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Abstract 
Sense embedding models handle polysemy by giving each distinct meaning of a word form a separate representation. They are considered 
improvements over word models, and their effectiveness is usually judged with benchmarks such as semantic similarity datasets. 
However, most of these datasets are not designed for evaluating sense embeddings. In this research, we show that there are at least six 
concerns about evaluating sense embeddings with existing benchmark datasets, including the large proportions of single-sense words 
and the unexpected inferior performance of several multi-sense models to their single-sense counterparts. These observations call into 
serious question whether evaluations based on these datasets can reflect the sense model’s ability to capture different meanings. To 
address the issues, we propose the Multi-Sense Dataset (MSD-1030), which contains a high ratio of multi-sense word pairs. A series of 
analyses and experiments show that MSD-1030 serves as a more reliable benchmark for sense embeddings. The dataset is available at 
http://nlg.csie.ntu.edu.tw/nlpresource/MSD-1030/. 
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1. Introduction 

Word embeddings, or distributed word representations, 
have attracted much attention in recent years. Previous 
studies show that word embedding models are capable of 
learning semantic and syntactic information from a large 
unannotated corpus (Mikolov et al., 2013; Pennington et 
al., 2014). However, one essential issue in word 
embeddings is that each word form is represented by only 
one vector. That is, multiple senses of a word form are 
indistinguishable, which is problematic for applications 
involving word ambiguity such as word sense 
disambiguation (WSD) and semantic relation 
identification.  

Sense embedding models, in which each sense of a word 
form is represented by its own vector (Reisinger and 
Mooney, 2010; Huang et al., 2012; Jauhar et al., 2015; 
Bartunov et al., 2016; Lee and Chen, 2017; Lee et al., 
2018), have been proposed to address the polysemy issue 
mentioned above. Camacho-Collados and Pilehvar (2018) 
provide an extensive review of previous studies in sense 
embeddings. More recently, pre-trained contextualized 
word representations such as ELMo (Peters et al., 2018) 
and BERT (Devlin et al., 2018) handle polysemy by 
assigning a vector representation conditioned on the 
specific context to every word in a sentence. Different from 
those approaches, sense embeddings can be grounded in an 
ontology such as WordNet (Miller, 1995) or BabelNet 
(Navigli and Ponzetto, 2012), which can support operations 
such as queries and making inference over the ontology or 
any connected knowledge base. On the other hand, sense 
embeddings can be trained with smaller amounts of data 
and further enhanced by external ontologies, making them 
extremely useful in low-resource scenarios where there are 
well-established knowledge bases.  

Similar to word embeddings, sense embeddings can be 
evaluated intrinsically or extrinsically (task-based). 
Although the latter may more closely reflect how useful a 
model would be in practical applications, this kind of 
evaluation is usually time-consuming. Furthermore, unlike 
word embeddings, sense embeddings can not be directly 

adopted in an application without some sense selection 
process, so it would be hard to decouple the quality of sense 
embeddings and the performance of WSD. Thus, intrinsic 
evaluation benchmarks are still important for efficient 
model and parameter selection. Researchers commonly use 
word embedding benchmarks, including semantic 
similarity datasets (Bruni et al., 2014; Radinsky et al., 
2011; Finkelstein et al., 2002; Luong et al., 2013), the 
contextual word similarity dataset (Huang et al., 2012), and 
synonym selection datasets (Turney, 2001; Landauer and 
Dumais, 1997; Jarmasz and Szpakowicz, 2004), to evaluate 
sense embeddings. In this work, we argue that these 
evaluation benchmarks do not provide a solid base for 
testing sense embeddings in a polysemy scenario. We 
examined eight datasets and found that every dataset 
contains a great number of single-sense words, where there 
is no ambiguity to resolve. Moreover, most of these 
benchmarks have a biased distribution of human-annotated 
scores, leading to concerns about reliability when 
evaluating sense embeddings. 

To address this, we propose MSD-1030, a novel multi-
sense dataset with 1,030 English word pairs designed to 
facilitate more reliable evaluations of sense embeddings. 
Compared to existing benchmarks, these are the 
characteristics of MSD-1030: (1) Most of the words in 
MSD-1030 are multi-sense words. (2) The distribution of 
human annotator scores is controlled across the dataset. (3) 
MSD-1030 does not contain phrases (e.g., short sleep, 
smooth surface) or rare words that may obscure the focus 
of sense embedding evaluations. (4) From the experimental 
results, MSD-1030 is more suitable for evaluating sense 
embeddings than existing datasets. (5) According to our 
error analysis, even state-of-the-art sense embedding 
models may not be able to assign appropriate similarity 
scores to some multi-sense word pairs in MSD-1030, which 
shows that there is still room for improvement in modern 
sense embedding models. 

2. Previous Datasets 

Many datasets have been constructed to evaluate the 
quality of lexical semantics models. These datasets can be 
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categorized into three types: semantic similarity, contextual 
word similarity, and synonym selection. 

2.1 Semantic Similarity 

The task of semantic similarity/relatedness1  is the most 
common way to evaluate the quality of a word embedding 
model. A number of semantic similarity datasets have been 
proposed, including MEN (3,000 word pairs) (Bruni et al., 
2014), MTurk (287 word pairs) (Radinsky et al., 2011), 
WordSim-353 (WS353, 353 word pairs) (Finkelstein et al., 
2002), and Rare Words (RW, 2,034 word pairs) (Luong et 
al., 2013). In these datasets, each word pair has a score in 
terms of their similarity or relatedness. A higher score 
indicates a higher similarity/relatedness between the words 
in the pair. MEN, MTurk, and RW were constructed by 
crowdsourcing on the Amazon Mechanical Turk platform. 
The performance of a semantic model is typically measured 
by the Spearman or Pearson correlation between the 
human-rated scores and the scores given by the model. 

2.2 Contextual Word Similarity 

Huang et al. (2012) extended the semantic similarity task 
and constructed the Stanford’s Contextual Word 
Similarities (SCWS) dataset, which consists of 2,003 word 
pairs (1,713 unique words) together with crowd-sourced 
semantic similarity scores. For each word in a given pair, 
its context and part-of-speech tag are given. The context is 
word sequences around the target word. 

The Word-in-Context (WiC) dataset (Pilehvar et al., 2019) 
also aims at evaluating a model’s ability to handle different 
senses. However, each question in this dataset asks whether 
a certain word has the same meaning in two given contexts, 
which is a binary classification task. Since this formulation 
is very different from that of word similarity, we do not 
include this dataset in our analyses in the next section.  

2.3 Synonym Selection 

The task of synonym selection is also adopted to evaluate 
word embedding models. Commonly used datasets include 
ESL-50 (English as a Second Language) (Turney, 2001), 
RD-300 (Reader’s Digest Word Power Game) (Jarmasz 
and Szpakowicz, 2004), and TOEFL-80 (TF-80, Test of 
English as a Foreign Language) (Landauer and Dumais, 
1997). The number following the name of each dataset 
indicates the number of questions. Each question is 
composed of a word as the question stem and four words as 
alternatives. The task is to select the word most similar to 
the question stem from the four alternatives. For instance, 
let swear be the question stem, and vow, explain, think, and 

 
1 In this study we adopt the general sense of similarity, which 

includes both conceptual similarity (e.g., car and truck) and 

relatedness (e.g., car and wheel). 
2  Note that in Roget the synonymy relation is directed. 

Specifically, if a word a has n senses 𝑆1
𝑎, … , 𝑆𝑛

𝑎, then there may 

exist another word b such that 𝑏 ∈ 𝑆𝑖
𝑎 but 𝑎 ∉ 𝑆𝑗

𝑏  ∀𝑗. 

describe be the alternatives. The correct answer to this 
question would be vow. The performance of a model is 
determined by the accuracy. 

3. Concerns of Previous Datasets 

The aforementioned datasets commonly used to evaluate 
word embeddings are also used by researchers to evaluate 
and compare sense embedding models. However, in the 
following subsections, we show a number of concerns of 
existing datasets that make them unsuitable for 
benchmarking sense-level models. 

3.1 Large Portion of Single-sense Words 

We examine the number of single-sense words in all the 
datasets. To identify single-sense words, we utilize Roget’s 
21st Century Thesaurus (Kipfer, 1993) (Roget), in which 
each word has one or more senses. Here the senses of a 
word are defined as the categories of synonyms listed for 
that word in Roget2. To determine whether a word is single-
sense or multi-sense, we calculate the number of senses it 
has. According to Table 1, all the datasets contain more 
than 47% single-sense words; MTurk, RW, TF-80, and 
RD-300 contain more than 67% one-sense words. Due to 
the low proportion of multi-sense words in these 
benchmarks, sense embedding models that excel at 
handling polysemy cannot demonstrate their strengths. In 
contrast, our MSD-1030, which will be introduced in 
Section 4, has a much lower ratio of single-sense words. 

Note that the WiC dataset does not have this problem 
because it only contains questions about ambiguous words. 
However, it does not require a model to be able to compare 
multiple meanings across different words. 

3.2 Better Performance of Sense Embedding 
Models with One Sense 

The most important advantage of sense embeddings over 
word embeddings in the semantic similarity task is that 
specific meanings of a word can be considered when we 
compute the similarity. Thus, we hypothesize that given a 
sense embedding model, the performance will decline if we 
utilize only the first sense vector of each word.  

To verify this, we conduct an experiment with the 
GenSense (Lee et al., 2018)3 and SenseRetro (Jauhar et al., 
2015)4  sense embedding models, both of which perform 
post-processing with external ontologies. In this 
experiment, both models are based on GloVe embeddings 
trained on a corpus consisting of 6 billion tokens5. The 

3 https://github.com/y95847frank/GenSense 
4 https://github.com/sjauhar/SenseRetrofit 
5 https://nlp.stanford.edu/projects/glove/ 

 MEN MTurk RW WS353 ESL-50 TF-80 RD-300 SCWS MSD 

# single-sense words 438 335 2053 244 113 278 1197 812 210 

Total # words 751 499 2951 437 224 395 1464 1713 1030 

Ratio 58.3% 67.1% 70.0% 55.8% 50% 70% 82% 47.4% 20.4% 

Table 1: Number of single-sense words and their ratio in datasets. 
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dimension of the sense embeddings is set to 50. The 
external ontology for both models is Roget. 

To measure the similarity between a pair of words with 
sense models, we adopt the MaxSim similarity metric 
(Reisinger and Mooney, 2010). For the semantic similarity 
datasets, we calculate the Spearman correlation between 
the human-rated scores and the MaxSim scores to measure 
the performance. Unless otherwise stated, MaxSim is 
always used throughout this paper6.  In the testing phase of 
synonym selection, we also adopt MaxSim to compute 
scores between the question stem and the four alternatives 
in the answer sets. The alternative with the maximum score 
is selected as the model’s answer.  

To evaluate sense embeddings in the contextual word 
similarity task, we adopt MaxSimC (Reisinger and 
Mooney, 2010), which is the cosine similarity between the 
pair of senses that maximizes their similarities with their 
corresponding contexts. Similarly, the performance is 
measured by the Spearman correlation between the human-
rated scores and the MaxSimC scores.  

The results are shown in Table 2. Sense embedding models 
with ‘-1’ indicate that for each word only the vector of the 
first sense (according to Roget) is used; the other sense 
vectors are ignored. Surprisingly, the performance of 
GenSense and SenseRetro is enhanced when the vectors of 
senses other than the first sense are discarded (GenSense-1 
and SenseRetro-1) in the semantic similarity datasets and 
the contextual word similarity dataset. That is, for most 
word pairs, the human scores might be closer to the model 
scores computed based on only one sense per word than the 
maximum possible similarities across multiple senses. As 
this contradicts our hypothesis in the first paragraph of this 

 
6 Though other similarity metrics exist, we will explain in Section 

4.3 that with MaxSim we can explicitly require both the model 

subsection, we suspect that these datasets cannot evaluate 
multi-sense models effectively. Although for the synonym 
selection datasets, there is no such a contradiction in most 
of the experiments, we will discuss concerns about them in 
Sections 3.5 and 3.6.  

3.3 Performance of GenSense with Different 
Weights 

In GenSense, parameter 𝑤 controls the importance of the 
original word vectors in the retrofitting process. When 
decreasing 𝑤, the generated sense vectors become closer to 
their synonym neighbors in the external ontology than to 
their pre-trained word vector. We use Roget as the external 
ontology. Consider the word bank, whose senses include 
bank0 (money) and bank1 (shore). Table 3 shows the cosine 
similarities of several word pairs under three weights of 
GenSense. When the weight decreases (from 𝑤 = 1.0  to 
𝑤 = 0.5), the cosine similarity score between bank0 and 
money increases, and the similarity score between bank1 
and shore also increases. These results are reasonable 
because in Roget, bank0 has synonyms stock and treasury, 
and bank1 has synonyms like coast and reef.  

We further examine how the separation of different senses 
affects the performance on four semantic similarity datasets 
and one contextual similarity dataset. The Spearman 
correlation results are shown in Table 4. Surprisingly, the 
performance drops significantly on every dataset as the 
weight of the original word vectors is decreased. That is, 
these existing benchmarks may favor dominating senses in 
the training corpus, making it unnecessary for the sense 
embedding models to deal with different senses separately. 
As a result, we cannot properly evaluate a sense embedding 
model’s ability of handling multiple diverse senses using 
these datasets.  

3.4 Skewed Score Distribution 

To understand the distribution of the similarity score in the 
semantic similarity datasets and the SCWS dataset, we 
perform an analysis similar to that used by Pilehvar et al. 
(2018). We divide each dataset’s score scale into four equal 
bins on the interval [1, 10] and assign the similarity scores 

and human annotators to select the closest pair of senses, making 

the two judgments more comparable. 

 

 

 
 

Figure 1: The score distribution of word pairs in 

four parts of the scale. 

 MEN MTurk RW WS353 ESL-50 TF-80 RD-300 SCWS 

GenSense 67.6 64.1 33.8 50.5 64.6 87.2 69.4 54.8 

GenSense-1 69.0 65.0 35.0 51.9 52.1 82.1 70.6 57.6 

SenseRetro 46.9 43.3 24.0 27.3 64.6 83.3 74.1 49.7 

SenseRetro-1 51.3 44.9 27.4 28.7 47.9 75.6 70.6 51.6 

Table 2: Performance (all sense vectors v.s. only first sense vectors) of 50-dimensional GenSense and 

SenseRetro (Spearman correlation (ρ × 100) for MEN, MTurk, RW, WS353, and SCWS; accuracy × 100 

for ESL-50, TF-80, and RD-300). Roget is the external ontology for both sense embedding models. 

GenSense 

𝑤 value 

(bank0, 

money) 

(bank0, 

shore) 

(bank1, 

money) 

(bank1, 

shore) 

1.00 71.8 54.7 55.3 76.4 

0.75 72.8 57.4 51.9 79.1 

0.50 75.0 59.1 46.1 81.6 

Table 3: Similarity scores of GenSense sense vectors 

when decreasing weight of original word vector. 
 

𝑤 value MEN MTurk RW WS353 SCWS 

1.00 67.6 64.1 33.8 50.5 54.8 

0.75 67.3 63.4 33.6 49.6 54.6 

0.50 65.8 61.6 32.6 46.7 54.7 

Table 4: ρ × 100 of GenSense (50-dimensional) when 

decreasing weight of original word vector. 
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to their corresponding bins. The results in Figure 1 show 
that except for MEN and the proposed MSD (to be 
introduced later), the score distributions are significantly 
imbalanced. The skewed distributions suggest that the 
datasets cannot support evaluations on word pairs with 
similarity across a variety of levels. 

3.5 High Proportion of Multi-words (Synonym 
Selection Datasets) 

Given the goal of evaluating sense embeddings, the 
existence of multi-words in the candidates of synonym 
selection questions is problematic. Since some of the 
existing sense embedding models themselves are unable to 
handle multi-words, questions with at least one multi-word 
alternative are usually ignored in evaluations. In RD-300, 
70% of the questions contain at least one multi-word. After 
deleting questions that include multi-words, only 91 
questions remain. In fact, all three synonym selection 
datasets contain less than one hundred questions after 
deleting multi-words. This concern renders them unable to 
provide a convincing evaluation for embedding models.   

3.6 Lack of Pairs with Medium or Low 
Similarity (Synonym Selection Datasets) 

The goal for the synonym selection task is to select the most 
semantically synonymous one among the alternatives. A 
vital drawback is that the synonym selection datasets thus 
cannot be used to evaluate whether embeddings can discern 
between word pairs that are only vaguely similar, or even 
dissimilar. 

4. Construction of MSD-1030 

Given the above analyses, previous semantic similarity 
datasets focus mainly on one sense per word. Synonym 
selection datasets suffer from an insufficient quantity of 
questions and an inability to distinguish medium- or low-
similarity word pairs. To facilitate a reliable evaluation of 
sense embeddings, we propose a new dataset that takes 
these concerns into account. 

4.1 Selection of Initial Words 

The initial words are selected from WordNet and Roget. To 
ensure the words are non-rare, we exclude the words that 
are not in the top 10,000 frequent word list in the 
wordfreq package (Speer et al., 2018) to form word pool 
𝑉. We then select a subset 𝑉𝑚𝑢𝑙𝑡𝑖 of 𝑉 such that each word 
in the subset contains more than one sense: 𝑉𝑚𝑢𝑙𝑡𝑖 =

{𝑤|𝑤 ∈ 𝑉 𝑎𝑛𝑑 |𝒮𝑤 | > 1}, where 𝒮𝑤 = {𝑆1
𝑤, … , 𝑆𝑛

𝑤} is the 
set of 𝑛 senses of 𝑤 in Roget. 

4.2 Selection of Pairing Words 

Our goal is to create a more balanced distribution of word 
pair similarities. For each word 𝑤 in the initial multi-sense 
word pool 𝑉𝑚𝑢𝑙𝑡𝑖 , we randomly select a sense 𝑆𝑖

𝑤 ∈ 𝒮𝑤 . 
Then, we randomly select one of the five relation types 
listed in Figure 2. To obtain words having the selected 
relation with  𝑤 , we use Roget’s high, mid and low 
relevance for synonym (4), similar (3), and related (2) 
types, respectively, and use WordNet’s hypernym relation 
for the same domain or slight related (1) type. The 
completely unrelated (0) type contains all the remaining 
words that does not belong to the aforementioned types. 
We then randomly select a word 𝑤t  among the words 
having the selected relation type 𝑡 to the sense 𝑆𝑖

𝑤 of 𝑤 to 
formulate the word pair (𝑤,𝑤𝑡). 

Through this process, our dataset consists of a balanced 
distribution of these five similarity types. Since we sample 
word pairs with the goal of choosing multi-sense words and 
balancing the counts of pairs with different degrees of 
similarities, one limitation is that the sense distribution of 
words in our dataset may not reflect those in real-world 
applications.  

4.3 Annotate Word Pairs 

We recruited 11 human annotators on the Amazon 
Mechanical Turk crowdsourcing platform to assign 
similarity scores for each word pair. Compared to 
annotation by experts, the crowdsourcing approach allows 
faster data collection, making feasible the construction of a 
dataset consisting of thousands of word pairs. In fact, 
among the datasets that we introduced in Section 2, those 
of size at this scale are all built by crowdsourcing. We 
recruited only native English speakers with approval rates 
exceeding 95% and who had already completed more than 
1,000 tasks. We introduced additional quality control 
mechanisms that be described later.  

For word pair similarity annotation, we adopted the five-
point Likert scale. In the annotation of the datasets in 
SemEval-2017 Task 2 (Camacho-Collados et al., 2017), the 
utilization of this scale and the clear definition of every 
score value led to extremely low disagreement. As 
displayed in Figure 2, we provided the annotators with the 
definition of each score scale, the corresponding example 
pairs, and additional notes. Considering that the annotators 

 

Figure 2: Annotation guidelines. 
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might feel that the similarity of a pair falls between two 
consecutive scales, we allowed them to select scores with a 
step size of 0.5. Note that the annotators had no access to 
the information about which relation type a pair belonged 
to in our word selection step, which can prevent flavoring 
models utilizing the resources we used for constructing the 
dataset. 

As indicated in the first note in Figure 2, when determining 
the score of a word pair, the annotator was required to 
consider the pair of meanings that results in the highest 
similarity. This principle more closely aligns the similarity 
judgments of humans and models when MaxSim is used for 
evaluation. Moreover, this can be considered more aligned 
with practical applications, as in most contexts an 
occurrence of a word is associated with only one meaning. 

To follow the above principle, the annotators were to fully 
understand all definitions of the two words; if they were to 
forget one important meaning of a word, they would 
provide poor answers. To facilitate annotation, we provided 
several essential meanings of each word from WordNet and 
Dictionary.com, and provided links to word definitions in 
other online dictionaries. To discourage annotators from 
skipping the definition part, we set a minimum time: 
workers were to spend at least 30 seconds browsing 
definitions of the words before answering. The annotators 
were paid 0.1 USD per pair. It was estimated that they 
could annotate three pairs in one minute, so they earned 18 
USD per hour. 

The Spearman correlation between the annotated scores 
and the category scores of word pairs according to Figure 
2 is 0.31, which is not quite high. This shows that even with 
a given scale, the subjective nature of similarity still makes 
the judgment not clear-cut in some cases. However, we will 
show in Section 5 that our data construction process does 
lead to better consistency and a more balanced score 
distribution. 

4.4 Post-processing 

To enhance the quality of our dataset, we adopted a method 
similar to SCWS (Huang et al., 2012): we discarded all 
ratings from workers with significantly low performance. 
We used two references to determine worker performance.  

The first reference was a validation set of fifty gold pairs 
annotated by three supervisors who were either native or 
fluent English speakers familiar with our evaluation goal. 
A supervisor got 6.5 USD for annotating the validation set. 
As an inter-annotator agreement (IAA) metric, the average 
Spearman correlation of all pairs of supervisors is 0.71. 
This fairly strong correlation indicates that our annotation 
task is well-defined. For each gold pair, the mean of the 
three scores was regarded as the golden standard score.  

The second reference was the comparison among peers. 
Large discrepancies between a worker’s score and that of 
other workers who annotated the same word pair indicate a 
low-quality response. Using these two references, we 
manually excluded ratings from low-performing 
annotators. 

 
7 Though other similarity metrics exist, we explain in Section 4.3 

that with MaxSim we can explicitly require both the model and 

After filtering out low-quality ratings, pairs had different 
numbers of scores. Pairs with fewer than seven scores were 
deleted. For pairs with more than seven scores, we removed 
extremely high or low values until there were seven scores 
left. The final score of each pair was the average score. 
After the above post-processing step, the Spearman 
correlation between the crowd scores and the gold scores 
on the validation set is 0.81, showing that our dataset has 
near-expert-level quality. 

Finally, there are a total of 1,030 word pairs in our dataset. 
Our way of selecting words (Sections 4.1 and 4.2) ensures 
that at least one of the two words in every pair is multi-
sense. The average number of Roget senses per word is 
2.97 (SD = 2.36). The ratio of multi-sense words is 79.6%. 
In other words, less than 21% of the words in MSD-1030 
are single-sense. This ratio is significantly lower than those 
shown in Table 1. Therefore, our dataset does not have the 
issue of dominance of single-sense words. We will examine 
whether other issues of previous datasets have been 
resolved in MSD-1030 in the following section. 

5. Analyses of MSD-1030 

We analyzed MSD-1030 from different aspects and 
compared it with one contextual word similarity dataset 
(SCWS) and three semantic similarity datasets (MEN, RW, 
and WS353)7. For a fair comparison, we linearly adjusted 
the scoring scale of every dataset to [0, 10]. 

5.1 Annotation Consistency 

Annotation consistency is an important indicator of a 
crowdsourced dataset’s quality. Extremely low labeling 
consistency for a word pair suggests that the similarity of 
this pair is too difficult to determine for human annotators. 

human annotators to select the closest pair of senses, making the 

two judgments more comparable. 

 

 

Figure 3: The distribution of annotations variance 

and range of each word pair in MSD-1030 and 

three other datasets. 
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Furthermore, generally low labeling consistencies of pairs 
in a dataset might be a result of unclear annotation 
guidelines.  

We used the variance and range of the scores of each pair 
to measure annotation consistency. Figure 3 illustrates the 
box-and-whisker plots that represent the distribution of the 
scores’ variance and range for the pairs in MSD-1030 and 
three other datasets. We do not include the MEN result in 
Figure 3 because its individual annotator ratings are not 
available. Generally, MSD-1030 and WS353 have much 
lower variances than the other two datasets. The mean of 
variances in MSD-1030 is 3.63, which indicates that its 
consistency is better than RW and SCWS. Although 
WS353 has a slightly lower mean of variance, it only 
contains 353 word pairs. Moreover, in terms of the range 
of annotation scores, MSD-1030 has the lowest mean 
among all four datasets (4.57, Figure 3 bottom). This 
indicates that the comprehensive annotation guidelines and 
well-designed construction procedure led to better 
consistency in MSD-1030.  

Although a high consistency may indicate that difficult 
pairs have been removed at the post-processing step 
(Section 4.4), as we show in Section 6.1, the sense 
embedding models performed worse on our dataset than on 
previous datasets of similar size. Therefore, we conclude 
that there is a good balance between agreement and 
difficulty in the proposed MSD-1030. 

5.2 Score Distribution 

In Figure 1, we show the score distribution of word pairs in 

four bins of the scale for MSD-1030 and the other four 

datasets. As mentioned in Section 3.4, the distributions of 

RW, WS353, and SCWS are strongly biased. There are 

72% and 67% of word pairs in the upper half of the 

similarity scale in RW and WS353, respectively. SCWS is 

seriously biased towards the lower half, with 69% of word 

pairs in [0, 5]. The score distribution of MSD-1030 is 

generally more balanced, which is a result of the method 

for selecting word pairs described in Section 4.2.  

5.3 Experiments with Multi-sense Models 

We conducted the experiment described in Section 3.2 
again on MSD-1030. The results are shown in Table 5. As 
mentioned in Section 3.2, GenSense-1 and SenseRetro-1, 
in which only first sense vectors are utilized, outperform 
their multi-sense counterparts in MEN, RW, WS353, and 
SCWS. On the other hand, on MSD-1030 an opposite 
pattern is shown. The performance of GenSense-1 and 
SenseRetro-1 drop compared to the multi-sense versions, 
confirming that sense embedding models can take 
advantage of multiple senses to excel on the MSD-1030 
dataset. Furthermore, this is consistent with the hypothesis 
stated in Section 3.2: adopting only the vector of the first 
sense of each word harms the performance. Thus, we have 
confirmed that the lower performance of the multi-sense 
models on previous datasets was not a result of the models’ 
inability to handle non-major senses, but a result of the 
biases toward single-sense words and major senses in those 
datasets.  

We performed a further detailed experiment described in 
Section 3.3 with MSD-1030. Using GenSense, we 
observed the performance changes in these datasets when 
adjusting the parameter 𝑤. In Figure 4, the performance 
changes on MEN and WS353 are in similar same patterns. 
The performance decreases as the weight decreases. 
Moreover, models that applied the first sense (GenSense-
1) outperform the original model when the weight was 
larger. On SCWS, GenSense’s performance exhibits a 

 

Figure 4: ρ × 100 as a function of GenSense’s parameter on MSD-1030 and other datasets. 
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0

 MSD MEN SCWS 

GenSense 57.4 67.6 54.8 

GenSense-1 56.6 69.0 57.6 

SenseRetro 51.4 46.9 49.7 

SenseRetro-1 48.4 51.3 51.6 

Table 5: ρ × 100 of 50-dimensional GenSense 

and SenseRetro on MSD-1030, MEN, and SCWS 

(all senses v.s. only first sense vectors). 
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slightly different pattern, staying constant with different 
original vector weights. Nevertheless, this result still 
contradicts our expectation: emphasizing multi-sense 
information from the external ontology should enhance 
performance.  

In contrast to these three datasets, the performance on 
MSD-1030 confirms our expectations. There is a rise in the 
Spearman correlation when the original word vector weight 
is lowered from 1.5 to 0.5. Moreover, GenSense is 
generally superior to GenSense-1 across different weight 
values. As the parameter declines, the performance gap 
also widens, showing that models that emphasize multi-
sense information from the ontology are stronger. 

6. Evaluating Sense Embedding Models on 
MSD-1030 

6.1 Performance of Sense Embeddings 

We evaluate two knowledge-based sense embedding 
models: GenSense and SenseRetro, and three unsupervised 
models: sensegram (Pelevina et al., 2016), AdaGram 
(Bartunov et al., 2016), and MUSE (Lee and Chen, 2017). 
When training the sense embeddings, knowledge-based 
models take advantage of knowledge bases such as 
WordNet, Wikipedia, and Roget, while unsupervised 
models learn sense representations directly from text 
corpora. For all models, we downloaded the off-the-shelf 
300-dimensional pre-trained vectors and reported their best 
results.  

Table 6 shows the Spearman and Pearson correlation 
coefficients of various embedding models on four datasets. 
While these embedding models yielded high performance 
on previous semantic similarity datasets, their performance 
on MSD-1030 was generally the worst among all datasets. 
More specifically, given that MSD-1030 contains only 
common words and MEN is almost three times as large as 
MSD, the performance gap between the two datasets 
indicates that our multi-sense dataset introduces new 
challenges for sense embedding models. 

6.2 Error Analysis 

In this subsection, we analyze the word pairs that the 
embedding models failed to handle. GenSense and MUSE 
are selected as they achieve high correlation scores on 
MSD-1030. For comparison, we also include the results of 
the word-level embedding model GloVe.  

Table 7 shows the word pairs with the largest similarity 
rank difference between model and ground-truth. We note 
that problems emerge when the sense that the ground-truth 
score is based on is rarely seen in text. For instance, the 
word distribute mostly means “disperse through a space”, 
but it also means “divide” and is a synonym of partition. 
As word embedding models like GloVe only have one 

vector for each word form, a pair involving a rare sense 
might not be given a sufficiently high similarity score. 
Table 7 suggests that knowledge-based sense embedding 
models such as GenSense are still unable to handle this type 
of word pair. Based on this observation, MSD-1030 can 
support research on solving problems of existing sense 
embedding models, including the inability to handle rare 
senses (although all words in MSD-1030 are common).  

7. Conclusions 

In this paper, we raise six concerns about existing word 
embedding benchmarks. When we exploit these datasets to 
evaluate sense embedding models, these problems are 
pronounced. Thus, we present MSD-1030, a high-quality 
and well-built semantic similarity dataset for more reliable 
sense embedding evaluations. In-depth analyses and 
experiments show that MSD-1030 has at least two merits 
over existing benchmarks: (1) MSD-1030 contains many 
multi-sense word pairs that are challenging even for state-
of-the-art sense embedding models. (2) MSD-1030 has a 
more balanced score distribution and higher annotation 
consistency, compared to the other datasets. With its high 
reliability, MSD-1030 can support future research in 
evaluating sense embedding models.  

Although MSD-1030 is an English dataset, we present a 
solid method that can be adopted in the construction of 
similar datasets of other languages or specific domains, 
given the availability of an ontology that indicates different 
levels of relations between lexical units. Our main future 
directions include investigating the relationship between 
evaluation results on our dataset and performance in 
downstream applications, which requires consideration of 
WSD methods, as well as developing similar datasets for 
contextualized representations. 

 GloVe.6B MSD |D| 

(distribute, partition) 915 78 837 

(pat, perfectly) 886 72 814 

(double, duplicate) 859 47 812 

 GenSense MSD |D| 

(distribute, partition) 863 78 785 

(visit, weekend) 15 767 752 

(harvest, accumulate) 862 118 744 

 MUSE MSD |D| 

(pat, perfectly) 975 72 903 

(register, join) 949 89 860 

(descent, falling) 933 79 854 

Table 7: Word pairs with the largest differences |D| 

between the similarity rank of MSD-1030 and that 

given by the embedding models. 

 # pairs GenSense SenseRetro sensegram AdaGram MUSE 

MSD-1030 1,030 60.7 / 59.9 53.9 / 53.2 44.5 / 44.1 54.8 / 52.4 57.2 / 55.6 

MEN 3,000 77.3 / 76.9 72.3 / 71.1 60.6 / 59.6 70.5 / 68.1 73.9 / 72.5 

WS353 353 63.0 / 64.4 54.9 / 56.5 47.4 / 43.5 69.9 / 65.0 69.5 / 65.7 

SCWS 2,003 57.2 / 60.4 59.2 / 61.4 51.7 / 52.3 64.7 / 63.4 66.8 / 62.6 

Table 6: Spearman correlation (ρ × 100) / Pearson correlation (γ × 100) of sense embedding models (300-

dimensional) on MSD-1030, other semantic similarity and contextual word similarity datasets. 
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