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Abstract
We report on our attempts to reproduce the work described in Vajjala and Rama (2018), ‘Experiments with universal CEFR classifica-
tion’, as part of REPROLANG 2020: this involves featured-based and neural approaches to essay scoring in Czech, German and Italian.
Our results are broadly in line with those from the original paper, with some differences due to the stochastic nature of machine learning
and programming language used. We correct an error in the reported metrics, introduce new baselines, apply the experiments to English
and Spanish corpora, and generate adversarial data to test classifier robustness. We conclude that feature-based approaches perform
better than neural network classifiers for text datasets of this size, though neural network modifications do bring performance closer to
the best feature-based models.
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1. Introduction
This paper relates to REPROLANG 2020, the Shared Task
on the Reproduction of Research Results in Science and
Technology of Language, specifically task D.2: Language
Proficiency Scoring. The task involves repetition of the ex-
periments described by Vajjala and Rama (2018) – namely
automated essay scoring (AES) of texts written by learners
of three languages contained in the MERLIN Corpus (Boyd
et al., 2014): Czech, German and Italian.
Vajjala & Rama (V&R) set up their experiments as clas-
sification tasks, assigning each text to one of the six lev-
els in the Common European Framework of Reference
for Languages (CEFR). The reproduction exercise for RE-
PROLANG involves three experiment types: monolingual
classification in which both training and test data are the
same language; multilingual classification in which train-
ing and test data come from all three languages; and cross-
lingual classification in which German training data is used
to score Czech and Italian test data. The primary metric for
evaluation is weighted-F1.
We describe our attempts to reproduce V&R’s experiments,
report some differences in results and discuss why this
might be, and present extensions to the work as well as
proposals for future research. One extension involves ad-
ditional languages – namely English and Spanish – in an
attempt to further validate the idea of universal CEFR clas-
sification which V&R allude to in the title of their paper.
Even with these additional languages, the representation
of the typological variation found in the world’s languages
is limited, and therefore claims to ‘universality’ are pre-
mature. However, availability of CEFR-graded corpora is
scarce, and a welcome future development would be further
publication of such datasets for more languages.

2. Reproduction of the core experiments
V&R’s experiments involved classification of essays into
CEFR levels comparing feature-based and embedding in-
puts to machine learning algorithms.

2.1. Data
MERLIN contains 2287 texts1 which have been proficiency
scored and aligned with the CEFR scale from A1 (low) to
C2 (high). There were no essays at level C2 – therefore C1
is the highest proficiency level found in MERLIN – and not
all languages have instances of all CEFR levels between A1
and C1. V&R removed the 18 texts in the corpus without a
CEFR level, along with texts from a CEFR level for which
a language has fewer than 10 instances (see Table 1). In
this way the original 2287 texts in MERLIN were reduced
to 22672.

User CEFR CZ DE IT Total

Basic A1 0 57 29 86
A2 188 306 381 875

Independent B1 165 331 394 890
B2 81 293 0 374

Proficient C1 0 42 0 42
C2 0 0 0 0
Total 434 1029 804 2267

Table 1: Texts in the MERLIN corpus by CEFR level and
target language, with a broad descriptor of the user type
represented by the A*, B* and C* levels.

2.2. Feature extraction
V&R set out to use a range of linguistic features inspired
by previous work in AES, on the assumption that they gen-
eralise well across languages. These are namely:

1. Word token and part-of-speech (PoS) tag n-grams
(Yannakoudakis et al., 2011), from 1 to 5-gram se-

1Available from https://merlin-platform.eu/C_
data.php.

2In Vajjala and Rama (2018) the count of texts is said to be
2286 which appears to be a miscount as there are 2267 files in the
dataset they distribute with their repository.

https://merlin-platform.eu/C_data.php
https://merlin-platform.eu/C_data.php


5615

quences. For cross-linguistic application, the Univer-
sal PoS tagset (UPoS) is used (Nivre et al., 2019).

2. Per-word dependency triples consisting of a depen-
dency relation, PoS tag of the dependent and PoS tag
of the head word. For instance, a subject noun in a sen-
tence such as ‘she saw’, would be represented by the
concatenated triple {nsubj,noun,verb} (Zesch
and Horbach, 2018).

3. So-called domain features including document length
(n.tokens per text), spelling and grammar error counts
for German and Italian from the LanguageTool3 (no
such resource was found for Czech); in addition lexi-
cal density, lexical variation, and lexical diversity (Lu,
2012) which are defined below.

4. Task-specific word and character embeddings
(Alikaniotis et al., 2016). In the monolingual ex-
periments, only word embeddings are learned as
100-wide vectors. In the multilingual experiments,
32-wide word embeddings are concatenated with
16-wide character embeddings.

5. For multilingual experiments, the language of the
text is supplied as an optional additional feature for
feature-based approaches, or as an auxiliary learning
task for the neural networks.

Features based on a syntactic parse – the PoS and depen-
dency features – involved the use of UDPipe (Straka and
Straková, 2017) trained on Universal Dependencies (UD)
treebanks version 2.0 (Nivre et al., 2019).
The lexical domain features listed in point (4) above in-
volve a distinction between lexical, open-class (OC) and
functional, closed-class (CC) words: the former are namely
adjectives, adverbs, interjections, nouns, proper nouns and
verbs; the latter are adpositions, auxiliaries, conjunctions,
determiners, numerals, particles, pronouns, symbols and
‘other’ in terms of UPoS tags. There is also a distinction
between the number of unique words (types) and the count
of all words (tokens) in a text.
Lexical density is thus the number of lexical tokens divided
by the number of all tokens:

Ldens =
OCtok

CCtok +OCtok
(1)

The lexical variation for a given text is the number of lexical
types over the number of lexical tokens:

Lvar =
OCtyp

OCtok
(2)

Lexical diversity is the number of unique words in the text
over the number of tokens in a text, also known as the type-
token ratio:

Ldiv = TTR =
CCtyp +OCtyp

CCtok +OCtok
(3)

In the monolingual experiments, the domain features were
combined with the word n-grams, PoS n-grams and depen-
dency triples: in order to do so the CEFR class probabilities

3https://languagetool.org

for each text were first estimated based on the n-grams or
triples alone, and these probabilities were concatenated to
the domain features.

2.3. Classification experiments
CEFR grading can be treated as a regression problem if the
CEFR scale is viewed as ranging from 0 (pre-A1) to 6 (C2).
But the steps between levels are not necessarily equal, and it
is also appropriate to treat CEFR grading as a classification
problem as V&R do4. The task is therefore to automatically
assign a CEFR level from A1 to C1 to the MERLIN essays,
recalling that there are no essays at CEFR level C2 in the
corpus.
V&R defined three experiment types: monolingual, mul-
tilingual and cross-lingual. In the first, monolingual, the
language of the training and test data are the same. In the
second, multilingual, all languages of the MERLIN corpus
are mixed in as training and test data. In the third experi-
ment, the cross-lingual one, German essays – because they
are the most wide-ranging in terms of CEFR level – are
used as training data in order to grade Czech and Italian
test data in separate sub-experiments.
The features described in section 2.2. are not all suitable
for each experiment type. For instance, document length is
universally available, but word n-grams are not a suitable
training feature for the cross-linguistic experiment because
the train and test lexicons come from distinct languages
(German and Czech or Italian respectively).
V&R use three classifier types for all experiments: logistic
regression, random forests, and support vector machines.
In addition, for the monolingual experiments they trained
word embeddings as inputs to a neural network classifier,
and for the multilingual experiments they trained both word
and character embeddings. Such language-specific inputs
are not appropriate for the cross-linguistic experiments,
therefore V&R did not use neural nets in this case.
A summary of the three experimental settings is shown in
Table 2. For all experiments except the cross-lingual ones,
when the test set is defined, evaluation is done using ten-
fold cross-validation and results are averaged across folds.

2.4. Reproduction
To reproduce V&R’s experiments, we first ran the code
available in the GitHub repository associated with their
2018 publication5. Secondly we re-implement their exper-
iments by writing our own code, a task which we describe
later in this section. Thirdly we extended their experiments
as far as time allowed, described in section 3.

2.5. Running the experiments from V&R’s
codebase

V&R published a GitHub repository to go with their 2018
publication. It contains Python code as well as the orig-
inal MERLIN texts and extracted features. It was not
straightforward to start running the code: the readme file
is sparse, there is no list of required libraries, and data files

4Nevertheless, below we do convert the scale to integers in
order to report a useful error metric: root-mean-square error.

5https://github.com/nishkalavallabhi/
UniversalCEFRScoring

https://languagetool.org
https://github.com/nishkalavallabhi/UniversalCEFRScoring
https://github.com/nishkalavallabhi/UniversalCEFRScoring
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Experiment Train Test Features Classifiers
Monolingual CZ CZ doc.length, word n-grams, PoS n-grams,

dep.triples, domain, word embeddings LR, RF, SVM, NNDE DE
IT IT

Multilingual CZ,DE,IT CZ,DE,IT
doc.length, word n-grams, PoS n-grams,
dep.triples, domain, word and character
embeddings

LR, RF, SVM, NN

Cross-lingual DE CZ doc.length, PoS n-grams, dep.triples,
domain LR, RF, SVMDE IT

Table 2: Experiment types used by V&R: training languages, test languages, features and classifiers used. Key: CZ=Czech,
DE=German, IT=Italian; LR=logistic regression, RF=random forests, SVM=support vector machine, NN=neural networks.

are called either through unexplained argument variables or
via filepaths specific to the authors’ machines.
The experiments are distributed across five scripts: one for
the baseline classifier, another three for neural networks in
multilingual and monolingual settings, and a fifth which
contains the bulk of experiments named IdeaPOC.py.
The various experimental settings have to be implemented
by updating lines in the code – for instance, switching out
the Czech for the German set of essays, or calling different
feature types and setting language as an additional feature
for the cross-lingual experiments. Having run the code, the
resulting print statements are perhaps meaningful to the au-
thors but are less so to outsiders. However, we stress that
it is to the authors’ credit that they released code accom-
panying their paper, in the spirit of open science and re-
producibility, and also volunteered their work as one of the
REPROLANG tasks.
We re-ran V&R’s code once and got slightly different F1
scores to the ones reported in their 2018 paper. This demon-
strates the effect of different computation settings as well as
the random-ness of the machine learning process, particu-
larly neural networks, despite V&R setting the values of
random seeds in their code at various points. We re-ran the
neural network scripts ten times, reporting mean scores in
the results tables.
In addition we corrected the occasional mistaken use of
macro-F1 calls in V&R’s code (in their paper they state that
they are reporting weighted-F1), indicating in the results ta-
bles where this applies. To be clear, macro-F1 is the mean
of per-class F1 scores. Weighted-F1 assigns a weight to the
per-class F1 scores according to the frequency of each class
in the test set:

wF1 =
F11 ∗ w1 + F12 ∗ w2 + . . .+ F1N ∗ wN

w1 + w2 + . . .+ wN
(4)

where F11..F1N are the F1 scores per class from 1 to N,
and w1..wN are the counts of instances for each class in the
test set. Macro-F1 and weighted-F1 can give very different
outcomes, as shown in the results tables below.
The weighted-F1 measures from re-running V&R’s code
are reported alongside the original F1 scores given in their
2018 publication in Tables 3 (monolingual experiments),
4 (multilingual experiments), and 5 (cross-lingual experi-
ments).

2.6. Re-implementing V&R’s experiments
As a further exercise in the reproducibility of V&R’s work,
we wrote our own codebase to implement the experiments
they describe and also make it available as a GitHub repos-
itory6. Whereas V&R wrote in Python and mainly used
scikit-learn functions (Pedregosa et al., 2011), we
wrote in R and mainly use caret functions (R Core Team,
2019; Kuhn, 2019). For neural networks we both used the
Keras interface to TensorFlow (Chollet and others, 2015;
Abadi et al., 2016).
For the most part we were able to reproduce the results re-
ported in V&R, once all experiments were evaluated with
weighted-F1. There are slightly different outcomes in terms
of best models, which we discuss, and overall our results
are superior to V&R’s but at the cost of a marked deterio-
ration in speed.
For instance, we ran V&R’s IdeaPOC script (which ex-
ecutes most of the feature-based experiments for all lan-
guages) within an hour whereas on the same machine our
monolingual feature-based experiments for one language
took several hours, while the larger multilingual experi-
ments took a few days to run. In accordance with the
proposal that computational budgets should be taken into
account (Dodge et al., 2019), we acknowledge that the
scikit-learn approach to machine learning is supe-
rior to caret in that performance is only slightly lower
for much reduced execution time.

2.6.1. Pre-processing
Since V&R include the processed MERLIN data in the
repository, it cannot have been high priority to walk oth-
ers through the pre-processing steps required to get from
the original texts to extracted features. For this reason there
is some missing information but the problems were easily
remedied and we created a pull request with our updates to
their pre-processing script on GitHub.
As a first step we transform the corpus texts from the origi-
nal files which include various metadata to new files which
only include the students’ essays, while keeping count to
ensure that all language-CEFR groups have at least ten text
instances. This step is largely based on V&R’s original
script, but with modification so that file filtering is handled
at this stage (rather than removed in a posthoc step).

6https://github.com/cainesap/CEFRgrader

https://github.com/cainesap/CEFRgrader


5617

Features V&R 2018 V&R re-run 2019 REPROLANG 2020
DE IT CZ DE IT CZ DE IT CZ

†Zero rule 0.157 0.322 0.262
†Probabilistic 0.288 0.459 0.376
*Document length 0.497 0.578L 0.587L 0.616L 0.800L 0.596L 0.643L 0.815L 0.597L

Word n-grams 0.666 0.827 0.721 0.590 0.800 0.728 0.666 0.823 0.721S

PoS n-grams 0.663 0.825 0.699 0.659 0.801 0.679 0.672 0.806 0.704
Dependency triples 0.663 0.813 0.704 0.637 0.808 0.707 0.666 0.800 0.679
Domain features 0.533L 0.653L 0.663 0.625 0.807 0.663 0.691L 0.812L 0.648L

Word n-grams + Domain 0.686 0.837 0.734 0.638 0.793 0.721 0.700L 0.838 0.729
PoS n-grams + Domain 0.686 0.816 0.709 0.653 0.792 0.687 0.690 0.823L 0.702S

Dep. triples + Domain 0.682 0.806 0.712 0.637 0.782 0.730 0.702L 0.821 0.693
†Word embeddings 0.646N 0.794N 0.625N 0.602N 0.771N 0.623N 0.382N 0.616N 0.399N

+ 300w embeddings 0.606N 0.786N 0.621N 0.492N 0.717N 0.368N

+ Adam 0.620N 0.773N 0.658N 0.650N 0.819N 0.682N

Table 3: Monolingual CEFR classification experiments with German (DE), Italian (IT) and Czech (CZ) texts (Table 2 in
V&R). Asterisks indicate that the original V&R 2018 values are macro-F1 whereas they should be weighted-F1. A text
dagger indicates that the score is the mean of 10 runs. Cells in bold highlight the best performing model for each column.
Results are from random forest classifiers unless indicated by a superscript character (L for logistic regression, S for support
vector machines, N for neural networks).

2.6.2. Feature extraction
We followed V&R’s feature extraction methods closely, us-
ing UDPipe for R (Wijffels, 2019) and parsing models pre-
trained on UD 2.0, querying the LanguageTool jar for Ger-
man and Italian texts, and sampling ten test-folds stratified
over CEFR levels. Data handling is largely carried out with
‘tidyverse’ and ‘tidytext’ methods (Wickham et al., 2019;
Silge and Robinson, 2016).
We re-scale all feature values to between 0 and 1, a nor-
malisation step we do not believe V&R carried out, having
inspected their code. In addition, in an attempt to mitigate
the problem of slow training, we pruned the least frequent
features iteratively until our feature matrices were less than
or equal to 1000 columns wide, based on document fre-
quency7. V&R set a fixed minimum document frequency
of 10 for feature inclusion, while our threshold is thus vari-
able, sometimes being much higher than 10.
For the neural network classifiers, input texts were tok-
enized and a minimum corpus frequency8 of 15 is set for
inclusion (matching V&R’s threshold) otherwise words are
set as out-of-vocabulary. We also ensured all text sequences
were 400 tokens long for word embeddings or 2000 char-
acters for the character embeddings, either by clipping long
texts or padding short ones, per V&R.

2.6.3. Classification
Like V&R, we trained three classifiers for each feature-
based approach: multinomial logistic regression, random
forests, and linear support vector machines. The first two
are much slower than SVMs, though the latter in general
perform more poorly with the exception of Czech monolin-
gual classification, which displays a few oddities compared
to German and Italian (Table 3).
Neural networks were implemented with Keras, following

7The count of documents in which feature f appears.
8The count of word w in all texts in the corpus.

V&R in learning a 100-wide word embedding for monolin-
gual experiments, or a 32-wide word embedding concate-
nated to a 16-wide character embedding for multilingual
experiments. In monolingual experiments a batch size of
32 was used for a maximum of 10 epochs, with categorical
cross-entropy loss and the AdaDelta optimisation algorithm
(Zeiler, 2012). Finally a softmax layer emits class probabil-
ities.
In the multilingual experiments, dropout is applied to the
embedding layer outputs at a rate of 0.25, and the set-up
is otherwise the same except for a batch size of 128 and a
maximum of 8 epochs. For the multilingual experiments
with the language of the text as an auxiliary objective, lan-
guage prediction is weighted at 0.5.
As a final modification we introduce new baselines to put
the feature-based approaches in context. V&R portrayed
document length as a baseline approach but it can often
be an informative feature so we instead evaluate two naive
baselines: a zero rule classifier which predicts the most fre-
quent class seen in training, and a probabilistic classifier
which assigns CEFR levels to a text based on the distribu-
tion of classes found in the training data. As part of review-
ing the role of the document length classifier, we also report
a ‘document length plus language’ multilingual experiment
in Table 4 which V&R did not do.

2.6.4. Evaluation
In keeping with V&R’s experiments and suitably for im-
balanced multi-class classification, weighted-F1 is our pri-
mary metric. We report two additional metrics for a
more comprehensive portrayal of model performance: root-
mean-square error (RMSE) and percent-within-one-level
(within1). The former is a common metric for regression
evaluation and involves first transforming the CEFR levels
to integers from 1 to 6. RMSE thus indicates the average
distance of model predictions from the true labels:
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Features V&R 2018 V&R re-run 2019 REPROLANG 2020
lang(-) lang(+) lang(-) lang(+) lang(-) lang(+)

†Zero rule 0.221 n/a
†Probabilistic 0.334 n/a
*Document length 0.428L n/a 0.574L n/a 0.600L 0.709L

Word n-grams 0.721 0.719 0.606 0.607 0.740 0.736
PoS n-grams 0.726 0.724 0.680 0.681 0.732 0.731
Dependency triples 0.703 0.693 0.651 0.653 0.710 0.716
Domain features 0.449L 0.471L 0.597 0.647 0.698 0.726L

†Word + Char embeddings 0.693N 0.689N 0.659N 0.657N 0.391N 0.401N

+ 300w embeddings 0.666N 0.648N 0.486N 0.482N

+ Adam 0.667N 0.662N 0.724N 0.725N

Table 4: Multilingual CEFR classification experiments with and without language information as a feature or auxiliary
task (Table 3 in V&R); lang(+) indicates that the language of the text is used as an additional feature or as an auxiliary
objective for neural networks, lang(-) indicates the absence of such a feature or task. Asterisks indicate that the original
V&R 2018 values are macro-F1 whereas they should be weighted-F1. A text dagger indicates that the score is the mean
of 10 runs. Cells in bold highlight the best performing model for each column. Results are from random forest classifiers
unless indicated by a superscript character (L for logistic regression, S for support vector machines, N for neural networks).

Features V&R 2018 V&R re-run 2019 REPROLANG 2020
Test:IT Test:CZ Test:IT Test:CZ Test:IT Test:CZ

†Zero rule 0.322 0.210
†Probabilistic 0.368 0.326
Document length 0.553L 0.487L 0.553L 0.487L 0.595L 0.339
PoS n-grams 0.758 0.649 0.751 0.680 0.689 0.377S

Dependency triples 0.624 0.653 0.601 0.665 0.591 0.387
Domain features 0.630L 0.475 0.575 0.476 0.614S 0.339

Table 5: Cross-lingual CEFR classification experiments with German training data and Italian (IT) or Czech (CZ) test data
(Table 4 in V&R). A text dagger indicates that the score is the mean of 10 runs. Cells in bold highlight the best performing
model for each column. Results are from random forest classifiers unless indicated by a superscript character (L for logistic
regression, S for support vector machines, N for neural networks).

RMSE =

√∑T
t=1(ŷt − yt)2

T
(5)

where t is a single text and T represents the number of texts
in the test corpus.
Within1 is a measure which indicates AES stability in terms
of a proportion of ‘damaging’ errors which are more than
one CEFR level from the true label. The underlying in-
tuition is that a model which assigns a B2 text two levels
away at A1 or C2 has made an error which is more than
twice as grave as one which assigns the text to level A2 or
C1 (within one level). It can be thought of as tolerable er-
ror in contrast to being out-by-two, which can have severe
consequences for the student if they are under-scored (for
example, affecting employment or education prospects), or
conversely for the testing organisation if they drastically
over-score students who are not of that proficiency level,
thereby causing themselves reputational damage.

2.6.5. Results
We report results in Table 3 for monolingual experiments,
Table 4 for multilingual experiments, and Table 5 for cross-
lingual experiments. These correspond to Tables 2, 3 and 4
in V&R’s 2018 publication.

In the left-most columns we repeat their reported results. In
the middle columns we report from re-running their Python
code, with corrections to weighted-F1 rather than macro-F1
where appropriate (marked by asterisks). In the right-hand
columns we show the results from our re-implementation
of their experiments. Like V&R we report results from the
random forest classifiers unless indicated by a superscript
character (L for logistic regression, S for support vector
machines, N for neural networks).

In terms of results reproduction from V&R’s original
monolingual experiments, one difference involves the re-
porting of weighted-F1 rather than macro-F1 for document
length and domain features. This leads to higher scores,
visible in the middle ‘V&R re-run’ columns of Table 3, be-
cause the classifiers trained on these features are perform-
ing better for the larger CEFR groups in the corpus. How-
ever, we also found in our 2019 re-run that most measures
are slightly down on the 2018 results. A notable excep-
tion is the Czech subset with dependency triples and do-
main features which became the leading model for that lan-
guage in our re-run, whereas in the 2018 results the do-
main and word n-gram model was best for all languages.
In the re-run the leading models are PoS n-grams for Ger-
man, dependency triples for Italian, and dependency triples
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Features Weighted-F1 RMSE Within1
DE IT CZ DE IT CZ DE IT CZ

†Zero rule 0.157 0.322 0.262 2.19 1.56 1.06 35.3 51.0 81.3
†Probabilistic 0.288 0.459 0.376 1.38 0.801 1.04 71.3 96.6 84.7
Document length 0.643L 0.815L 0.597L 0.597L 0.419L 0.624L 99.1L 100L 99.3L

Word n-grams 0.666 0.823 0.721S 0.565 0.404 0.503S 99.6 100 99.8S

PoS n-grams 0.672 0.806 0.704 0.558 1.07 0.547 99.8 91.7 99.8
Dependency triples 0.666 0.800 0.679 0.569 1.07 0.574 99.5 91.7 99.3
Domain features 0.691L 0.812L 0.648L 0.561L 0.420L 0.596L 99.4L 100L 99.1L

Word n-grams + Domain 0.700L 0.838 0.729 0.546L 0.390 0.524 99.6L 100 99.8
PoS n-grams + Domain 0.690 0.823L 0.702S 0.546 0.411L 0.556S 99.8 100L 99.5S

Dep. triples + Domain 0.702L 0.821 0.693 0.547L 0.416 0.564 99.6L 100 99.5
†Word embeddings 0.382N 0.616N 0.399N 0.978N 1.34N 0.944N 88.6N 71.1N 87.1N

+ 300w embeddings 0.492N 0.717N 0.368N 1.46N 1.25N 0.958N 64.3N 79.3N 86.5N

+ Adam 0.650N 0.819N 0.682N 0.584N 0.411N 0.569N 99.7N 100N 99.6N

Table 6: Monolingual CEFR classification experiments with German (DE), Italian (IT) and Czech (CZ) texts: RE-
PROLANG 2020 code re-implementation of V&R, weighted-F1, RMSE and ‘within1’ percentage. A text dagger indicates
that the score is the mean of 10 runs. Cells in bold highlight the best performing model for each column. Results are
from random forest classifiers unless indicated by a superscript character (L for logistic regression, S for support vector
machines, N for neural networks). These notations also apply to the following two tables below.

Features Weighted-F1 RMSE Within1
lang(-) lang(+) lang(-) lang(+) lang(-) lang(+)

†Zero rule 0.221 n/a 1.93 n/a 42.4 n/a
†Probabilistic 0.334 n/a 1.19 n/a 79.9 n/a
Document length 0.600L 0.709L 0.648L 0.540L 98.5L 99.6L

Word n-grams 0.740 0.736 0.501 0.505 99.7 99.7
PoS n-grams 0.732 0.731 0.514 0.511 99.7 99.8
Dependency triples 0.710 0.716 0.547 0.534 99.3 99.6
Domain features 0.698 0.726L 0.558 0.525 99.4 99.7
†Word + Char embeddings 0.391N 0.401N 0.963N 0.941N 88.7N 89.9N

+ 300w embeddings 0.486N 0.482N 1.50N 1.52N 62.7N 62.2N

+ Adam 0.724N 0.725N 0.521N 0.520N 99.8N 99.8N

Table 7: Multilingual CEFR classification experiments with and without language information as a feature or auxiliary
task: REPROLANG 2020 code re-implementation of V&R, weighted-F1, RMSE and ‘within1’ percentage.

Features Weighted-F1 RMSE Within1
Test:IT Test:CZ Test:IT Test:CZ Test:IT Test:CZ

†Zero rule 0.322 0.210 1.56 1.06 51.0 81.3
†Probabilistic 0.368 0.326 1.25 1.71 76.9 58.6
Document length 0.595L 0.339 0.736L 1.54L 98.0L 61.1L

PoS n-grams 0.689 0.377S 0.632 1.34S 98.5 72.4S

Dependency triples 0.591 0.387 0.731 0.952 98.1 89.2
Domain features 0.614S 0.339 0.730S 0.979 97.8S 88.7

Table 8: Cross-lingual CEFR classification experiments with German training data and Italian (IT) or Czech (CZ) test data:
REPROLANG 2020 code re-implementation of V&R, weighted-F1, RMSE and ‘within1’ percentage.

plus domain features for Czech.

In our re-implementation of V&R’s experiments (the ‘RE-
PROLANG 2020’ columns), the weighted-F1 measures are
very close to V&R’s 2018 results, and on the whole are
slightly better with the exception again of Czech which os-
cillates above and below the original results. The best mod-
els involve combinations of domain and word or depen-

dency features, supporting V&R’s original experiments.

A notable issue involves the word embeddings and neural
network classifier: our new results are much worse than
V&R’s, both from their 2018 paper and from our re-run
of their code. Having closely followed their method and
checked parameter settings from their code, we are not sure
why this should be other than the fundamental difference in
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Keras environments (Python for V&R, R for us). To fur-
ther investigate the problem with the neural network ex-
periments, we increased the output width of the embed-
ding layer from 100 to 300, and used the Adam optimiser
(Kingma and Ba, 2015) as opposed to AdaDelta. We ap-
plied these same changes to V&R’s code and include the
results as extra rows in Table 3. We find that with these
two updates our results improve markedly and in fact sur-
pass the equivalent scores from V&R’s modified code. This
points to a problem with the R Keras AdaDelta call, but it
requires further investigation to confirm this supposition.
Again, for the multilingual experiments, our 2019 re-run
of V&R’s code leads to lower weighted-F1 scores in gen-
eral, but the same conclusion in terms of the best approach:
PoS n-grams. In our re-implementation we again see higher
performance overall and a different conclusion as to the
best model: in our case word n-grams. The addition of lan-
guage as a feature or auxiliary task has little effect for the
most part, with the notable exception of document length.
We encounter the same puzzle in the performance of neu-
ral network classifiers as seen in the monolingual exper-
iments. Again, wider outputs from the embedding layer
make a small improvement, and a switch to Adam opti-
miser makes a large improvement such that performance
surpasses V&R’s.
In the cross-lingual experiments, we find broadly simi-
lar results between V&R’s original paper and the re-run
of their code. The results from our re-implementation are
slightly down on V&R’s results for German, and markedly
inferior for Czech (nevertheless above our baselines). The
experimental set-up is the same, so we are not sure why
this should be. However, the idea of cross-lingual CEFR
classification is an interesting toy experiment but perhaps
not a setting one would encounter, or wish to implement,
in the wild, unless there were a very good reason to do so
– namely CEFR scoring based on very similar languages,
which German, Italian and Czech are not. It is linguistically
telling that the best features for cross-lingual classification
are PoS n-grams and dependency triples, indicating that
there are at least some similarities in the cross-linguistic
morpho-syntactic patterns of development shown by lan-
guage learners as their proficiency improves.
In Tables 6, 7, 8 we show a broader range of performance
metrics from our re-implementation of V&R’s work: left-
hand columns show weighted-F1, the middle columns show
root-mean-square error (RMSE) with CEFR treated as a
numeric scale, and the right-hand columns show the per-
centage of texts scored within 1 level of their true CEFR
level. These show that the models which perform best on
weighted-F1 tend to be best on RMSE and within1, with a
few exceptions – notably the neural networks with Adam.
The better Italian scores indicate that this is the least chal-
lenging of the three languages, with most texts at 2 of its 3
levels (Table 1), whereas German has more levels (5) and
Czech has a more balanced distribution across 3 levels.

3. Extensions
We ran the following extensions to V&R’s experiments, in-
volving more languages, adversarial data, and further work
on the neural network classifiers. Due to time limitations

we ran only the baselines, single feature and neural net-
work models (not the domain+ feature combinations) for
extensions 1 and 2.

3.1. Extension 1: Adding new languages

User CEFR EN ES

Basic A1 585 69
A2 845 387

Independent B1 631 312
B2 469 363

Proficient C1 483 406
C2 287 237
Total 3300 1774

Table 9: Texts in the Write & Improve (EN: English) and
CEDEL2 (ES: Spanish) corpora by CEFR level.

Features DE IT CZ EN ES
†Zero rule .156 .344 .410 .262 .210
†Proba. .277 .494 .498 .355 .340
Doc.len. .65L .81L .60L .321 .31L

Words .668 .827 .71L .367 .477
PoS .660 .815 .724 .37L .410
Dep.trips .642 .788 .66S .343 .417
Domain .69L .807 .65L .37L .415
†Embeds .65N .82N .67N .36N .41N

Table 10: Extension 1. Monolingual 6-level CEFR clas-
sification experiments with five languages. A text dagger
indicates that the score is the mean of 10 runs. Cells in
bold highlight the best performing model for each column.
Results are from random forest classifiers unless indicated
by a superscript character (L for logistic regression, S for
support vector machines, N for neural networks).

We sought out corpora of CEFR-labelled essays in lan-
guages other than those used so far. Thanks to the BEA
Shared Task 2019 (Bryant et al., 2019) we were aware of
the Write & Improve public set of 3300 essays, and thanks
to work by del Rı́o (2019) we became aware of the Span-
ish CEDEL2 corpora (Lozano and Mendikoetxea, 2013)
which contains 1774 essays. Note that CEDEL2 essays
are mapped to CEFR levels from University of Wisconsin
placement test scores following the schema developed by
Crı́stobal Lozano. Counts of essays at each CEFR level are
shown in Table 9.
Note that the English and Spanish corpora span all 6 CEFR
levels from A1 to C2, while both are larger than the MER-
LIN language subsets. The new corpora have many more
C-level texts than are found in MERLIN: thus we can seek
to answer two questions – whether the same features which
work for the languages seen so far also work in other lan-
guages, and whether those features generalise to language
at a more advanced level.
We ran experiments for this extension in the same way as
the core ones (the reproduction of V&R’s work) with the
following exceptions: (1) we used the most recent UDPipe
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models, those trained on UD 2.4 treebanks; (2) for feature-
based approaches we reduced the maximum number of fea-
tures from 1000 to 400 (to ensure that feature matrices are
narrower than they are high, with documents arranged in
rows and features in columns), seeking out efficiencies in
training without detriment to performance.
Results are reported in Table 10, and we find that the mod-
els perform more poorly on the English and Spanish texts.
We do not propose that this is to do with the languages
themselves, but rather to properties of the new corpora, es-
pecially as models unaffected by pre-processing steps (doc-
ument length and neural networks) show deterioration sim-
ilar to the models requiring parse information. The base-
lines indicate that classification is harder for these corpora
than for the Italian and Czech subcorpora but easier than for
German, and yet performance is worse: this is a matter for
further investigation, but it does seem that the presence of
all 6 CEFR levels and more advanced level texts presents a
greater challenge for automatic scoring. We note that per-
formance on the MERLIN languages is not affected by the
reduction in features from 1000 to 400.

3.2. Extension 2: Adversarial data
In extension 2 we question how robust the various classi-
fication models are to adversarial data: that is, by rogue
texts which would undermine the reliability of CEFR clas-
sifiers if they are not detected as such. Some have suggested
that auto-markers are vulnerable to such ‘attacks’ (Hockly,
2018; Yoon et al., 2018) and so it is important to consider
how our models react to unexpected inputs.
We use the English W&I corpus as our starting point and
introduce four types of adversarial data, all of which we
label as spam (i.e. the task is now 7-way classification, with
the spam label alongside the 6 CEFR levels):

1. Randomly scrambling the order of word tokens in 100
randomly selected English texts in the W&I corpus,
resulting in nonsense texts;

2. Randomly selecting 25 texts from each of the Czech,
German and Italian corpora and adding them to the
training and test sets: seen other languages;

3. Randomly selecting 25 Spanish texts from CEDEL2
and adding them to the test set only: unseen other lan-
guages;

4. Randomly extracting 100 English texts from the W&I
corpus, clipping the first sentence or first 10 word
tokens (whichever is shorter), providing those words
as a prompt to the 355m parameter GPT-2 language
model (Radford et al., 2019), and requesting a re-
sponse length to replace the omitted words.

We report results in Table 11, with overall weighted-F1 for
the extended English corpus (EN) and F1 scores for each
adversarial text type on spam detection. It does seem that
scrambled texts based on genuine learner essays are hard to
detect, as are texts in other languages which have been seen
during training. These two outcomes suggest that deeper
syntactic and semantic representations are needed, while
foreign language texts should be detected by a first-step fil-
ter rather than added to training data. This conclusion is

borne out by the strong performance on unseen other lan-
guage texts. Finally the GPT-2 texts are also successfully
detected, presumably because the more complex vocabu-
lary generated by GPT-2 is distinctive compared to genuine
learner essays.

Features EN Scr Seen Unseen GPT-2
†Zero rule .100
†Proba. .174
Doc.len. .255 .131 .148 .084 .165
Words .390 0.0 0.0 1.0 .808
PoS .379 .022 .029 1.0 .831
Dep.trips .368 .022 .029 1.0 .816
Domain .377 .039 .193 1.0 .857
†Embeds .41N .06N 1.0N 1.0N .73N

Table 11: Extension 2. Monolingual 7-level CEFR classifi-
cation experiments with English (EN) and adversarial texts
(Scr: scrambled English texts, Seen: other languages seen
in training, Unseen: other languages not seen in training,
GPT-2: English texts modified by GPT-2). A text dagger
indicates that the score is the mean of 10 runs. Cells in
bold highlight the best performing model for each column.
Results are from random forest classifiers unless indicated
by a superscript character (L for logistic regression, S for
support vector machines, N for neural networks).

3.3. Extension 3: Neural network modifications
It is apparent in the core experiments that for the MERLIN
datasets feature-based classification models outperform the
neural networks. However, it is not clear whether modifi-
cation to the neural networks implemented by V&R might
yet outperform the feature-based approaches. We trialled
several modifications including:

NN1. reducing minimum word frequency from 15 to 10;

NN2. increasing the fixed-length text size from 400 to 500
word tokens;

NN3. omitting out-of-vocabulary words, rather than repre-
senting them with a generic word index and weights
vector;

NN4. introducing a random 20% validation split to the
training set when fitting the model;

NN5. regularisation measures such as L2 at 0.001, dropout
at 50%, a smaller batch size of 16 rather than 32, and
allowing more epochs: 40 rather than 10;

NN6. the use of pre-trained fastText embeddings learned
from Wikipedia in each language (Bojanowski et al.,
2017).

Results are compared with the V&R model with Adam
optimiser which performed best in the core experiments:
model NN0 in Table 12. Some of the modifications move
performance close to the best feature-based models, while
those thought to prevent over-fitting (NN4, NN5) do not
improve performance on these datasets but might help the
models generalise to other data. Thus, improvement in neu-
ral network scoring of these corpora remains a matter for
further investigation.
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NN model DE IT CZ EN ES
NN0 .650 .819 .682 .358 .413
NN1 .655 .817 .661 .360 .419
NN2 .651 .816 .673 .358 .410
NN3 .671 .826 .627 .361 .412
NN4 .644 .812 .622 .316 .358
NN5 .633 .799 .655 .306 .368
NN6 .665 .813 .639 .343 .372

Table 12: Extension 3. Monolingual 6-level CEFR classifi-
cation experiments with German (DE), Italian (IT), Czech
(CZ), English (EN) and Spanish (ES) texts: neural network
modifications. All scores are the mean of 10 runs. Cells in
bold highlight the best performing model for each column.

4. Conclusion
Overall this has been a thought-provoking exercise, one
which provides many ideas for future work and underlines
the benefit of reproducibility in research. The sharing of
open code repositories, datasets and publications, accom-
panied by thorough documentation and checkpointing are
positive developments that can aid the field as a whole,
with research viewed as a joint enterprise in which we build
on each other’s work. In this task we have been able to
broadly imitate V&R’s original findings, concluding that
feature combination is the most robust approach to essay
scoring, as confirmed in other work (Zechner et al., 2009;
Yannakoudakis et al., 2018).
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D., Garcia, M., Gärdenfors, M., Garza, S., Gerdes, K.,
Ginter, F., Goenaga, I., Gojenola, K., Gökırmak, M.,
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s., Wróblewska, A., Yako, M., Yamazaki, N., Yan, C.,
Yasuoka, K., Yavrumyan, M. M., Yu, Z., Žabokrtský, Z.,
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4 ller, K., Ooms, J., Robin-
son, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan,
D., Wilke, C., Woo, K., and Yutani, H. (2019). Wel-
come to the tidyverse. Journal of Open Source Software,
4(43):1686.

Wijffels, J., (2019). udpipe: Tokenization, Parts of Speech
Tagging, Lemmatization and Dependency Parsing with
the ‘UDPipe’ NLP Toolkit. R package version 0.8.3.

Yannakoudakis, H., Briscoe, T., and Medlock, B. (2011).
A new dataset and method for automatically grading
ESOL texts. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies.

Yannakoudakis, H., Andersen, Ø. E., Geranpayeh, A.,
Briscoe, T., and Nicholls, D. (2018). Developing an au-
tomated writing placement system for esl learners. Ap-
plied Measurement in Education, 31:251–267.

Yoon, S.-Y., Cahill, A., Loukina, A., Zechner, K., Riordan,
B., and Madnani, N. (2018). Atypical inputs in educa-
tional applications. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 3 (Industry Papers).

Zechner, K., Higgins, D., Xi, X., and Williamson, D.
(2009). Automatic scoring of non-native spontaneous
speech in tests of spoken English. Speech Communica-
tion, 51:883–895.

Zeiler, M. D. (2012). ADADELTA: an adaptive learning
rate method. CoRR, abs/1212.5701.

Zesch, T. and Horbach, A. (2018). ESCRITO - An NLP-
Enhanced Educational Scoring Toolkit. In Proceedings
of the Eleventh International Conference on Language
Resources and Evaluation (LREC).


	Introduction
	Reproduction of the core experiments
	Data
	Feature extraction
	Classification experiments
	Reproduction
	Running the experiments from V&R's codebase
	Re-implementing V&R's experiments
	Pre-processing
	Feature extraction
	Classification
	Evaluation
	Results


	Extensions
	Extension 1: Adding new languages
	Extension 2: Adversarial data
	Extension 3: Neural network modifications

	Conclusion
	Acknowledgements
	Bibliographical References

