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Abstract
A wide variety of transition-based algorithms are currently used for dependency parsers. Empirical studies have shown that performance
varies across different treebanks in such a way that one algorithm outperforms another on one treebank and the reverse is true for a
different treebank. There is often no discernible reason for what causes one algorithm to be more suitable for a certain treebank and less
so for another. In this paper we shed some light on this by introducing the concept of an algorithm’s inherent dependency displacement
distribution. This characterises the bias of the algorithm in terms of dependency displacement, which quantify both distance and
direction of syntactic relations. We show that the similarity of an algorithm’s inherent distribution to a treebank’s displacement
distribution is clearly correlated to the algorithm’s parsing performance on that treebank, specificially with highly significant and
substantial correlations for the predominant sentence lengths in Universal Dependency treebanks. We also obtain results which show a
more discrete analysis of dependency displacement does not result in any meaningful correlations.
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1. Introduction
Dependency parsing, and in particular the transition-based
family of parsers, has a large variety of parsing algorithms
to choose from. When comparing different algorithms, em-
pirical results on collections of corpora often show differ-
ences in accuracy that can heavily vary across different lan-
guages or treebanks, so that a given algorithm can be the
best choice for one corpus while being outperformed in an-
other.
However, despite these nontrivial patterns in accuracy vari-
ations having been observed in many experiments in the
last decade, both with non-neural and neural implementa-
tions (Nivre, 2008; Ballesteros and Nivre, 2013; Chen and
Manning, 2014; Fernández-González et al., 2016), very lit-
tle is known about what makes an algorithm more fitting
for a corpus beyond obvious facts (like non-projective al-
gorithms being better for highly non-projective treebanks).
This makes the practical choice of a particular algorithm for
a language a matter of trial and error. For example, Malt-
Optimizer chooses between projective and non-projective
algorithm according to the amount of non-projective depen-
dencies observed in the treebank, but then the choice of a
specific algorithm among projective (or non-projective) op-
tions is made by running all of the projective (or the non-
projective) algorithms and choosing the one that achieves
the highest accuracy (Ballesteros and Nivre, 2012).

Contribution We shed some light on this issue by per-
forming two complementary analyses:

1. An analysis of the performance of transition-based
algorithms with respect to dependency displacement
(signed distance) which highlights that a shallow level
of analysis is not sufficient to account for the afore-
mentioned differences.

2. An analysis focusing on the distribution of depen-
dency displacements which shows the performance of
a transition-based algorithm on a given corpus can be

partly explained by the similarity of the dependency
displacement distribution of the corpus (sampled from
the test set) and what we call the algorithm’s inher-
ent distribution. This is a random distribution that de-
scribes the bias of the algorithm in terms of depen-
dency lengths and directions, and it can be approxi-
mated by running the algorithm in random mode. This
entails assigning a uniform probability to each of the
transitions available for a given configuration.

Experiments with Universal Dependencies show a highly
significant correlation between said similarity and the ac-
curacy of algorithms on different treebanks for the most
prevalent sentence lengths in the corpora.

2. Related work
2.1. How language-specific performance differs

across algorithms
With the proliferation of dependency treebanks for multiple
languages, various papers performed comparisons includ-
ing multiple transition-based parsing algorithms, where
language-specific differences in performance across algo-
rithms are apparent.
One of the first papers that included a large number of lan-
guages and algorithms is that of Nivre (2008), who found
language-specific differences between the performance of
Arc-Standard and Arc-Eager. While they hypothesized that
the proportion of left arcs in a language could account for
these differences, the evidence was not conclusive.
Other analyses have found differences in performances be-
tween Arc-Eager and Arc-Standard such as Ballesteros and
Nivre (2013) or Fernández-González et al. (2016), but they
provided no explanation for this phenomenon. Ballesteros
and Nivre (2013) did consider the effect the dummy root
placement has on different algorithms. They found that the
placement is not trivial and had a noticeable effect on the
performance of Arc-Eager.
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The differences between algorithms have also been
observed with different architectural implementations,
namely neural networks. Chen and Manning (2014)
found that for some treebanks Arc-Eager performed better
whereas for others Arc-Standard performed better.

2.2. Analysis of parsing errors
There have been analyses on the strengths and weaknesses
of different parsers by comparing the errors they make on
different kinds of dependencies, with dependency distance
and direction often being considered.
The most comprehensive analysis on the performance
of dependency parsers came from McDonald and Nivre
(2011), who compared a graph-based parser with a
transition-based parser. They investigated the relative
strengths of each of the parsing paradigms with respect to
factors like dependency length, distance to root, and sen-
tence length. They found that the transition-based parser
performed worse for longer dependencies and those closer
to the root, due to error propagation, and better in the con-
verse cases. However, while this analytical methodology
gave interesting insights when comparing parsers from very
different paradigms, it is not fine-grained enough to draw
conclusions when the comparison is between transition-
based algorithms, as we will verify in Section 4.
de Lhoneux et al. (2017) investigated the differences in
performances when using the same transition-based algo-
rithm with a neural network implementation, namely UD-
Pipe (Straka and Straková, 2017), and with a classical im-
plementation, MaltParser (Nivre et al., 2007). They ob-
served a similar trend for both implementations with re-
spect to the change in F1 score for different dependency
distance bins.
More recently, Kulmizev et al. (2019) evaluated the differ-
ence in performance between graph-based and transition-
based parsers and observed that the use of contextualised
word embedding off-set the typical error-propagation found
when using transition-based parsers.
Rehbein et al. (2017) investigated what made certain cor-
pora harder to parse than others by looking at how the de-
pendency encoding scheme affects dependency length and
arc direction entropy. They, however, did not observe a
correlation in parsing accuracy for different dependency
lengths resulting from different encoding styles, but they
did find a correlation with respect to arc direction entropy.
This is somewhat corroborated by a previous analysis un-
dertaken by Gulordava and Merlo (2016), who modified
treebanks to minimise dependency length and the arc direc-
tion entropy and obtained an increase in parser performance
using these treebanks.
Additionally, Kirilin and Versley (2015) evaluated error
patterns (over- and underproduction of certain structures);
Goldberg and Elhadad (2010) made a similar analysis by
classifying parser output and test sentences based on un-
derproduced (indicating test) and overproduced (indicating
prediction) structures; Dickinson (2010) also showed that
algorithms generate idiosyncratic structures not found in
the training data; and Schwartz et al. (2012) found that
certain structures work better with certain heads. Together
these findings suggest that algorithms have some sort of

bias towards generating certain types of structures.

2.3. Dependency distance
There has also been more linguistic-specific work under-
taken with respect to dependency distance, which can be
relevant for parsing. For example, Gibson (2000) intro-
duced dependency locality theory (DLT) which postulates
that dependency distances are minimised in order to make
parsing linguistic input more cognitively friendly. Liu et
al. (2017) tested this theory by evaluating how syntactic
patterns are governed by dependency distance. They pro-
vided a review of psycholinguistic experiments and tree-
bank analyses that suggest natural languages have a ten-
dency to minimize dependency distance, arguing that this
makes sense under working-memory restrictions. So if
longer distance dependencies are difficult for humans to
parse, it would make sense then that parsing algorithms
would struggle in a similar vein.
Many analyses have observed this tendency to minimise
dependency distance, further corroborating this hypothe-
sis (Ferrer-i-Cancho, 2004; Liu, 2008; Liu, 2007; Buch-
Kromann, 2006; Futrell et al., 2015; Temperley and Gildea,
2018). However, the extent to which this restriction is ad-
hered has been observed to vary significantly across lan-
guages (Jiang and Liu, 2015; Gildea and Temperley, 2010).
Other works have investigated different syntactic traits of
languages associated with dependency length such as high-
lighting a correlation with an increase in dependency length
and free-order languages (Gulordava and Merlo, 2015) and
with an increase in non-projective dependencies (Ferrer-i-
Cancho and Gómez-Rodrı́guez, 2016; Gómez-Rodrı́guez
and Ferrer-i-Cancho, 2017).
In response to Liu et al. (2017), Gómez-Rodrı́guez (2017)
hypothesised that the good practical results achieved by
transition-based algorithms could be because they are bi-
ased towards short dependencies. This is substantiated
by Eisner and Smith (2010) who improved parser perfor-
mance by imposing upper bounds on dependency length
and using dependency lengths as a parsing feature. In an-
other response to Liu et al. (2017), Hudson (2017) high-
lighted mean dependency distance varies significantly be-
tween treebanks and that the direction of dependencies
could impact parsing difficulty. Liu (2010) and Jiang and
Liu (2015) actually found that dependency direction analy-
sis can be used to typologically classify languages. Hence,
for our analyses we use dependency displacement which
quantifies both length and direction as defined in Equation
1.

3. Data and setup
We report two levels of analysis to explain performance
differences between different transition-based algorithms.
The first is based on measuring the differences in perfor-
mance for each dependency displacement. It transpires that
this does not offer any explanation how language-specific
performance differs between algorithms. For this, we need
the second analysis, based on the concept of an inherent
displacement distribution of each algorithm.
We evaluate 3 projective algorithms (Arc-Standard, Arc-
Eager and Covington) and 2 unrestricted non-projective
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algorithms (Covington and Swap-Eager). The results for
each algorithm were obtained by running Maltparser v1.91,
which has the benefit of having multiple algorithms imple-
mented of which several are projective and several are non-
projective. While there are more modern systems that out-
perform MaltParser in accuracy, none of them provide such
a range of algorithms.1 Furthermore, as we are focused
on the algorithms, the architecture of the implementation is
considered a controlled variable. Also, de Lhoneux et al.
(2017) showed that the change in accuracy with respect to
dependency length follows a similar trend for MaltParser
and UD-Pipe (a neural network implementation), so it is
justifiable to use MaltParser for analyses on algorithms.
Furthermore, MaltParser is potentially better suited for this
analysis as we want to evaluate the performance of algo-
rithms against one another and using a more robust sys-
tem that can more readily overcome the inherent biases we
show in this paper would actually obscure this. For this rea-
son too, we do not finetune the feature functions for each
language as it is obvious that different features will benefit
different languages more or less depending on the linguistic
features of a given language. So these features are kept con-
stant for each treebank and should be considered controlled
variables for the following analyses.
Beyond these experimental considerations, MaltParser is
still competitive with respect to parsing accuracy even if
it is not state-of-the-art and it is very efficient which makes
it much more readily deployable when compared to large
and unwieldy neural networks.
Version 2.1 of the Universal Dependency treebanks was
used for all of the subsequent analysis (Nivre et al., 2017).

4. Dependency displacement
4.1. Analysis details
Similar to the analysis undertaken by (McDonald and
Nivre, 2011), we investigated how parsing performance
varies based on the dependency displacement. Whereas
they compared a graph-based and a transition-based parser,
we have compared different transition-based parsing algo-
rithms. Also, we look at the effect dependency displace-
ment, sdep, has on the performance of the algorithms, rather
than dependency distance. Dependency displacement is de-
fined as:

sdep = xhead − xdependent (1)

where xi refers to the position of word i in a given sen-
tence. So a right arc of length 3 would have a displacement
of -3 and conversely a left arc of length 3 would have a dis-
placement of 3. Hudson (2017) highlighted that different
languages have a tendency towards being head-final (OSV
or SOV), head-medial (OVS or SVO), or head-initial (VOS
or VSO) and argue that the direction of dependencies can-
not be ignored when analysing dependency distances. In
addition, dependency direction was hypothesised by Nivre
(2008) to affect how language-specific performance differs
between parsers.

1For example, UDPipe has one projective, one partially non-
projective and one unrestricted non-projective parser.

We evaluate the attachment precision and recall in order to
have a more fine-grained analysis similar to de Lhoneux et
al. (2017).
For this analysis we used all 76 treebanks that contained a
training and test set.

4.2. Results
Figure 1 shows that this coarse analysis does not capture
any statistically meaningful variation across projective al-
gorithms with regard to attachment precision or recall. It
is interesting to note that long-distant displacement to the
right and to the left follow different trends for both preci-
sion and recall, with precision being higher for right arcs
(negative displacement) but recall being higher for left arcs
(positive displacement).
Figure 2 shows the corresponding results for the non-
projective algorithms. We see in Figure 2a the only sta-
tistically meaningful difference between algorithms. Pre-
cision for left arc dependencies is higher for Swap-Eager
than non-projective Covington. It is also of note that the
non-projective precision results are much more symmetric
with regard to dependency displacement than those of the
projective algorithms. These results show that there is a
need for a more fine-grained analysis.

5. Comparing displacement distributions
5.1. Analysis overview
In this analysis we test the hypothesis that the similarity
of the dependency displacement distribution generated by
the latent biases of an algorithm, as defined as its inher-
ent displacement distribution in Section 5.2, and the actual
distribution of a treebank can account for the difference in
performance across parsing algorithms. We measure the
difference between these distributions by using the Wasser-
stein distance - also known as the earth mover’s distance
(EMD). It can be intuitively thought of as the cost or work
required to change one distribution into another by moving
distribution mass (Rubner et al., 1998). An example com-
parison for the German test data for sentences of length 10
to 12 tokens is shown in Figure 3, where Arc-Standard is
seen to perform worse than Arc-Eager by 0.58 UAS and
correspondingly has a higher EMD. We evaluate depen-
dency displacements according to sentence-length bins, as
it has been shown that dependency distance (and thus dis-
placement) distributions change with sentence length, both
in real sentences and in random models (Ferrer-i-Cancho
and Liu, 2014).

5.2. Inherent displacement distributions
Let P = (C, T, cs, Ct) be a transition-based algorithm
where C is the set of possible configurations, T the set of
transitions, cs an initialization function mapping a sentence
length k to an initial configuration cs(k), and Ct a set of
terminal configurations. We assume configurations in C to
be of the form (D,A), where A is a set of dependency arcs
built so far, andD is a state of the data structures associated
with the algorithm (e.g. a stack and a buffer, for stack-based
algorithms).
Then, we define the inherent distribution of P for sentences
of length k, written ιk(P ), as the discrete probability dis-
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(a)

(b)

Figure 1: Attachment precision (a) and recall (b) for the
three projective algorithms used: Arc-Eager (eager, blue,
circle), Arc-Standard (standard, magenta, square), Cov-
ington (covington, green, triangle). The corresponding p-
values (derived from a t-test respectively using the average
precision and recall and the corresponding standard devia-
tion across treebanks for each displacement value for each
algorithm) are shown below: Arc-Eager and Arc-Standard
(e-s); Arc-Eager and Covington (e-c); and Covington and
Arc-Standard (c-s). No statistically significant differences
are observed for any comparison with regard to attachment
precision or recall.

tribution of the random variable generated by the following
process:

• Start at the initial configuration cs(k).

• At each configuration, let t1 . . . tq be the available
transitions. Choose one of them randomly with prob-
ability 1/q, and go to the resulting next configuration.

• The process ends when a terminal configuration ct =
(Dt, At)∈ Ct has been reached. Then, choose a de-
pendency arc uniformly at random from At and take
its displacement as the value of the random variable.

(a)

(b)

Figure 2: Attachment precision (a) and recall (b) for the two
non-projective algorithms tested: Swap-Eager (swap, ma-
genta, circle) and non-projective Covington (covington-np,
green, triangle). The corresponding p-values (derived from
a t-test respectively using the average precision and recall
and the corresponding standard deviation across treebanks
for each displacement value for each algorithm) are shown
below: Swap-Eager and non-projective Covington (swap-
covnp). Almost no statistically significant differences are
observed for any comparison with regard to attachment pre-
cision or recall, except for left arcs (positive displacement)
with regard to precision.

Note that the inherent distribution of an algorithm does
not depend on the contents of the particular sentence being
parsed in the stochastic process, but just its length. There-
fore, it can be seen as a variable that describes the distri-
bution of displacements that the algorithm is “biased” to
produce, in the absence of any training data. The transition
is selected using a uniform probability across all possible
transitions for a given configuration as there is no under-
lying reason why an algorithm would select one transition
over another without using the feature function at a given
timestep. Our hypothesis is that a given language or corpus
will be parsed more accurately by algorithms whose inher-



5151

Figure 3: Example comparisons between the dependent
displacement distribution of the German-GSD treebank
(de, magenta) for sentences of length 10 to 12 in version
2.1 of the Universal Dependency treebanks and the inherent
displacement distributions of two algorithms: Arc-Standard
(std, green) and Arc-Eager (eager, purple). The correspond-
ing UAS and EMD values are displayed.

ent distribution is closer (as measured by the EMD) to the
actual observed displacements in that language or corpus.
While the inherent distribution of an algorithm for sen-
tences of length k would be difficult to obtain analytically,
especially for the algorithms that support arbitrary non-
projectivity where exact inference is intractable (McDon-
ald and Satta, 2007), in practice we will approximate it by
running a number of simulations of the above stochastic
process.
The above definition can be extended to corpora (or sub-
sets of them, such as the sentence-length bins we use in this
paper). Let S be a set of n sentences containing nk sen-
tences of length k, for a range of values of k. Then, the
inherent distribution of P with respect to S is the discrete
probability distribution of the random variable generated by
taking a random sentence length from S (where each length
k is taken with probability nk/n), and then taking a random
displacement using the process above. The inherent distri-
bution of P with respect to a set S, denoted ιS(P ), can be
approximated by running a number of simulations of the
above stochastic process on all the sentences of S.

Approximating inherent distributions
In order to approximate the biased distributions for each
parsing algorithm P , we implemented a version of each
of them so that they randomly select a transition from
the set of available transitions for any given configuration.
For each tree in a treebank that fell within the range of a
sentence-length bin, a random tree was generated this way.
This was done so as to ensure the EMD of different distri-
butions was due to differences in the dependency displace-
ment and to minimize other factors affecting the EMD. In
other words, we wanted to obtain inherent distributions that
echo the output of a parsing algorithm if it had been run nor-
mally (i.e. making predictions based on a feature function).
For each treebank and each sentence length bin B in its
test set, a random displacement distribution was generated
10 times to approximate ιB(P ), and their average EMD of

the observed distribution of displacements in the trees of B
was taken. We opted to run it 10 times individually rather
than run it once with more data points as this way we can
more easily evaluate the uncertainty of a given inherent dis-
tribution. The standard error for the average EMD can be
observed in Figures 5 and 6. It is clear that the variation
across each generated distribution is quite small and that
10 instances are enough to minimise the uncertainty of this
procedure.
We split the data according to sentence length to account
for the differences in arc lengths that arise from longer or
shorter sentences. Optimally, we would have undertaken
our analyses according to sentence length and would not
have used bins, however, the statistics were too low for
many treebanks in order to this. The sentence lengths bins
used and their statistics can be seen in Figure 4.

Figure 4: Corresponding stats for each bin used in the sub-
sequent analysis with the average across the 26 treebanks
shown and the first and third quartile limits.

Because of the varying difficulty of the datasets in the uni-
versal dependency collection, we have opted to compare the
average EMD against δUAS, defined as the difference be-
tween the performance of an algorithm on a treebank minus
the average score across algorithms for that treebank:

δUASLA
= UASLA

− UASL (2)

where A is the algorithm and L is the treebank.
We then compare the δUAS for an algorithm against its
average EMD. We do this for 26 treebanks from version
2.1 of the Universal Dependencies treebanks. These lan-
guages were selected based on their size. We removed all
languages with less than 1,000 trees in the training set and
in the test set. This was necessary because if a treebank was
too small then most sentence-length bins would not have
enough stats to compute a meaningful EMD.
We split our analysis into projective and non-projective al-
gorithms. The performance between projective and non-
projective algorithms on certain datasets would be domi-
nated by the percentage of non-projective arcs in the data
and would potentially cloud any effect that the displace-
ment distribution similarities might have. Nivre (2008)
found a strong correlation between the percentage of non-
projective dependencies and the improvement in accuracy
for a non-projective parser (r=0.815, p=7.0x10−4) using a



5152

Figure 5: δUAS (as defined in Equation 2) for each algo-
rithm against the corresponding average EMD (k=10) for
projective algorithms in the 10-12 token sentence-length
bin.

much more limited dataset (CoNLL-X shared task 2006).
Furthermore, the search space affects the random distri-
butions (for example, non-projective trees in general have
larger average dependency lengths than projective trees,
see for example (Ferrer-i-Cancho and Gómez-Rodrı́guez,
2016)) and this could also be a confounding factor. So
by separating projective and non-projective algorithms, we
have made the search space a fixed factor.
Finally, we also compared algorithms directly. We did this
by comparing ∆UAS and ∆EMD, defined as:

∆UASL = UASLA1
− UASLA2

(3)

∆EMDL = EMDLA1
− EMDLA2

(4)

where A1 is the first algorithm, A2 is the second, and L is
the treebank.

5.3. Results
There is a lack of meaningful correlation for both projec-
tive and non-projective when looking at the displacement
distributions for unbinned treebanks. The correlation and
corresponding p-value for the projective algorithms were r
= -0.045 and p = 6.97x10−1. For the non-projective algo-
rithms they were r = -0.252 and p = 7.17x10−2. Neither
result is statistically significant nor does either show any
strong correlation despite that. This corroborates the find-
ings of Ferrer-i-Cancho and Liu (2014) and further justifies
our binning procedure.
Figure 5 shows an example plot comparing δUAS against
EMD for the projective algorithms. For this bin (10-12
tokens) there is a strong negative correlation of -0.533.
Hence, r2 is 0.284, meaning that the EMD accounts for
28.4% of the variance seen in δUAS. The correlation is sta-
tistically significant (p = 4.98× 10−7).
The corresponding results for all of the sentence-length bins
can be observed in Table 1, where unsurprisingly the short-
est sentences (lengths 1 to 3) show no correlation (they
are too short for any meaningful difference between depen-
dency displacement distributions) and the correlations start
to diminish as the sentences get larger, but are still statisti-
cally meaningful until sentence lengths of 25.
Figure 6 shows the correlation for the non-projective algo-
rithms for the same bin as Figure 5. It is clear that the corre-

token bin r r2 p
1-3 -0.060 0.004 6.09×10−01

4-6 -0.401 0.161 2.75×10−04

7-9 -0.503 0.253 2.74×10−06

10-12 -0.533 0.284 4.98×10−07

13-15 -0.526 0.277 7.49×10−07

16-18 -0.514 0.264 1.47×10−06

19-21 -0.402 0.161 2.68×10−04

22-24 -0.304 0.093 6.78×10−03

25-27 -0.202 0.041 7.65×10−02

28-33 -0.072 0.005 5.29×10−01

34-39 -0.034 0.001 7.70×10−01

40-99 0.139 0.019 2.43×10−01

Table 1: Full results for each sentence-length bin for pro-
jective algorithms where token bin is the sentence length
range, r is the Pearson coefficient of the correlation between
δUAS and the EMD of each algorithm (e.g. as shown in
Figure 5), r2 is the squared Pearson coefficient which gives
an indication of how much variation in the data this corre-
lation accounts for, and finally p is the p-value for a given
correlation.

Figure 6: δUAS (as defined in Equation 2) for each al-
gorithm against the corresponding average EMD (k=10)
for non-projective algorithms in the 10-12 token sentence-
length bin.

lation is not as strong for the non-projective algorithms, but
it is still large enough to be meaningful and is statistically
significant. Table 2 shows the results for all of the bins
used. Interestingly, the correlation does not diminish so
severely for the non-projective algorithms as the sentence
length increases as is the case for the projective algorithms.

Finally, focusing on direct comparisons between two al-
gorithms, Figure 7 shows the comparison between Arc-
Standard and Arc-Eager for the same bin as above. A
strong negative correlation can be seen which is statistically
significant. The results for the direct comparison between
the three projective algorithms and the two non-projective
algorithms can be seen in Figure 8. These comparisons
yield significant results for Arc-Standard when compared
with Arc-Eager and Covington for moderate lengthed sen-
tences (4-25 tokens), but not for the non-projective algo-
rithms and for Arc-Eager and Covington. This suggests the
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token bin r r2 p
1-3 0.001 0.000 9.92×10−01

4-6 -0.243 0.059 8.32×10−02

7-9 -0.327 0.107 1.79×10−02

10-12 -0.386 0.149 4.70×10−03

13-15 -0.344 0.118 1.25×10−02

16-18 -0.364 0.133 7.90×10−03

19-21 -0.344 0.118 1.26×10−02

22-24 -0.350 0.122 1.11×10−02

25-27 -0.349 0.122 1.11×10−02

28-33 -0.347 0.121 1.17×10−02

34-39 -0.354 0.125 1.01×10−02

40-99 -0.298 0.089 3.97×10−02

Table 2: Full results for each sentence-length bin for
non-projective algorirthms where token bin is the sentence
length range, r is the Pearson coefficient of the correlation
between δUAS and the EMD of each algorithm (e.g. as
shown in Figure 6), r2 is the squared Pearson coefficient
which gives an indication of how much variation in the data
this correlation accounts for, and finally p is the p-value for
a given correlation.

Figure 7: ∆UAS as defined in Equation 3 against ∆EMD
as defined in Equation 4 comparing Arc-Eager and Arc-
Standard (10-12 token sentence-length bin).

previous analysis of comparing all projective and the two
non-projective algorithms is a statistically more powerful
means of analysing the effect of the similarity of depen-
dency displacement distribution on algorithm performance.

6. Discussion
A coarse analysis focusing on dependency displacements
individually does not show a significant difference in per-
formance across algorithms except with regards to the at-
tachment precision for non-projective algorithms. How-
ever, the difference between an algorithm’s biased latent
dependency displacement distribution and the target tree-
bank being parsed is correlated with the performance of the
algorithm for that treebank.
The obtained correlations are statistically significant for the
sentence lengths that comprise most of the sentences found
in actual corpora, both when analyzing projective and non-
projective algorithms. In the case of projective algorithms,

Figure 8: Absolute Pearson coefficients and the corre-
sponding p-values from comparisons between each pair
of projective algorithms and the two non-projective algo-
rithms: Arc-Eager and Arc-Standard (eager-std, blue); Arc-
Eager and Covington (eager-cov, yellow); Arc-Standard
and Covington (std-cov, orange); and non-projective Cov-
ington and Swap-Eager (covnp-swap, magenta). Statis-
tically relevant comparisons can be seen between Arc-
Standard and the other projective algorithms for mid-range
tree lengths.

this factor accounts for more than 25% of the variance in
UAS across algorithms. This is a remarkable proportion
given the complexity in explaining how treebank-specific
accuracy differs between algorithms and the variety of fac-
tors involved.
In fact, to the best of our knowledge, this is the first study in
which these differences are studied quantitatively between
transition-based algorithms of the same search space, thus
casting light on a question that has been open since the in-
troduction of the first transition-based parsers in the early
2000s.
It is worth noting that the effect of displacement distri-
butions on parsing accuracy is independent of the effect
of transition sequence length. It has been hypothesized
that short transition sequences reduce error propagation
(Fernández-González and Gómez-Rodrı́guez, 2018), but
this effect does not help when comparing the relative per-
formance of algorithms on different treebanks, as we do
here: for example, the arc-standard and arc-eager algo-
rithms produce transition sequences of identical lengths,
independently on the syntactic structures found (they al-
ways need exactly 2n transitions for a sentence of length
n). However, as we have seen, their inherent displacement
distributions are different and can be used to explain their
suitability to different treebanks.
The insights provided in this paper could be useful to guide
parsing algorithm design: since algorithms tend to be more
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accurate on corpora that are closer to their inherent distri-
bution, a potential avenue for designing better transition-
based parsing algorithms is to try to make their inherent
distribution match that of human languages more closely.
To further validate the hypothesis investigated here, it
would be interesting to generate artificial treebanks in such
a way so as to create a spread of arc distributions so we can
control the EMD range.
Beyond the explicit findings of this paper, it is interesting
to observe that linguistic considerations can have an impact
in natural language processing systems and more analyses
like this, such as considering what makes certain languages
harder to model than others, should hopefully prove to be
useful in the future (Mielke et al., 2019).

7. Conclusion
We have introduced the concept of an algorithm’s inher-
ent displacement distribution, which captures the algo-
rithm’s bias towards implicitly preferring certain depen-
dency lengths and directions to others. We have shown that
given a treebank, the similarity between each transition-
based algorithm’s inherent dependency displacement dis-
tribution and the treebank’s distribution is a strongly corre-
lated to the corresponding algorithm’s performance on that
treebank.
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Ferrer-i-Cancho, R. and Gómez-Rodrı́guez, C. (2016).
Crossings as a side effect of dependency lengths. Com-
plexity, 21(S2):320–328.

Ferrer-i-Cancho, R. and Liu, H. (2014). The risks of
mixing dependency lengths from sequences of different
length. Glottotheory, 5(2):143–155.

Ferrer-i-Cancho, R. (2004). Euclidean distance be-
tween syntactically linked words. Physical Review E,
70(5):056135.

Futrell, R., Mahowald, K., and Gibson, E. (2015). Large-
scale evidence of dependency length minimization in 37
languages. Proceedings of the National Academy of Sci-
ences, 112(33):10336–10341.

Gibson, E. (2000). The dependency locality theory: A
distance-based theory of linguistic complexity. Image,
language, brain, 2000:95–126.

Gildea, D. and Temperley, D. (2010). Do grammars mini-
mize dependency length? Cognitive Science, 34(2):286–
310.

Goldberg, Y. and Elhadad, M. (2010). An efficient algo-
rithm for easy-first non-directional dependency parsing.
In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics, pages 742–750.
Association for Computational Linguistics.
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