotative content. Thus
rather than by abstract combinatoric analysis, the appropri-
ateness of the referencing operation must be tested within
a shared common ground. This is where we feel that both
formal and statistical analysis can be used together to es-
tablish computational principles for combining multimodal
streams while maintaining maximum interpretability. First
we will describe the dataset we examined, then outline the
formal principles of computational common ground, and
finally present the methodology and results of our analysis.

3. Embodied Multimodal Referring
Expressions

Previously, we gathered a dataset of what we called Embod-
ied Multimodal Referring Expressions (EMRE): that is, vi-
sualizations of an agent (here a virtual avatar in a simulated
environment) referring to definite objects in her world us-
ing various means, including gesture, language, or a multi-
modal mixture (“ensemble”). The dataset consists of videos
of the avatar using various techniques to refer to a given ob-
ject in a given configuration in her virtual world, along with
associated parameters used in the generation of each video.
The details of the dataset generation process are given in
Krishnaswamy and Pustejovsky (2019a).1. In brief, anno-
tators (eight per each video) were presented with a scene
depicting objects on a table, given a target object, and then
asked to rank each of the depicted methods with which the
avatar in the scene then referred to the target object (see
Fig. 1). The avatar used one of the three available modal
options (gesture, language, or ensemble), with variants in
the language used, to distinguish the target object with re-
gard to its distinct properties or relations to other objects in
the scene. Annotators were asked to rank, on a scale of 1

1The dataset itself is available at
https://github.com/VoxML/public-data/tree/master/EMRE

(least) to 5 (most), the “naturalness” of the referring tech-
niques presented relative to the indicated target object, as
the goal was to gather data with which to generate multi-
modal referring expressions in real-time that are appropri-
ate, salient, and natural in context. Annotation results, links
to video, and parameters of each scene depicted are stored
in a SQL database. Stored parameters include some spe-
cific to the target object, such as its identity or the distance
from it to the simulated agent; some specific to the referring
expression, such as modality, utterance used, and relational
descriptors in the utterance; and some global to the scene,
such as object raw coordinates or total relation set present
in the simulation.

Figure 1: Frame from sample EMRE video, with accompa-
nying utterance “that red block in front of the knife.”

4. Computational Common Ground
The theory of common ground has a rich and diverse
literature concerning what is shared or presupposed in
human communication (Clark and Brennan, 1991; Stal-
naker, 2002; Asher, 1998; Tomasello and Carpenter, 2007).
Adopting and extending the model in Pustejovsky (2018),
given a context of a co-situated interaction, the common
ground is a state monad, the components of which are: A,
the agents engaged in communication; B, the shared be-
lief space; P, the objects and relations jointly perceived
in the environment; and E , the embedding space occu-
pied by the agents. In the scenario under analysis here,
we can specify A as {αa (the avatar), αh (the human ob-
server)}, B as ⊆ {beliefs about the existence, affordances,
and relative placement of objects, and the interlocutor’s
knowledge thereof} (the set is denoted as ∆); and P as ⊆
{TABLE, CUP, Knife, PLATE, PURPLEBLOCK1, PURPLE-
BLOCK2, REDBLOCK1, REDBLOCK2, GREENBLOCK1,
GREENBLOCK2, locations within E}. Each element may
be introduced into the common ground at any time, such as
at t0 or subsequently based on an action taken by one of
the agents. For instance, an agent might introduce a new
object into the scene, making common the knowledge of its
existence. Or (as happens in the EMRE dataset), one agent
may use certain terms in a definite description, making pub-
lic their knowledge of the meaning of those terms.
Given the common ground, a communicative act Cα, per-
formed by agent, α, is a tuple of expressions from the
modalities available to α, involved in conveying informa-
tion to another agent. Here, we restrict this to the modali-
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A:αa, αh B: ∆ P: t, c, k, pl, p1, p2, r1, r2, g1, g2

GUαa

Pointg

Obj

r1

Dir

d

Sαa

PPLoc

in front of the knife

DemO

that red block

E

λks ⊗ kg(that(x)[block(x) ∧ red(x) ∧ in front(x, k, v)] ∧
ks ⊗ kg(x)], where v = αa

Figure 2: Common-ground structure for “that red block in
front of the knife” (cf. Fig. 1). The semantics of the RE
includes a continuation (in the abstract representation sense
in computer science, cf. Van Eijck and Unger (2010)) for
each modality, ks and kg , which will apply over the object
in subsequent moves in the dialogue.

ties of a linguistic utterance, S, and a gesture, G. Thus there
are three possible configurations in performing C:

1. Cα = (G)

2. Cα = (S)

3. Cα = (S,G)

In the case of co-gestural speech, (S,G), we assume an
aligned language-gesture syntactic structure, for which we
provide a continuized semantic interpretation. Both of
these are contained in the common ground state monad (see
Fig. 2).
In co-gestural speech, the modal channels can be aligned
or unaligned. Each input updates the common ground and
each update to the common ground may change the prob-
ability of a subsequent communicative act being more or
less salient, based on the content that it introduces into the
common ground. Thus we propose that the formal char-
acteristics of common ground updates serve as predictors
of the naturalness of a referring expression, based on the
saliency of the content communicated through the update.
Common ground updates execute modal operations over
the belief space B such that each element of ∆ is intro-
duced via a public announcement logic (PAL) formula or
an analogous formula denoting what the agents see or per-
ceive (Plaza, 2007; Van Ditmarsch et al., 2007; Van Ben-
them, 2011). To avoid confusion between the two, we
use the standard syntax of Plaza’s public announcement
logic with the following exceptions: we will use Kαϕ
to denote “α knows ϕ”, Lαϕ to denote “α believes ϕ”,

and Pαϕ to denote “α perceives ϕ”. These are em-
ployed in place of a generic doxastic/epistemic update [α]ϕ
(“agent α knows/believes φ”), so that an utterance like
“You see it,” as in Fig. 3, serves to express the update
[Kαh

Pαab!]Kαh
Pαab, glossed as “αh publicly announces

(indicated by the bang, !) that αh knows αa perceives b.”

A: αa, αh B: ∆ P: b

Sαh
= “Youαa

see itb” E

Figure 3: Common-ground structure for “You see it.”

The types of update that we will examine as pertaining to
referring expressions (REs) in the EMRE dataset are:

1. At t0, the beginning of each video, the scene is pre-
sented. All objects displayed populate P, the ele-
ments of the jointly-perceived environment. ∀b (b ∈
P → Kαh

Pαa
b ∧ Kαa

Pαh
). This is shown in Fig. 4

(L). This is derived by performing transitive closure of
perception over the agents who are co-situated in the
perceptual environment: [(Pαh

∪ Pαa)∗]φ.

2. At t1, a circle is drawn around one particular object
(b), raising it to the status of target object. The human
observer αh now knows that b is the target (but does
not necessarily know that the avatar αa knows this as
well). Kαh

target(b) ∧ ¬�Kαh
Kαa

target(b). This is
shown in Fig. 4 (R).

3. At t2 (shown above in Fig. 1):

(a) The avatar points to b. This demonstrates the
avatar can point, and knows that b is the target.
[Cαa

= Pointg → Dir b!]Kαh
Kαa

(Pointg ∧
target(b)).

(b) The avatar describes b using some combination
of b’s attributes (here, color), and relations to
other objects. This demonstrates that αa knows
the meaning of the terms she uses (JuK being
the interpretation of some utterance u) under a
model M and a common ground cg, and also
situates some of those terms (e.g., spatial rela-
tions) relative to her frame of reference. [Cαa

=
S!]∀u(u ∈ S → Kαh

Kαa
JuKM,cg).

Figure 4: Additional frames accompanying common
ground updates.

Time intervals in the video data are all constant, allowing
us to maintain consistent timesteps in analysis: the initial
presentation (t0) is shown for 1.5 seconds, the target circle
is drawn and held for 1.5 seconds (t1), and .5 seconds later,
at t2, the agent indicates the target object, through gesture,
language, or both.
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5. Analysis Methodology
The EMRE dataset distribution contains an analysis script
to evaluate the probability of a given annotator judgment
over arbitrary sets of parameters in the scene. Parameters
are presented in the form of SQL conditions to filter the
results over, allowing the extraction of conditional proba-
bilities over any parameters recoverable from the data us-
ing standard SQL syntax. Krishnaswamy and Pustejovsky
(2019a) presents a basic statistical analysis of annotator
judgments over parameters directly stored in the data. A
full description of all parameters examined is contained
therein. These data showed a clear preference for referring
expressions using the gesture+language “ensemble” modal-
ity, and preference for longer descriptive strings, providing
coarse-grained parameters over which to train a deployable
multimodal referring expression generation model. How-
ever, we believe that examining the formal properties of
the referring expressions shown in the data provides further
discriminative features for better generation, as indicated
by optimized saliency, naturalness, and informativity of the
generated expression to human interlocutors. We extract
formal and propositional values as features from the data
based on the information each feature introduces into the
common ground. If it is inferable from the content denoted
by either G or S modality in the referring expression that an
agent α either knows or perceives some propositional con-
tent p relative to the belief space B or the jointly perceived
entities in P, this prompts an update to the common ground,
and therefore new features for possible examination. Some
examples include the following:

• Through use of a spatial term T , α introduces that in-
terpretation of spatial term T into the common ground:
Cα = (S | Tsp ∈ S)→KαJTspKM

• Through use of an attributive term T , α introduces that
interpretation of attributive term T into the common
ground: Cα = (S | Tatt ∈ S)→KαJTattKM

• By referencing b in a description string, α introduces
that she perceives b into the common ground (this is
different from b itself, which is already in P, the set of
jointly-perceived objects; this explicitly encodes the
knowledge that Pαb): Cα = (S | bs ∈ S)→Pαb

• By differentiating two similarly colored objects (e.g.,
by use of “other”), α introduces that she knows the
same attribute predicates over b1 and b2 but that b1
and b2 are distinct: Cα = (S | [“other”, b1s, b2s] ∈
S ∧ b1s = b2s)→KαJAtt(b1 ∧ b2)KM ∧ Kαb1 6= b2

• By distinguishing demonstratives in an ensemble RE,
α introduces that she is meaningfully distinguishing
between “near” and “far” regions of sfc, the table sur-
face: Cα = (S, G | G = Pointg ∧ “this” ∈ S) →
KαJnear(sfc)K 6= Jfar(sfc)KM

The visualizations in the EMRE dataset are produced
using the VoxSim event/agent simulation platform (Kr-
ishnaswamy and Pustejovsky, 2016a; Krishnaswamy and
Pustejovsky, 2016b), which employs the VoxML modeling
language, enabling object and event visualization semantics

(Pustejovsky and Krishnaswamy, 2016). Because a simula-
tor is an extension of a model checker (Pustejovsky and Kr-
ishnaswamy, 2014), a simulation can be evaluated formally.
Because a simulator requires numerical parameter values to
run (Davis and Marcus, 2016), it can be evaluated quanti-
tatively. Values extracted from the simulator and collated
in the dataset may be either real numbers or vector values
(e.g., distance values or coordinates) or symbolic (e.g., ob-
ject labels or qualitative attributes). Thus, we can conduct
ablation tests on the effects of formal, symbolic, and quan-
titative features on the predictive model trained over data
extracted from a simulation.

Each of these features and others can be extracted from a
common ground structure of the kind shown in Figs. 2 or 3.
In addition, they can be linked with each other and other
features by virtue of the linkages established in the com-
mon ground structure (e.g., the link between DemO →
that red block and Pointg → Obj → r1 in Fig. 2), ef-
fectively allowing us to search the data for sets of related
parameters that predict given annotator ratings of a refer-
ring technique, formally reanalyze them in terms of com-
putational common ground, and use segments of common
ground structures as input features into a prediction algo-
rithm.

5.1. Model Architecture

Here, the extracted data and quantitative features are those
described in Section 3. The formal common ground fea-
tures are those as described above. What we are trying to
predict, then, is the likelihood of an annotator evaluating
a referring expression at a given naturalness (1-5), with the
expectation that the best or most natural REs will come with
a consistent set of features that predict a high score.

We feed all features into a multilayer perceptron (MLP)
written in Keras with the TensorFlow backend. Our reasons
for choosing this type of architecture is its relative simplic-
ity, and therefore training speed, but also ability to distin-
guish dependencies between points in linearly-inseparable
regions of data (Cybenko, 1989). Our architecture consists
of three fully-connected hidden layers of 32, 128, and 64,
respectively, prior to a softmax output layer. The lay-
ers use tanh, ELU, and tanh activation, respectively. The
model uses categorical cross-entropy loss and Adam opti-
mization, and is trained for 1000 epochs with a batch size
of 50. Due to the relatively small size of the sample data,
we validate all results using 7-fold cross-validation in or-
der to achieve a more balanced sample across all classes
of annotator judgments. k = 7 is chosen here to approxi-
mate a leave-one-out cross-validation approach over the 8
annotator judgments on each visualized referring expres-
sion. Because in the EMRE dataset, 8 separate annotators
evaluated each RE, the “most likely” annotator judgment
is in fact a probability distribution. Therefore, we regard a
“correct” prediction by the classifier not as one that returns
the exact integer value representing the argmax of all anno-
tator judgment counts, but one that falls within the correct
quintile of the distribution over all annotator judgments of
that visualized referring expression.
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6. Results and Evaluation
6.1. Baseline
The EMRE dataset already contains quantitative and some
qualitative features about scenes, referring expressions gen-
erated within them, and annotator judgments thereof. As a
baseline, we used the raw features used in the generation
of videos in the EMRE dataset to try and predict the most
likely annotator rating of that video. The baseline features
include: 1) the target object; 2) the referring modality: one
of gesture, language, or ensemble; 3) the distance from the
object to the agent; 4) whether the linguistic description
uses a near/far distance distinction; 5) whether that distinc-
tion is relative to embedding space of similar objects or
the entire world (n/a if no distance distinction is used. We
also add in 6) the linguistic description used and 7) the in-
dividual relational descriptors used, which are represented
as 200-dimensional sentence vectors trained using a Skip-
Gram model over the entire vocabulary that occurs in the
dataset. In gesture-only referring expressions, where all the
avatar does is point to the target object, these are vectors of
all 0s.
The top half of Table 1 (see Section 6.2.) shows baseline
results. The raw features extracted from the EMRE dataset
are successful in predicting the correct quintile of annotator
judgment of the associated multimodal referring strategy
approximately 2⁄3 of the time. Interestingly, the addition of
sentence embeddings caused the average accuracy to drop
about 3.28%, suggesting that sentence embeddings caused
some confusion in the classifier. Discussion of these results
follows in Section 7.

6.2. Formal Features
To keep track of formal features, such as those described
in Section 5., we maintain two lists of the propositional
content within the common ground structure available to
each agent (i.e., what each agent—here the avatar and the
annotator—knows and perceives about the scene and about
each other). Each element in these lists is correlated with
features extracted from the EMRE dataset using the pro-
vided analysis script (refer to Section 5.) and the value is
inserted into a data structure representing a common ground
structure of the form shown in Fig. 2: consisting of a ges-
ture, the speech string, and links between the constituents
of each.
The encoding of formal features is done by creating one-
hot vectors representing the state of the belief space B (∆)
as it pertains to the agents A and jointly perceived con-
tent P. That is, propositional content that is formally de-
noted as Cα = (S, G | G = Pointg ∧ “this” ∈ S) →
KαJnear(sfc)K 6= Jfar(sfc)KM, as above, is treated as
a one-hot vector for α’s knowledge of the distance distinc-
tion of near(sfc) and far(sfc) in ∆, whereas content for-
mally denoted in the form Cα = (S | [“other”, b1s, b2s] ∈
S ∧ b1s = b2s) → KαJAtt(b1 ∧ b2)KM ∧ Kαb1 6= b2 is
treated as three one-hot vectors, one for KαJAtt(b1)KM,
another for KαJAtt(b2)KM, and a third for Kαb1 6= b2.
MLP prediction results of annotator judgment using for-
mal features are shown below. However, if performance
increases when the formal features are added, it could be
due to the fact that since they are (under our hypothesis)

dependent features, and they reinforce each other, giving
stronger prediction results. Therefore, to demonstrate the
effect of formal features, we present ablative results using
raw features with formally-derived features, raw features
with formally-derived features including sentence embed-
dings, and formally-derived features only.
We present, as before, the mean and standard deviation of
classification accuracy over a 7-fold cross-validated sam-
ple.

Raw features Raw feat. + SE
µ Acc. (1K) 0.6757 0.6429
σ Acc. (1K) 0.0230 0.0111

Raw + Raw + Formal
form. form. + SE only

µ Acc. (1K) 0.7214 0.6671 0.7471
σ Acc. (1K) 0.0398 0.0243 0.0269

Table 1: Classification accuracy after 1000 epochs using
formal features (mean and standard deviation over 7-fold
cross-validated sample)

Features that correlate formally with elements of the com-
mon ground structure equivalent to the referring strategy
depicted do between 7-11% better at predicting the cate-
gory label (annotator judgment) on the referring strategy
than raw features alone, or raw features augmented with
sentence embeddings.
The above data shows that formal features derived from the
common ground structure provide a modest but appreciable
improvement in the quality of predicting how well a refer-
ring strategy is likely to be perceived as natural, based on
the content it encodes, but tells us little about what propo-
sitional content is likely to produce a natural, salient mul-
timodal referring expression, and how it should be assem-
bled, which is an important question for generating multi-
modal REs.
Lascarides and Stone’s formal semantics of gesture (Las-
carides and Stone, 2009) separates gestural and speech as-
signment functions in order to distinguish entities that can
satisfy interpretations of referents in speech from entities
used to ground references in gesture. It should be pointed
out that we are focusing on co-gestural speech ensembles
rather than co-speech gesture (Schlenker, 2018). Further,
since here we focus only on deictic gesture rather than de-
picting gestures, we do not evaluate gesture that conflicts
semantically with the speech, but we can draw some infer-
ences analogically regarding the information provided by
each.

1. If information provided by gesture is constant between
referring expressions for the same object, then the
“best” ensemble RE should be that which maximizes
the score of its linguistic component if taken alone.

2. If information provided by gesture is not constant be-
tween referring expressions for the same object, the
“best” ensemble RE should be that which maximizes
the information gain provided by each of the individ-
ual modalities.
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If (1) is true, then we should expect that features depen-
dent only on the language, including sentence embeddings
but not including things like the distance from the agent to
the target object, should predict the quality of linguistic-
only referring expressions better than the full set of fea-
tures, including parameters dependent on the gesture and
embodiment of the agent, predict the quality of ensemble
referring expressions. If (2) is true, this should not be the
case. Given that the gestural component of a well-formed
ensemble referring expression is always deixis, we hypoth-
esize that the gestural information is constant across refer-
ring expressions. To test this, we run different subsets of
the total raw and formal feature set (depending on which
modality each feature explicitly depends on) through the
classifier, over either only the linguistic-only referring ex-
pressions from the EMRE dataset, or over only the ensem-
ble referring expressions. Classifier results are given below.

Raw features Raw feat. + SE
µ Acc. (1K) 0.7471 0.6329
σ Acc. (1K) 0.0468 0.0577

Raw + Raw + Formal
form. form. + SE only

µ Acc. (1K) 0.7471 0.6443 0.7985
σ Acc. (1K) 0.0213 0.0469 0.0405

Table 2: Classification accuracy after 1000 epochs using
formal features and linguistically-dependent features only,
over purely linguistic EMRE referring expressions (mean
and standard deviation over 7-fold cross-validated sample)

Raw features Raw feat. + SE
µ Acc. (1K) 0.6014 0.5842
σ Acc. (1K) 0.0537 0.0281

Raw + Raw + Formal
form. form. + SE only

µ Acc. (1K) 0.6014 0.5842 0.6171
σ Acc. (1K) 0.0302 0.0840 0.0550

Table 3: Classification accuracy after 1000 epochs using
formal features, over only ensemble (multimodal) EMRE
referring expressions (mean and standard deviation over 7-
fold cross-validated sample)

Tables 2 and 3 demonstrate that not only do linguistically-
dependent features predict the quality of language-only re-
ferring expressions better than all features predict ensemble
referring expressions, meaning that the level of information
provided by solely deictic gesture is likely to be of roughly
constant relevance across the dataset (i.e., directly ground-
ing to a location and object(s) in that location), but that the
addition of formal features provide a larger net increase in
classifier accuracy over the raw feature baseline for the lan-
guage only REs than they do for the ensemble REs.
For linguistic REs, adding formal features to raw fea-
tures plus sentence embeddings improved accuracy by only
about 1%, but only using formally-derived features im-
proved accuracy by approximately 5-16%, depending on
if the baseline compared includes sentence embeddings or

Figure 5: Probability of annotator judgment score given re-
ferring expression modality (taken from Krishnaswamy and
Pustejovksy (2019a))

not. For ensemble REs, the addition of formal features
made no difference in the average classification accuracy
compared to simply raw features (with or without sentence
embeddings) and formal features alone resulted in a small
(∼1%) average improvement over the baseline. From these
results we can see that since the referring modality is al-
ready a strong predictor of referring expression naturalness
and salience according to the dataset (see Fig. 5, taken
from (Krishnaswamy and Pustejovsky, 2019a)), most of
the improvement in the multimodal referring expressions
compared to low-rated gesture-only referring expressions,
where the avatar just wordlessly points to the target object,
comes from the information gain associated with an appro-
priately informative linguistic utterance accompanying the
co-speech gesture, which is an important consideration to
take into account when generating quality referring expres-
sions, particularly multimodally.

7. Discussion and Conclusions
Our results demonstrate an appreciable increase in the abil-
ity of a formal feature set derived from a common ground
structure to predict the naturalness and salient quality of a
referring expression associated with that common ground
structure. We hypothesize that this is because formal
features make the model explainable on a finer-grained
level, and that the propositional content extractable from
the linguistic utterances used correlates more closely with
the quality of the overall referring expressions than less-
symbolically defined features like sentence embeddings.
Basic features provide a solid baseline upon which to im-
prove RE classification accuracy (Zhang et al., 2016). Here,
however, using sentence embeddings actually seemed to
hurt the accuracy. In the data, the purely linguistic “the
red block in front of the knife” is more likely to be rated
as “average” while “that red block in front of the knife”
is multimodal (accompanied by deictic gesture) and more
likely to receive a high rating (see Fig. 5). However, the
sentence embeddings for these sentences are very similar,
due to an alternation of two words (“the”/“that”) that al-
ready tend to be similar in distributional semantic space.
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“The” vs. “that” captures little of the distinction introduced
by the ensemble in the common ground. For this data and
task, therefore, this suggests that either simple sentence em-
beddings are not a very useful feature or should should be
trained in a different way, other than a Skip-Gram model.
Meanwhile the formally-defined features extracted from
common-ground structures, are much more adept at distin-
guishing the types of salient information introduced by the
referring agent into the common ground and by encoding
what type of knowledge is introduced or publicly perceived
in the common ground, we are able to quite effectively pre-
dict how our annotators would judge the depicted referring
expression.
Using the formal features alone usually performs best at
this task, likely since the common ground structure is de-
signed specifically to capture the type of information we
seek to disambiguate in a multimodal referring expression
classification task, compared to raw features that describe
either the physical environment or vague contours of the
priors that go into the referring expression generation pro-
cedure in the EMRE dataset. Thus we propose that formal
common ground structures would be an effective medium
through which to interpret and generate multimodal refer-
ring expressions and other types of multimodal commu-
nicative acts in a co-situated interaction.

8. Future Work
The composition of gesture and speech plays an important
role in multimodal communication. The two modalities
display complementary strengths at communicating differ-
ent types of information—it is hard to communicate certain
types of spatial configurations solely through language, and
deictic gesture may prove more economical; conversely, at-
tributives like color are much more aptly communicated
through language. It is through the combination of the two
that successful referring expressions can be generated in co-
situated space, and by digging into the data we previously
gathered, we have found evidence that while the addition of
gesture provides a boost in naturalness and salient quality
of a referring expression in co-situated space, the best and
most natural REs are those that maximize the salience and
naturalness of their linguistic components, even if the lin-
guistic information overlaps with the gestural information
(cf. Paraboni et al. (2007)).
As such, given that we have trained a prediction model to
expose these considerations, the next step is to train a gener-
ation model that can be deployed “live” in a multimodal in-
teraction where the situation encountered at any given time
may not cleanly map to a situation from the EMRE dataset.
The process of maximizing the contextually-salient infor-
mation content provided by the linguistic component of the
multimodal referring expression, and by extension by all
modalities including iconic gesture and action, could be
handled by a composing and constructing expressions with
a probabilistic grammar.
Existing work in multimodal grammars, particularly on
gesture and speech (cf. Alahverdzhieva et al. (2012),
Alahverdzhieva et al. (2017)) often focuses on timing and
aligning the gesture and speech components using edge-
based constraints to generated a syntax tree of both speech

and gesture. To this we would propose the addition of a
continuation-based semantics (Krishnaswamy and Puste-
jovsky, 2019b) to capture additional content from com-
mon ground structures, such as the formally-derived fea-
tures that we have shown here can be stronger predictors of
gesture-speech ensemble quality, particularly in the domain
of referring expressions.
Given demonstrated success in the prediction of multi-
modal referring expression quality, for which formally-
derived features are an asset, we propose to use similar for-
mal analysis methods using common ground structures as
the medium within which to both recognize and generate
multimodal referring expressions by maximizing the infor-
mation content provided by each applicable modality.
As common ground structures provide a formal and ex-
plainable way of segmenting multimodal content and the
information specified by each modal channel, we are also
exploring other tasks in which common ground structures
may be useful representations. Some examples include:

Figure 6: Action command using gesture-language ensem-
ble

• Multimodal dialogue parsing. Given a situation where
both gestures and natural language can indicate both
objects and actions or events, common ground struc-
tures should be helpful in extracting both object and
action information separately from each modality and
in disambiguating the information provided by one
modality with information from the other (see Fig. 6).

• Scene classification. By exploiting the relation sets be-
tween objects that populate the belief space, common
ground structures can cluster and classify novel scenes
and configurations with known examples, providing a
way to transfer dialogue or referring strategies from a
known situation to a novel one (see Fig. 7).
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Figure 7: Sample novel situation

• Intelligent modality switching. There may be cases
when an agent cannot use one modality or another—
e.g., hands are full, prohibiting gesture, or the envi-
ronment is loud, prohibiting language (cf. Kim et al.
(2016), Drijvers et al. (2018))—in this case common
ground structures can be deployed to maximize the in-
formation content in the remaining available modal-
ities for optimal communication in sub-optimal cir-
cumstances.
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