
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 5291–5300
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

5291

When Collaborative Treebank Curation Meets Graph Grammars

Arborator With a Grew Back-End

Gaël Guibon, Marine Courtin, Kim Gerdes, Bruno Guillaume
LLF (CNRS) – Université Paris Diderot & Almanach (Inria),

Almanach (Inria) & LPP (CNRS) – Sorbonne Nouvelle,
Almanach (Inria) & LPP (CNRS) – Sorbonne Nouvelle,

Loria (Inria)
Paris & Nancy, France

gael.guibon@inria.fr, marine.courtin@sorbonne-nouvelle.fr, kim@gerdes.fr, bruno.guillaume@inria.fr

Abstract
In this paper we present Arborator-Grew, a collaborative annotation tool for treebank development. Arborator-Grew combines the fea-
tures of two preexisting tools: Arborator and Grew. Arborator is a widely used collaborative graphical online dependency treebank
annotation tool. Grew is a tool for graph querying and rewriting specialized in structures needed in NLP, i.e. syntactic and semantic
dependency trees and graphs. Grew also has an online version, Grew-match, where all Universal Dependencies treebanks in their clas-
sical, deep and surface-syntactic flavors can be queried. Arborator-Grew is a complete redevelopment and modernization of Arborator,
replacing its own internal database storage by a new Grew API, which adds a powerful query tool to Arborator’s existing treebank cre-
ation and correction features. This includes complex access control for parallel expert and crowd-sourced annotation, tree comparison
visualization, and various exercise modes for teaching and training of annotators. Arborator-Grew opens up new paths of collectively
creating, updating, maintaining, and curating syntactic treebanks and semantic graph banks.
Keywords: dependency treebanks, annotation tools, crowd-sourcing, class-sourcing, error-mining, graph banks

1. Introduction
Dependency treebanks have become the standard resource
for training syntactic parsers, and substantial efforts have
been undertaken to develop large scale and multi-lingual
treebanks. The flagship project is certainly Universal
Dependencies (UD) (McDonald et al., 2013), which has
served as the input to numerous parsers, text generators,
and morphological taggers around various shared tasks (Ze-
man et al., 2018; Mille et al., 2019; McCarthy et al., 2019).
The impressive project with more than a hundred treebanks
in the same annotation scheme for 90+ languages, com-
bined with great online viewers and query tools have given
increased visibility to the project also inside the syntax and
typology communities (Croft et al., 2017; Gerdes et al.,
2019b).
Yet, for UD as well as for other treebank creation projects,
many of the treebanks contain substantial errors and incon-
sistencies, which can be attributed to three main causes:

1. Many of the UD treebanks are converted from other
formats that do not contain all the information needed
for a transfer into UD, or the converters are incom-
plete.

2. Some descriptions in the UD guidelines are under-
specified and leave room for different analyses of
the same construction, inside a language, a language
group, or generally among languages, cf. the con-
stantly active UD discussion group on GitHub and also
Gerdes and Kahane (2016). Moreover, some UD rules
are not well-adapted for specific languages – e.g. the
discussion of the direction of coordination in Japanese
(Kanayama et al., 2018).

3. Some treebank creators do not have sufficient time or
competence to provide satisfactory analyses of some

of the innumerable syntactic phenomena of their lan-
guage. Moreover some of the treebanks have been
abandoned and do not follow the latest updates of the
UD specifications.

Generally speaking, dependency parsing and tagging with
recent quantitative NLP tools can overcome, to a certain de-
gree, rarely occurring errors in the training corpus. This is
particularly true when making use of word vector represen-
tation models trained on massive amount of raw textual data
(Devlin et al., 2019; Peters et al., 2018). However, in the
use cases of language teaching, the query of counterexam-
ples to syntactic claims, or typological comparative mea-
sures of (word order, syntactic relation, construction) dis-
tribution tendencies, these errors can influence the results
significantly. See for example the differences between tree-
banks of the same language reported by Chen and Gerdes
(2017). It has become essential for the UD project not only
to facilitate treebank curation for the treebank maintainer
but to find ways to open treebank corrections to a wider
audience of linguists and language students.
All the aforementioned treebank annotation errors come
essentially in two flavors: occasional slips of attention of
the annotator and systematic discrepancies with the desired
correct analysis. The former type of problems (occasional
slips of attention of the annotator) can be addressed by
means of an easy access to “strange” constructions1 and
myriads of annotators who look at these potential issues
and who then either directly fix the error or validate the rare
construction as being correct. The later type of problems
(systematic discrepancies with the desired correct analysis)
needs systematic corrections by means of a graph grammar

1In the simple sense of being rare or in the sense of not corre-
sponding to the prediction of a parser that has been trained on the
rest of the corpus.



5292

and non-regression validation2. Examples of this kind of
systematic errors are provided by Haverinen et al. (2011)
where the authors found that annotators frequently con-
fused direct objects and nominal modifiers, syntactically
readily mistakable. But annotators also confused subjects
and adjectival modifiers for the surprising reason that the
annotation tool’s shortcut keys are placed next to one an-
other on the keyboard. These types of error can easily be
detected using Grew (Bonfante et al., 2018).
Our new tool Arborator-Grew provides support for the
whole process of treebank creation, publication, error-
mining, and curation. It is essentially a front-end editor to
the Grew graph rewriting system3 (Guillaume et al., 2012;
Bonfante et al., 2018), adding access control, predefined
error mining queries, exercises for teaching and annotator
training, graphical diff tools, and versioning via GitHub.
Arborator-Grew is under active development and a first
public release is planned during Spring 2020. It attempts
to replicate the features of the current version of Arbo-
rator (Gerdes, 2013), in particular its class-sourcing tools
(Zeldes, 2017), while improving and modernizing queries,
error-mining, versioning, and collaborative features. It is
the first tool to integrate complex graph querying and tree-
bank annotation software. The advantages of this combina-
tion will be discussed in Section 4.

2. Related Work
Quite a few tools exist for dependency treebank develop-
ment, visualization, and querying, many of which share
some of the features of Arborator-Grew. These tools can be
divided into three mains groups: dependency visualization
tools, dependency annotation tools, and treebank query
tools. Without claiming to be exhaustive, we present here
the main features of some of these tools, which have led us
to the development of Arborator-Grew’s specifications.

Dependency visualization. UDAPI (Popel et al., 2017),
CoNLL-U viewer4 and TüNDRA (Martens, 2013) provide
interfaces to visualize dependency trees from CoNLL
formatted files. Arborator’s side project Arborator-Draft
provides a simple (but fast since D3.js-based5) Javascript
plugin for webpages that translates any CoNLL data inside
<conll> tags into graphical trees6 giving a lightweight al-
ternative to Arborator. An online version for copy-pasting
and visualizing CoNLL files is available on the Arborator
homepage7.

Dependency annotation. These tools are designed for
treebank development and allow users to build dependency
structures on top of their corpus, without having to resort

2This can by realized by means of a set of correct target trees
that have to be attained by the conversion grammar.

3http://grew.fr
4https://github.com/rug-compling/

conllu-viewer
5https://d3js.org/
6https://github.com/Arborator/

arborator-draft
7https://arborator.github.io/live.html

to manually editing the CoNLL files. Some tools are min-
imalist, lightweight, and usually offline, others allow for
collaborative online annotation of multi-layer treebanks.
The most used tool is probably Brat (Stenetorp et al.,
2012). The Brat user can annotate any highlighted span
(the user decides where tokens begin and end), which
makes it a great tool for (named) entity annotation and
chunking, although the annotation is carried out through
rather cumbersome dialog boxes. However, just like
Arborator, it supports drag and drop of relations between
tokens. WebAnno (de Castilho et al., 2016) is a similar
tool that shares the visualization front-end with Brat, while
modernizing keyboard interactions and back-end, as well
as allowing for more web-based project configurations.
The visualization uses a multi-line configuration where
relations can go across different lines, which can be
confusing, but remains necessary as the same format is
also used to annotate coreference and other long-distance
relations across many sentences. Recent CoNLL-U files
need to be converted first in Brat’s and WebAnno’s internal
standoff formats.
Single user online graphical CoNLL file editors include
Arborator’s Quick online tool8, Annotatrix (Tyers et al.,
2017) (providing Latex export), and the ConlluEditor
(Heinecke, 2019). The ConlluEditor is noteworthy for its
easy token splitting and joining, its stemma-like horizontal
visualization, its integration of UD validation scripts, and
its interaction with GitHub versioning.
One last annotation tool worth mentioning in this con-
text is ZombiLingo (Guillaume et al., 2016), a tool for
crowd-sourcing of the syntactic annotation process through
gamification. Users have to pass rather basic proficiency
tests to be allowed to play: they are presented with a
sentence at a time, for which they have to determine one
single relation, such as finding the subject of a verb, and
they can gain points and enter a public wall of fame. The
annotations that most players agree on are combined into
dependency trees of yet unannotated sentences.

Query tools. The most famous linguistic annotation query
tool is arguably Annis (Zeldes et al., 2009). Annis pro-
poses its own query language AQL (ANNIS Query Lan-
guage) which can handle multi-layer annotations, a graph-
ical query builder, chunk, phrase structure tree, and de-
pendency visualization (the latter using Arborator’s visu-
alization Javascript library), integration of sound files, and
queries on multiple tokenizations thanks to its stand-off
format (Krause et al., 2012). Yet, due to its complexity,
Annis requires a non-trivial installation and data-insertion
process. AQL is rather verbose, and it is not blazingly
fast. Other tools are more specifically designed for queries
into single-layer dependency treebanks. One of these tools
is Dep Search from Turku (Luotolahti et al., 2017). It is
very lightweight and fast, with a succinct and quite power-
ful query language based on TGrep (Rohde, 2005), though
quite unfamiliar and tricky for users trained on other query
languages.
Most of these tools are designed to provide the matching

8https://arborator.ilpga.fr/q.cgi

http://grew.fr
https://github.com/rug-compling/conllu-viewer
https://github.com/rug-compling/conllu-viewer
https://d3js.org/
https://github.com/Arborator/arborator-draft
https://github.com/Arborator/arborator-draft
https://arborator.github.io/live.html
https://arborator.ilpga.fr/q.cgi


5293

Figure 1: A screenshot of the user interface that gives access to the different annotations of a sentence, with one dependency
tree per user. The sentence is drawn from the ongoing treebank annotation project of spoken Naija (Nigerian Pidgin-
Créole). The transcribed sentence has a so-called macro-syntactic markup instead of standard punctuation and can roughly
be translated by I really like maize dumplings.

trees alongside a simple count of matches, but they do
not include further statistical data about the query results.
Grew-match9 goes a step beyond that with the possibility
to cluster on any of the nodes or edges of the query results.
This includes simple clustering of the form for any lemma,
thus providing a list of forms, and also the clustering of the
relation between any two parts of speech, providing a list
of relations that link the two parts of speech. The integra-
tion of this feature into Arborator-Grew and its usage will
be explained in Section 3.2.
Another remarkable tool that goes a step further is the
Trameur (Fleury and Zimina, 2014). It applies corpus
linguistics statistical tools to raw corpora, and, in its online
version iTrameur10 also to dependency treebanks. It can
therefore show significant over or under-representations of
specific sub-trees in one sample compared to another. We
intend to study further the possible use of these measures
in Arborator-Grew’s error-mining tools.

9http://match.grew.fr
10http://www.tal.univ-paris3.fr/trameur/

iTrameur/ iTrameur only has a French interface.

One important question in the design for multi-user anno-
tation systems is the status of tokenization. Brat and Web-
Anno allow the user to annotate any span of text, most other
tools consider that the annotated object is a series of (pre-
defined) tokens. It may seem like a more natural choice to
actually annotate texts and to combine the tokenization and
syntactic annotation step into one single task. Note how-
ever that annotator-based tokenization complicates signifi-
cantly the computation of inter-annotator agreement, as we
jointly observe tokenization and syntactic annotation. And
most importantly, tokenization is either trivial and orthog-
raphy based (i.e. a token is a sequence of letters, possible
errors are expressed in the syntactic annotation) or based on
lexical and semantic criteria, which makes it a challenging
task to reach a satisfying inter-annotator agreement (Farah-
mand et al., 2015; Savary et al., 2017). Arborator takes a
middle stand, making use of its hierarchy of user modes,
see Section 4., and allows validators and project owners to
modify (delete, add, join, split) tokens, but these changes
are then carried out on all trees, whatever the user, of the
modified sentence. Such a global modification of a sen-
tence’s tokenization can cause other annotators’ trees to be
disconnected or different from the desired structure. This

http://match.grew.fr
http://www.tal.univ-paris3.fr/trameur/iTrameur/
http://www.tal.univ-paris3.fr/trameur/iTrameur/


5294

behavior is the only exception to the basic Arborator rule
which states that users can view other annotators’ trees, de-
pending on their access level, but can only create or modify
their own tree.11

3. Architecture
Arborator-Grew is a complete redevelopment that does
not share a line of code with the legacy Arborator, beyond
the Python CoNLL-U parser. The legacy Arborator is
written in Python 2. It is a simple CGI web page and
uses a SQLite12 database with the FTS4 module for fast
text searches. User identification is handled via the quite
ancient Login Tools13, and the front-end runs in Jquery-
enhanced Javascript with the rather slow Raphael.js14

for drawing SVG tree graphs. The new Arborator-Grew
consists of three completely separate pieces of software
that interact via stateless REST interfaces and follows
a Model-View-Controller (MVC) architecture shown in
Figure 2.

Figure 2: Software architecture of Arborator-Grew

Data Persistence. The database storage relies on the
Ocaml15-based Grew storage system to which we have

11If user A views user B’s tree and modifies it, the new tree will
be saved as the most recent tree of user A, possibly overwriting
user A’s original tree while leaving user B’s tree untouched.

12https://www.sqlite.org/index.html
13http://www.voidspace.org.uk/python/

logintools.html
14https://github.com/DmitryBaranovskiy/

raphael
15https://ocaml.org

added an API accepting json queries. It is possible to
run the Grew API on a different server than the main
Arborator-Grew, and this is the configuration that we use
for our current development setup.

Back-end and User Persistence. The middleman is
a Flask16 application written in Python 3 that uses the
Authomatic17 library for social login. The main task of the
Flask application is to control read and write access to the
storage back-end, handle software logic through services,
and manage different resource routes for the front-end.
User information and access rules are persisted in a SQLite
database interfaced by an object-relation mapping18. The
Flask application also pre-mashes some of the replies to
make it easier for the front-end to quickly access data,
and it keeps in memory frequent queries, mainly for tree
comparison in the teaching mode, in order to lower the
strain on the Grew server. Note that the Grew API provides
CoNLL-U data that the Flask application only passes on
to the front-end for visualization. Only meta-information
such as the user name and time-stamping is accessed and
modified at this stage. Hence, the Flask application repre-
sents the Model and Controller in the MVC architecture
while the Grew server represents the Data Access Objects
related to trees from the Model.

Front-end. Lastly, Arborator-Grew’s front-end (Figure 1
shows a screenshot) is written using a Javascript based
framework named VueJS19, which facilitates the develop-
ment of reactive, modular, and flexible front-end user in-
terfaces, and enjoys rising popularity among web devel-
opers. In particular, the Arborator-Grew front-end makes
the View part of the MVC independent from the back-end.
This facilitates the development of mobile or desktop ver-
sions because the same base code can be automatically
translated using Node ecosystem packages such as Elec-
tron and Cordova. The actual dependency graph is now
drawn via the Snap20 SVG library. The new tree-drawing
algorithm has more configuration options. In particular,
trees can now take up different heights depending on the
complexity of the tree, in order to avoid labels placed too
close to one another. Arborator-Grew also adapts better to
UD’s syntactic relation system that consists of “universal”
relations followed by language-specific sub-relations, such
as aux:pass. SUD, the Surface-Syntactic version of UD

16https://palletsprojects.com/p/flask/
17https://authomatic.github.io/authomatic/

For the moment we use Google and GitHub social login, and with
Authomatic it is easy to add further social logins to the system.
The social login is an important progress for Arborator, as caring
for login problems of classes of up to a 100 students can take up
considerable time for the teacher.

18We used the ORM framework SQLAlchemy: https://
www.sqlalchemy.org/

19We used https://vuejs.org/ associated to multiple
components mostly coming from the Quasar VueJs Framework:
https://quasar.dev/

20http://snapsvg.io/
Snap is also a faster and lighter redevelopment of Raphael.js by
the same authors.

https://www.sqlite.org/index.html
http://www.voidspace.org.uk/python/logintools.html
http://www.voidspace.org.uk/python/logintools.html
https://github.com/DmitryBaranovskiy/raphael
https://github.com/DmitryBaranovskiy/raphael
https://ocaml.org
https://palletsprojects.com/p/flask/
https://authomatic.github.io/authomatic/
https://www.sqlalchemy.org/
https://www.sqlalchemy.org/
https://vuejs.org/
https://quasar.dev/
http://snapsvg.io/


5295

(Gerdes et al., 2019a), further separates deep-syntactic re-
lations, which can give relations such as comp:obj@x. The
combinatorics of universal and other relation names makes
it inconvenient to provide the annotator with an exhaustive
list of all possible combinations, and Arborator Grew can
be configured to show separate choices of universal and
secondary relations, see Figure 3.

Figure 3: Interface for the relation selection for a SUD
project configuration.

4. New Features in Arborator-Grew
The rework of Arborator combined with Grew results in
novel ways to build new treebanks and enhance existing
annotations. In this section, we focus on two main aspects:
classroom collaborative treebank creation (Section 4.1.)
and error mining inside an existing treebank using queries
(Section 4.2.).

4.1. Class Sourcing
One of the key features of Arborator is collaborative an-
notation, thus controlling access to the resources must be
well-organized. The legacy Arborator was laid out for sep-
arate instances on separate servers and it was not designed
for multiple projects on the same server with different ad-
ministrators and different people teaching separate classes.
In the new Arborator-Grew, we distinguish the following
roles:

1. Guests: A project can be public or private. If it is
public, guests can browse and query, but not modify
the treebank.

2. Annotators: Each sample has a list of annotators and
validators. Annotators can browse and modify the
treebank (modify in the sense that a modified tree is
saved under their name). They can keep track of their
progress by marking trees and whole samples as “ok”.
Annotators can be denied access to other annotators’
trees, in order to insure independent annotation allow-
ing the computation of inter-annotator agreement.

3. Validators of a sample can see all the trees and choose
the correct version if the annotators disagree.

4. Administrators are assigned during the project cre-
ation process. They can change the status of the

project, and admit and assign other users (administra-
tors, validators, and annotators). They can also upload
new samples to the project, create exercises, and de-
termine the POS and relational tagsets.

5. SuperAdmins are determined during the installation of
Arborator-Grew, hence they are administrators for the
whole system. They can create projects and assign
project administrators.

This configuration allows for Class Sourcing of the tree-
bank creation, which is a way to merge treebank creation
and teaching of academic students, interns, or colleagues
willing to learn about syntax. The precision that can be ob-
tained in the setting of class-sourcing has been analyzed in
Gerdes (2013), and the actual treebank creation has been
demonstrated with the GUM Corpus (Zeldes, 2017), using
the legacy version of Arborator for the syntactic component
of the corpus.
Annotating actual texts is a great way of studying the
syntax of the students’ mother tongues as well as of
foreign languages where the students have a high degree
of proficiency. Arborator, right from its legacy version,
was conceived to be used in the classroom, in particular for
undergraduate and graduate students.

Exercises modes. Beyond the simple exploration of an ex-
isting treebank by means of searches and in-class discus-
sion of various structures, Arborator-Grew allows the con-
figuration of exercises. Exercises have four modes: graph-
ical feedback (the student can click on a “check” button
and wrong categories or relations are marked in red), per-
centage (the student receives a feedback as a percentage
of correct categories and relations, without the indication
of where the errors are localized in the sentence), teacher
visible (the students can see the reference tree, but cannot
modify it directly – they have to redraw the tree from an
empty annotation), and no feedback where only the teacher
can receive the student’s score.
Teachers need to have an administrator status in the project
in order to set up an exercise. For the sample to be used
as an exercise, they simply have to choose an exercise
mode and determine a reference tree per sentence. Then,
the reference tree will be used to provide students with
the desired feedback and finally, to compute the students’
scores that the teacher can export into a spreadsheet at any
time. Arborator’s exercises have been tested on various
levels and in various countries, and the feedback has been
positive from the teachers as well as from students. Syntax
exercises seem to feel more like a computer game, in
particular the percentage exercise mode, where completist
students try hard to reach a 100% score.

Treebank construction in the classroom. Training is an
essential first step to class-sourcing, and one can go one
step further with a class of students pre-trained on a set of
exercises: They can be asked to annotate samples where no
reference annotation exists. Depending on the number, the
level, and the syntactic and linguistic proficiency of the stu-
dents, various setups have been tried out. In small groups of
graduate students, with interns employed for the task, and



5296

among colleagues that want to develop a treebank, the most
common configuration is that we provide a first draft of an
annotation guide, and we assign a sample to one or two an-
notators. They annotate the sample and note difficulties that
are discussed in a group meeting. Together, the annotation
guidelines are updated and specified in order to answer the
questions the annotators had.
In the setting of a larger undergraduate class, samples can
be distributed to larger sets of students, which allows to
compute trees that obtain the highest “votes” by the stu-
dents in a ROVER-like fashion (Fiscus, 1997). The eval-
uation of the students has then to be done manually, for
example by randomly sampling a few of the student’s trees.
To automatize this step and in order to avoid students that
have been assigned the same sample working together, we
use a script (not yet included into Arborator) that combines
reference sentences from a gold-standard treebank with yet
to be annotated pre-parsed sentences. Optionally, errors can
be inserted in both types of trees, using the parser’s confu-
sion matrix to make “plausible” errors. For each student an
individual set of sentences is prepared, that is given as an
assignment. Then, scores can be automatically computed
for the student evaluation, but also for a better ROVER vote,
where the students’ grades are used as a confidence score
in the computation (Gerdes, 2013).

4.2. Error Mining
Most treebank developers have already stumbled upon
errors in their own, or other people’s, treebanks while
browsing through the trees. If time allows, the tree has
then to be looked up in the latest version of the samples,
corrected, and uploaded as a new version. It would be
better if the annotator could then check whether similar
trees have a similar error. These steps have been quite
cumbersome up to now, and this difficulty is the central
motivation for the merging of Arborator and Grew.

Pattern matching. The central feature of Grew-match
is precisely the query of syntactic patterns in a treebank
project. Grew has its own query language which is easy
to learn and very powerful. This query language is well-
documented21 and a tutorial is made available on the Grew-
match site22. The pattern matching system can match sub-
trees based on forms, lemmas, part-of-speech tags, pres-
ence of a morphological feature, value of the morphologi-
cal feature, incoming and outgoing dependencies (typed or
not, enhanced or syntactic), linear order between nodes and
any combination of these features, which can result in very
complex queries (see an example of a more complex query
in Figure 4). It can also filter out these results based on neg-
ative patterns (patterns that must not appear in the graph).
The nodes that match the pattern are then highlighted in the
trees on the results page. See an example of a query on
comp:aux relations23 in the SUD treebank of Old French
in Figure 5.
But once the faulty tree has been found, it cannot be
modified inside Grew. The next logical step was to inte-

21http://grew.fr/pattern/
22http://match.grew.fr/
23Grew query: pattern { GOV -[comp:aux]->DEP }

grate Grew as a perfect querying system inside Arborator,
thus allowing treebank creators and users to easily find
syntactic patterns inside their projects and to directly
correct them. In Arborator-Grew, it is now possible to open
the Grew-match component (see Figure 6) in a project or
in a sample. The result page, containing all the matching
trees, possibly from different samples, can then directly be
edited and saved.

Clustering the results. Grew also has the ability to cluster
the results of a query based on one or several features, thus
making it easier to quickly sort through the results. For ex-
ample, one could look for all the verbs with an object and
cluster them based on the part-of-speech of the object. This
functionality can be used to build a relation table which
summarizes all dependencies within a project, based on the
part-of-speech of the governor and dependent. Having this
relation table easily accessible is a great way to look for
rare structures and potential errors inside a treebank, and
to get an overview of the existing structures. In Arborator-
Grew, the user can open this table (see Figure 7) and access
directly the trees that match the pattern to see if the analy-
sis is correct, and update it if they find an error. Work on
this distributional relation table can easily be integrated in a
teaching context where each student has to check a different
set of relations.
Grew also allows to directly modify samples and whole
treebanks by means of a graph rewriting grammar. Access
to this feature is planned but not yet realized in Arborator-
Grew, as it requires good versioning and feedback in order
to avoid the intrusion of unforeseen errors, see Section 6.

5. Distribution
Arborator-Grew is currently accessible through an early
version, thus we keep two separate access paths. One
for the legacy Arborator24, another for the new Arborator-
Grew25. The latter follows the same principle as the former
and is distributed in two versions:

• Aborator Draft: a simple visualisation Javascript stan-
dalone plugin which aims to replace Arborator Quick
for a faster visualization tool efficient for large tree-
banks. Available freely with no account or set up re-
quired.

• Arborator-Grew: the new server version of Arborator
merged with Grew functionalities. It uses an enhanced
version of Arborator Draft to handle tree visualization
and graphical editing.

In fine we aim at completely replacing the legacy Arbo-
rator with the new one. Legacy and reworked Arborator
softwares are licenced under the GNU Affero General
Public License v3.0 while Grew server is licence under the
CeCILL Licence v2.1 26.

24https://github.com/Arborator/
arborator-server

25https://arborator.github.io/
arboratorgrew.html

26http://cecill.info/licences/Licence_
CeCILL_V2-en.html

 http://grew.fr/pattern/
 http://match.grew.fr/
https://github.com/Arborator/arborator-server
https://github.com/Arborator/arborator-server
https://arborator.github.io/arboratorgrew.html
https://arborator.github.io/arboratorgrew.html
http://cecill.info/licences/Licence_CeCILL_V2-en.html
http://cecill.info/licences/Licence_CeCILL_V2-en.html


5297

Figure 4: Pattern to look for potential errors on verbs without subjects

Figure 5: Search result querying a comp:aux relation, with
pink highlighting of the governor and the dependent. The
sentence from the Old French text La Chanson de Roland
’The Song of Roland’ (1040 - 1115) can be translated by
The rich duke Gaifier has arrived.”

Figure 6: Grew-match integration component, with exam-
ple queries on the right and automatic idiosyncratic high-
lighting of the Grew query language.

6. Future Work
The development of Arborator-Grew is currently under
heavy development, and we are planning on integrating
other features that have been suggested by colleagues work-
ing on treebank development.
In particular, we are performing tests to switch the ongoing
Naija27 and Old French28 treebank development projects to
the new Arborator-Grew.

27NaijaSynCor is a French national project on treebank devel-
opment of spoken Naija, the Nigerian Pidgin-Créole with about
100 million speakers (Caron et al., 2019)

28Profiterole is another French national project for the di-
achronic treebank development of Old French (Regnault et al.,
2019)

It will also be possible to integrate Grew rewriting gram-
mars in Arborator-Grew where changes are made across
a sample or a whole project. This would allow the paral-
lel development of two versions of a treebank which are
transferable into one another by rewriting rules. For the de-
velopment of SUD and UD grammars, where Grew rewrit-
ing grammars exist in both directions, annotators can then
choose in which view they would like to annotate and pro-
pose corrections – the other treebank version being just a
click away.
One point that has become very apparent is the need for
a better handling of versioning, to allow treebank devel-
opers to return to previous states of the annotation, should
they need it. The graphical Javascript editor has an undo
functionality that does not persist on reload of the editing
page. In order to integrate versioning we plan to rely on
the GitHub social login integration: A user logged in via
GitHub will be able to commit and push a version to his or
her GitHub repository. Reverting to previous versions can
then be done directly on the GitHub page, making use of
the convenient GitHub user interface and also possibly ex-
ternal tools that the user may want to apply to the CoNLL
files. At any point, the user will be able to pull the latest
version from the repository into Arborator-Grew.
To facilitate error-mining and treebank validation, we are
also planning to integrate a validation script that would de-
scribe forbidden patterns. This practice has now become
part of the Universal Dependencies project, where all tree-
banks must pass through a validation script to be accepted
in the new releases that occur every 6 months, so as to main-
tain the overall quality of the annotation.
Finally, thanks to the modular architecture of Arborator-
Grew with the separation of the front-end from the two
(Flask and Grew) REST server engines, laid out in Section
3., it is straightforward to create a mobile version of the
front-end part, sharing most of the features with the current
desktop version.

Acknowledgements
This work was made possible thanks to the NaijaSynCor
French project ANR-16-CE27-0007 (2017-2020) directed
by Bernard Caron. The Grew API is hosted in the CPER
LCHN (Contrat de Plan État-Région - Langues, Connais-
sances et Humanités Numériques) infrastructure.

Bibliographical References
Bonfante, G., Guillaume, B., and Perrier, G. (2018). Ap-

plication of Graph Rewriting to Natural Language Pro-



5298

Figure 7: Relation table showing a count of all occurrences of vocative relations between a governor (category to the
left) and its dependent (category on top) based on their respective parts-of-speech. Here the table query searches in the
annotator’s own trees; alternatively, the most recent accessible trees can be taken into account. The annotator can directly
click to visualize, for example, the two pronouns that have a proper noun as a vocative dependent, in order to verify the
two corresponding trees. If a tree contains an error, it can directly be corrected. If the tree is correct, it can be marked as
validated, which is saved and indicated in the table during a future query.

cessing. Wiley Online Library.
Caron, B., Courtin, M., Gerdes, K., and Kahane, S. (2019).

A surface-syntactic ud treebank for naija. In TLT 2019 -
18th International Workshop on Treebanks and Linguis-
tic Theories, Aug 2019, Paris, France.

Chen, X. and Gerdes, K. (2017). Classifying languages
by dependency structure. typologies of delexicalized uni-
versal dependency treebanks. In Proceedings of the
Fourth International Conference on Dependency Lin-
guistics (Depling 2017), September 18-20, 2017, Univer-
sità Di Pisa, Italy, number 139, pages 54–63. Linköping
University Electronic Press.

Croft, W., Nordquist, D., Looney, K., and Regan, M.
(2017). Linguistic typology meets universal dependen-
cies. In Proceedings of the 15th International Workshop
on Treebanks and Linguistic Theories (TLT15), Bloom-
ington, IN, USA, pages 63–75.

de Castilho, R. E., Mujdricza-Maydt, E., Yimam, S. M.,
Hartmann, S., Gurevych, I., Frank, A., and Biemann, C.
(2016). A web-based tool for the integrated annotation
of semantic and syntactic structures. In Proceedings of
the Workshop on Language Technology Resources and
Tools for Digital Humanities (LT4DH), pages 76–84.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Pa-
pers), pages 4171–4186, Minneapolis, Minnesota, June.
Association for Computational Linguistics.

Farahmand, M., Smith, A., and Nivre, J. (2015).
A multiword expression data set: Annotating non-
compositionality and conventionalization for english
noun compounds. In Proceedings of the 11th Workshop
on Multiword Expressions, pages 29–33.

Fiscus, J. G. (1997). A post-processing system to yield
reduced word error rates: Recognizer output voting er-
ror reduction (rover). In 1997 IEEE Workshop on Auto-
matic Speech Recognition and Understanding Proceed-
ings, pages 347–354. IEEE.

Fleury, S. and Zimina, M. (2014). Trameur: A frame-
work for annotated text corpora exploration. In Proceed-
ings of COLING 2014, the 25th International Conference
on Computational Linguistics: System Demonstrations,
pages 57–61.

Gerdes, K. and Kahane, S. (2016). Dependency annota-
tion choices: Assessing theoretical and practical issues
of universal dependencies. In Proceedings of the 10th
Linguistic Annotation Workshop held in conjunction with
ACL 2016 (LAW-X 2016), pages 131–140.

Gerdes, K., Guillaume, B., Kahane, S., and Perrier, G.
(2019a). Improving surface-syntactic universal depen-
dencies (sud): Surface-syntactic relations and deep syn-



5299

tactic features. In Proceedings of the Universal Depen-
dencies Workshop (UDW), SyntaxFest, Paris.

Gerdes, K., Kahane, S., and Chen, X. (2019b). Rediscov-
ering greenberg’s word order universals in ud. In Pro-
ceedings of the Third Workshop on Universal Dependen-
cies (UDW, SyntaxFest 2019), pages 124–131.

Gerdes, K. (2013). Collaborative dependency annotation.
In Proceedings of the second international conference on
dependency linguistics (DepLing 2013), pages 88–97.

Guillaume, B., Bonfante, G., Masson, P., Morey, M., and
Perrier, G. (2012). Grew: un outil de réécriture de
graphes pour le tal (grew: a graph rewriting tool for
nlp)[in french]. In Proceedings of the Joint Conference
JEP-TALN-RECITAL 2012, volume 5: Software Demon-
strations, pages 1–2.

Guillaume, B., Fort, K., and Lefèbvre, N. (2016). Crowd-
sourcing Complex Language Resources: Playing to An-
notate Dependency Syntax. In International Conference
on Computational Linguistics (COLING), Proceedings
of the 26th International Conference on Computational
Linguistics (COLING), Osaka, Japan, December.

Haverinen, K., Ginter, F., Laippala, V., Kohonen, S., Vil-
janen, T., Nyblom, J., and Salakoski, T. (2011). A
dependency-based analysis of treebank annotation er-
rors. In In Proceedings of Depling’11., pages 47–61.

Heinecke, J. (2019). Conllueditor: a fully graphical editor
for universal dependencies treebank files. In Proceed-
ings of the Third Workshop on Universal Dependencies
(UDW, SyntaxFest 2019), pages 87–93.

Kanayama, H., Han, N.-R., Asahara, M., Hwang, J. D.,
Miyao, Y., Choi, J. D., and Matsumoto, Y. (2018). Coor-
dinate structures in universal dependencies for head-final
languages. In Proceedings of the Second Workshop on
Universal Dependencies (UDW 2018), pages 75–84.

Krause, T., Lüdeling, A., Odebrecht, C., and Zeldes, A.
(2012). Multiple tokenizations in a diachronic corpus.
In Exploring Ancient Languages through Corpora Con-
ference (EALC), volume 14.

Luotolahti, J., Kanerva, J., and Ginter, F. (2017).
dep search: Efficient search tool for large dependency
parsebanks. In Proceedings of the 21st Nordic Confer-
ence on Computational Linguistics, pages 255–258.

Martens, S. (2013). Tündra: A web application for tree-
bank search and visualization. In The Twelfth Workshop
on Treebanks and Linguistic Theories (TLT12), page
133.

McCarthy, A. D., Vylomova, E., Wu, S., Malaviya, C.,
Wolf-Sonkin, L., Nicolai, G., Kirov, C., Silfverberg, M.,
Mielke, S. J., Heinz, J., et al. (2019). The sigmorphon
2019 shared task: Morphological analysis in context and
cross-lingual transfer for inflection. In Proceedings of
the 16th Workshop on Computational Research in Pho-
netics, Phonology, and Morphology, pages 229–244.

McDonald, R., Nivre, J., Quirmbach-Brundage, Y.,
Goldberg, Y., Das, D., Ganchev, K., Hall, K.,
Petrov, S., Zhang, H., Täckström, O., Bedini, C.,
Bertomeu Castelló, N., and Lee, J. (2013). Universal
dependency annotation for multilingual parsing. In Pro-
ceedings of the 51st Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers),
pages 92–97, Sofia, Bulgaria, August. Association for
Computational Linguistics.

Mille, S., Belz, A., Bohnet, B., Graham, Y., and Wanner,
L. (2019). The second multilingual surface realisation
shared task (SR’19): Overview and evaluation results.
In Proceedings of the 2nd Workshop on Multilingual Sur-
face Realisation (MSR 2019), pages 1–17, Hong Kong,
China, November. Association for Computational Lin-
guistics.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. (2018). Deep contextu-
alized word representations. In Proceedings of the 2018
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237, New Orleans, Louisiana, June. Association for
Computational Linguistics.

Popel, M., Žabokrtský, Z., and Vojtek, M. (2017). Udapi:
Universal API for universal dependencies. In Proceed-
ings of the NoDaLiDa 2017 Workshop on Universal De-
pendencies (UDW 2017), pages 96–101, Gothenburg,
Sweden, May. Association for Computational Linguis-
tics.

Regnault, M., Prévost, S., and de la Clergerie, É. V. (2019).
Challenges of language change and variation: towards
an extended treebank of medieval french. In TLT 2019 -
18th International Workshop on Treebanks and Linguis-
tic Theories, Aug 2019, Paris, France.

Rohde, D. L. (2005). Tgrep2 user manual. Unpublished
manuscript
http://www.cs.cmu.edu/afs/cs.cmu.
edu/project/cmt-55/OldFiles/lti/
Courses/722/Spring-08/Penn-tbank/
Tgrep2/tgrep2{_}manual.pdf.

Savary, A., Ramisch, C., Cordeiro, S., Sangati, F., Vincze,
V., QasemiZadeh, B., Candito, M., Cap, F., Giouli, V.,
and Stoyanova, I. (2017). The parseme shared task on
automatic identification of verbal multiword expressions.
In MWE2017 - Proceedings of the 13th Workshop on
Multiword Expressions , Apr 2017, Valencia, Spain.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou,
S., and Tsujii, J. (2012). Brat: a web-based tool for nlp-
assisted text annotation. In Proceedings of the Demon-
strations at the 13th Conference of the European Chapter
of the Association for Computational Linguistics, pages
102–107. Association for Computational Linguistics.

Tyers, F. M., Sheyanova, M., and Washington, J. N. (2017).
Ud annotatrix: an annotation tool for universal depen-
dencies. In Proceedings Of The 16th International Work-
shop On Treebanks And Linguistic Theories.

Zeldes, A., Lüdeling, A., Ritz, J., and Chiarcos, C. (2009).
Annis: A search tool for multi-layer annotated corpora.
In In: Proceedings of Corpus Linguistics 2009, Liver-
pool, July 20-23, 2009. Humboldt-Universität zu Berlin,
Philosophische Fakultät II.

Zeldes, A. (2017). The gum corpus: creating multilayer re-
sources in the classroom. Language Resources and Eval-
uation, 51(3):581–612.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-55/OldFiles/lti/Courses/722/Spring-08/Penn-tbank/Tgrep2/tgrep2{_}manual.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-55/OldFiles/lti/Courses/722/Spring-08/Penn-tbank/Tgrep2/tgrep2{_}manual.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-55/OldFiles/lti/Courses/722/Spring-08/Penn-tbank/Tgrep2/tgrep2{_}manual.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-55/OldFiles/lti/Courses/722/Spring-08/Penn-tbank/Tgrep2/tgrep2{_}manual.pdf


5300

Zeman, D., Hajič, J., Popel, M., Potthast, M., Straka, M.,
Ginter, F., Nivre, J., and Petrov, S. (2018). CoNLL 2018
shared task: Multilingual parsing from raw text to uni-
versal dependencies. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies, pages 1–21, Brussels, Belgium,
October. Association for Computational Linguistics.


	Introduction
	Related Work
	Architecture
	New Features in Arborator-Grew
	Class Sourcing
	Error Mining

	Distribution
	Future Work

