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Abstract
Word embeddings intervene in a wide range of natural language processing tasks. These geometrical representations are easy to manipulate
for automatic systems. Therefore, they quickly invaded all areas of language processing. While they surpass all predecessors, it is still not
straightforward why and how they do so. In this article, we propose to investigate all kind of evaluation metrics on various datasets in
order to discover how they correlate with each other. Those correlations lead to 1) a fast solution to select the best word embeddings
among many others, 2) a new criterion that may improve the current state of static Euclidean word embeddings, and 3) a way to create a

set of complementary datasets, i.e. each dataset quantifies a different aspect of word embeddings.

1. Introduction

Word embeddings are continuous vector representations of
word paradigmatics and syntagmatics. Since they capture
multiple high-level characteristics of language, their evalua-
tion is particularly difficult: it usually consists of quantifying
their performance on various tasks. This process is thorny
because the outcome value does not explain entirely the
complexity of these models. In other words, a model per-
forming well under a specific evaluation might poorly work
for a different one (Schnabel et al., 2015). As an exam-
ple, some word embedding evaluations promote comparison
of embeddings with human judgement while others favour
embeddings behaviour analysis on downstream tasks, as
pointed by Schnabel et al. (2015).

In this work, we propose to investigate correlations between
numerous evaluations for word embedding. We restrict the
study to FastText embeddings introduced by [Bojanowski
et al. (2017), but this methodology can be applied to other
kinds of word embedding techniques. The understanding of
evaluation correlations may provide several useful tools:

e Strongly correlated evaluations raise a question on the
relevance of performing these. Actually, it could be
possible to only keep one evaluation among the cor-
related evaluation set, since its score would directly
affect the score of others. Therefore, it could reduce
the number of needed evaluations.

e Inexpensive evaluation processes correlated with time-
consuming ones could be helpful to speed up optimisa-
tion of hyper-parameters. Indeed, they could be used
to bypass those demanding steps, thus, saving time.

e Some evaluations do not require any external data since
they look into global structure of vectors as presented
in [Tifrea et al. (2018) and |[Houle et al. (2012). If
related to other tasks, these data-free metrics could be
incorporated into the optimisation process in order to
improve the performance on related tasks.

The article is organised as follows. Section 2 compares our
proposed methodology to the current state of the art of word

embeddings evaluation. Section 3 introduces the evaluation
processes and materials we used for this investigation. Then
section 4 details the experimental setup and discusses the
results of experiments. The final section presents some
conclusive remarks about this work.

2. Related Work

Evaluations of word embeddings is not a new topic. Many
resources and procedures, some used in this work and others
exhaustively listed by Bakarov (2018]), have been proposed
in order to compare various methods such as GloVe (Pen+{
nington et al., 2014)) or Word2Vec (Mikolov et al., 2013al).
Quickly, the distinction between intrinsic and extrinsic eval-
uations was made, as stated by (Schnabel et al., 2015). The
first one being related to the word embedding itself whereas
the second uses it as an input of another model for a down-
stream task.

Generally extrinsic evaluations are more crucial than intrin-
sic ones. Actually, extrinsic evaluations often are the ulti-
mate goal of language processing while intrinsic evaluations
try to estimate the global quality of language representa-
tions. Some work (Schnabel et al., 2015) unsuccessfully
try to identify correlations between extrinsic and intrinsic
scores, using word embeddings computed with different
methods. However, intrinsic and extrinsic scores from word
embeddings calculated with the same method, as done by
Qiu et al. (2018]), are significantly correlated. We propose
to prolong their work to English word embeddings and to
more popular datasets. In fact, comparing embeddings from
different classes is thorny since different algorithms catch
different language aspects. As shown by |Claveau and Kijak
(2016), some embeddings could be created in order to solve
specific tasks while neglecting other language aspects. This
is why, we only investigate word embeddings learned using
a unique algorithm: FastText (Bojanowski et al., 2017)).

Another aspect treated in this work is the introduction of
global metrics which are metrics trying to catch intrinsic
structures in vectors, with no data other than these vectors.
Tsvetkov et al. (2015) proposed a metric trying to automati-
cally understand the meaning of vector dimensions. Their
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metric show good correlation with both intrinsic and extrin-
sic evaluations, but still requires data. We propose to extend
this work by taking data-free matrix analysis techniques
from signal processing and computer vision (Poling and
Lerman, 2013 Roy and Vetterli, 2007). The major interest
in data-free metrics is that they can be introduced during the
learning phase as a regularisation term.

3. Evaluation Metrics

In this section, we present three categories of metrics used
to evaluate embeddings: global, intrinsic and extrinsic. For
each category, we highlight the datasets used for the exper-
iments. We denote by € the embedding and W € RV¥*P,
the word embedding matrix of £, where N is the number
of words in the vocabulary and D is the dimension. Con-
sequently, the i-th row of W is a vector with D features
representing the i-th word of the vocabulary.

3.1. Global Metrics

Global metrics are data-free (i.e., with no external data other
than W) evaluations finding out relationships between vec-
tors or studying their distribution. We propose to see two
category here.

3.1.1. Global Intrinsic Dimensionality

Intrinsic Dimensionality (ID) is a local metric, used in in-
formation retrieval and introduced by Houle et al. (2012)),
aiming to be related to the complexity of the neighbourhood
of a query point z. This complexity being the minimal di-
mensionality required to describe the data points falling
within the intersection I of two concentric spheres of centre
x. As highlighted by |Claveau (2018)), high dimensionality
indicates that [ structure is complex and therefore means
that a slight shift on x would completely change the nearest
neighbours, leading to poor accuracy in search tasks (as
analogy, see Section [3.2])). In other words, neighbours of
x and x + € are totally different (where € is a noise vector,
with |[e]| < 1).

An estimated value of local ID of x can be computed on
£ using the maximum likelihood estimate following /Amj
saleg et al. (2015). Thus, noting JleIz (x, k) the k nearest
neighbours of x in £ (using the L2-norm), its formulation
is:

ID,

—1
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This estimate is local and only describes the complexity of
the surroundings of a word vector x. We propose to create
global metrics by studying the distribution of (ID).c¢, as
done by |Amsaleg et al. (2015). For instance, the mean,
median, standard deviation or percentiles of this distribution.
Our intuition is that embeddings containing a large number
of query points with simple neighbourhoods are likely to
perform well on analogy and semantic tasks. On the contrary,

widespread complex neighbourhoods would plummet the
accuracy.

A similar approach to the ID based on distance is the ID
based on similarity. Instead of the L2-norm, the dot prod-
uct, often employed for word embeddings, can be used as
follows:

-1
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In the following, we name those set of metrics: Global
Intrinsic Dimensionality Metrics (GIDM).

3.1.2. Effective rank and Empirical dimension
Metrics from computer vision and signal processing can be
used to quantify the number of significative dimensions of
the word embedding . This quantity can be expressed
by singular values since they indicate the principal axis of
variance of vectors composing W. It can be formulated
in many ways. FirstRoy and Vetterli (2007) proposed the
effective rank (erank):

erank(W) =

exp [ — % -lo 5 ,
g ( ; lzf—lsj ° (Zf_lsJ-)D

where s = (s;);e [1,p] are the singular values of V.

One can notice that the effective rank uses the Shannon
entropy of singular values to measure the quantity of in-
formation held by each of them. Ideally, singular values
should carry similar amount of information (high entropy)
since a preponderant singular value (low entropy) indicates
poor usage of the dimensionality of the embedding space.
In fact, low entropy points out that vectors can be encoded
into a unidimensional space since vectors of W are well
scattered on the axis attached to this preponderant singular
value. Hence it highlights under-training, as low entropy
indicates low information encoding.

This metric is convenient since VM € RYV*P erank(M) €
[1, D]. A value close to 1 corresponds to low entropy thus
the matrix can be compressed into a unidimensional space,
while a value close to D indicates the opposite. Values
in-between are closely equal to the minimum number of
dimensions needed to compress the vectors of W with a low
reconstruction error, as shown by |Roy and Vetterli (2007).

However, for some use cases, the effective rank tends to
overestimate this minimum number of dimensions. This
is why [Poling and Lerman (2013)) proposed the empirical
dimension (edim), introducing a variable parameter p €
[0, 1]. This parameter aims to control the estimation and is
expressed as follows:

Il
sl 2

edim(W, p) =

’

1
where [|z||, = (32; )7
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(a) We consider a semicircle or radius 7. Vectors are laying into this semicircle and defined by their angle 6 with a reference vector v,-(0).

The vectors composing the matrix is vr and U,«
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(b) Powered effective rank (perank), p € [0, 10]. The horizontal red

line corresponds to erank (special case p = 1).

edim
2
=18

[

(c) Empirical dimension (edim), p € [0, 1].

Figure 1: Toy example to inspect perank and edim. A matrix containing two vectors of two dimensions is created taking the
vectors of[lal Values of perank and edim are computed while 6 varies in [0, 7].

The case p = 1 shows strong correlations between edim
and intrinsic and extrinsic tasks. However it is not possible
to go beyond p = 1 with the empirical dimension, despite
the fact that the function seems expandable over this value.
To inspect this domain, we propose another estimator, the
powered effective rank (perank):

perank(WV, p) =
D P P
S% S%
( DY >i=15;

where p varies continuously in [—oo, +00].

Another interpretation of these metrics is as a criterion of
orthogonality. Indeed their maximum is reached for orthog-
onal matrices. As shown in FigureEI, ) = 3 is the argmax
value of these functions, while p seems to control the sensi-
tivity of the metric to orthogonality. In fact it is possible to
show the following:

Vp # 0, perank(W,p) = DV edim(W, p) =
1
& — - W is semi-orthogonal.
max  s;
i€[1,D]

This is a useful result since orthogonality regularisation
can be introduced during the optimisation process as in
Bansal et al. (2018)), |Arora et al. (2019) and |[Zhang et al|
(2018). Therefore, if these metrics are correlated to good
performance of word embeddings, compel orthogonality
would help learning effective models.

3.2. Intrinsic Evaluations

Intrinsic evaluations compare embedding structures to hu-
man judgement. They need external data to carry out this

comparison and mainly assess simple language concepts. In
this work, we study three different kinds of intrinsic evalu-
ations focusing on different language aspects. The cosine
similarity:

(va,vp)
[lvallllvsl]

cos(va,vp) = )
is the metric used to compare two vectors v4 and vp from
the word embedding W.

Below we discuss three common word embedding evalua-
tion methods, namely : similarity, analogy and categorisa-
tion.

3.2.1. Similarity

Similarity consists of scoring word pairs. Each pair is
human-labelled with a score representing the compatibil-
ity between the concepts of the pair. This compatibility
score is specific to datasets and often characterises the syn-
onymy (Finkelstein et al., 2002; |Hill et al., 2015}, |Gerz et al.]
2016; Rubenstein and Goodenough, 19635) or the entailment
(Vuli¢ et al., 2017).

The evaluation relies on measuring the Spearman correlation
between labelled scores and reconstructed scores from the
word embedding. The reconstructed scores are obtained by
taking the cosine similarity (T)) between pairs. The correla-
tion score constitutes in the end the value of the evaluation.
Similarity datasets used in this study are reported on Table
[[] The majority of them are datasets using synonymy (i.e.
semantic proximity) as a guide to estimate the score. We
add HyperLex from Vuli¢ et al. (2017) to introduce another
aspect of language in the evaluation process: entailment. For
instance the type_of or is_a relation: a duck is an animal,
but the opposite is not always true.
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Pairwise Score based

Name Size
on:

WordSim353 S
(Finkelstein et al., 353 | Synonymy (common
2002) words)

| MEN (Bruni et al., 3000 Synonymy (common
2014) words)

| RG (Rubenstein and 65 Synonymy (common
Goodenough, 1965) words)

| SimLex-999 (Hill et 999 Synonymy (common
al., 2015) words)

| SimVerb (Gerz et al., 3500 Synonymy
2016) (essentially verbs)

| RareWords (RW) 2034 Synonymy (low
(Luong et al., 2013) frequency words)

| HyperLex (Vuli et 2616 Entailment (common
al., 2017) words)

Table 1: Similarity datasets used in this work (Bakarov!
2018).

Name Size | Relation Types
Google Analogy Capital, Country,
(Mikolov et al., 19000 | Family, Currency,

| 2013a) Cities, Morphology
MSR (Mikolov et al.,
20130) 8000 | Morphology

Table 2: Analogy datasets used in this work (Bakarov, 2018)).

3.2.2. Analogy

Analogy, proposed by Mikolov et al. (2013b), assesses the
embedding of any kind of relationships. Given three words
w4, wp and we, such that w, is related to wp through a
relation R, the task consists of finding a fourth word, wp,
that is related to w¢ through the same relation R. Techni-
cally, wp is found as a solution of the problems formulated
by [Levy et al. (2015), leveraging the cosine similarity (T)).
We consider the two analogy datasets detailed in Table 2]

3.2.3. Categorisation

Categorisation is a reconstruction exercise aiming to recover
semantic clusters in the embedding space. The dataset is
composed of K clusters and M words. The goal is to recon-
struct K clusters using the M word vectors of the embed-
ding. The reconstruction can be done with any clustering
algorithm, but/Schnabel et al. (2015) suggests using CLUTO

Name Size Number of
clusters
fggrlfni et al., 2010) 5330 56
éflmuhareb, 2006) 402 21
jBI;]?:nsi and Lenci, 2011) | 209 17

Table 3: Categorisation datasets for intrinsic evaluations
(Bakarov, 2018)).

toolkit from [Karypis (2003)) with default parameters. In this
setting, CLUTO algorithm iteratively decomposes word vec-
tors in K clusters and maximises the cosine similarity of
words from the same cluster. After the clustering step, we
compute the difference between the ground-truth clusters
with the reconstructed ones. This is achieved with the purity
metric. For the evaluation of the embedding on this task, we
use three datasets (see Table 3)).

3.3. Extrinsic Evaluations

Extrinsic evaluations are the last sort of evaluations consid-
ered in this work. They focus on more complex language
aspects. Hence, they need external data and an additional
language modelling step. Among the long list of extrinsic
tasks, we chose three of them that cover a large spectrum of
language skills, namely: Named Entity Recognition (NER),
Sentiment Analysis (SA) and Text Classification (TC). Only
one dataset for each task is used since extrinsic evaluations
are particularly time and resource demanding.

3.3.1. Named Entity Recognition

Named entity recognition (Li et al., 2018)) investigates the
capacity of models to extract high-level information from
plain text data. It asks models to recover entity class from
entity mention in text. In the end, each word has to be
classified in different categories representing entities.

CoNLL2003 is the NER dataset considered for this work.
We followed Sang and Meulder (2003) guidelines to set
up the experiment. This dataset is made of sentences ex-
tracted from news thread. Words are then labelled by 5 sort
of entities: O (None), PER (person), ORG (organisation),
LOC (location), MISC (miscellaneous). Training and devel-
opment sets are used for training while test set is kept for
evaluation.

3.3.2. Sentiment Analysis

In our case, sentiment analysis is a sentence-level classi-
fication problem for an opinion text (Joshi et al., 2017).
Sentences have to be classified as positive, negative or neu-
tral.

The Stanford Sentiment Treebank dataset (SST), proposed
by Socher et al. (2013)), is chosen for this task. Each sen-
tence is a movie review labelled by its global judgement:
very positive, positive, neutral, negative or very negative.
The objective is to recover sentiment classes from sentences,
and measure the average accuracy. This setup is known
as SST-1 (Zhou et al., 2016). Here again, train and dev
splits are involved for training whereas test split is kept for
evaluation.

3.3.3. Text Classification

This task is similar to sentiment analysis, since models have
to classify documents into different categories (Kowsari et
al., 2019). The difference relies in the meaning of the labels
and the nature of the text. They characterise high-level
topics.

The AGNews dataset is a data source found onlind]and used

"http://www.di.unipi.it/~qulli/AG_corpus_
of _news_articles.html
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Name

Distribution (uniform choice)

Dimension (-dim)

20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150]

Learning Rate (-Ir)

5-1072,5-1073,5- 10~ 7]

Windows Size (-ws)

2.4,6,8,10, 12, 14, 16, 18, 20, 22, 24]

Number of Epoch (-epoch)

1,2,3,4,5]

Negative Sampling Size (-neg)

2.4,6,8,10,12, 14]

Minimum Frequency (-minCount)

5,50, 100, 250, 500]

Number of Bucket (-bucket)

[1,5-10%,10%,5 - 10%,10%,5 - 107, 10%,2 - 10°]

Min N-gram (-minn) [2,3,4]

Max N-gram (-maxn)

minn + [0, 1,2, 3]

Subsampling Threshold (-t)

[5-10-1,101,1072,1073,10~%,1077]

Training Corpus (-input)

10%, 25% of random Wikipedia articles or whole.

Table 4: Distributions of hyper-parameters used to generate FastText embeddings.

for our experiments. It is composed of news articles falling
in 4 categories: World, Sports, Business and Sci/Tech.

So far we defined every kind of evaluations we need (global,
intrinsic and extrinsic) as well as datasets we use in the fol-
lowing. The aim of our experiment is to highlight correlation
between those kinds of metrics.

4. Experiments

This section details the setup of our experiments. It provides
an overview of the way we produced word embeddings,
how we handled additional modelling for extrinsic tasks and
finally presents the results.

4.1.

FastText (Bojanowski et al., 2017) is a method extending
Word2Vec (Mikolov et al., 2013a) using morphology of
words to compute their vector representations. We chose the
SkipGram version of FastText to produce word embeddings
because this method is very generic, hence, usable as a good
proxy for other embedding methods. Particularly, it includes
Word2Vec.

Embeddings Generation Process

Using the FastText Libraryﬂ we generated 140 FastText em-
beddings with different sets of hyper-parameters. Those are
randomly sampled from distributions listed in Table[d] With
this method, we created various FastText embeddings with
different handicaps and assets. For instance, the window
size influences the ability to comprehend paradigmatic and
syntagmatic aspects. The training corpus is also a hyper-
parameter and is based on Wikipedia dumpsE] being either
complete or downsampled (around 10% or 25% of the origi-
nal size).

At the end of the training phase, we extracted the first
200,000 most frequent words from the FastText embeddings
in order to compute global metrics and perform the analogy
task. For extrinsic tasks, word representations are calculated
with the FastText models.

nttps://github.com/facebookresearch/
fastText

Jhttps://dumps.wikimedia.org/
wikidatawiki/

4.2. Additional Modelling for extrinsic tasks

As mentioned above, extrinsic evaluations cannot be car-
ried with the word embedding alone. It requires an addi-
tional model (as neural networks) which incorporates ex-
ternal data from the training corpus of the task and extract
task-proprietary knowledge from input word vectors. For
each extrinsic task, we fixed an architecture and its param-
eters. Therefore, the only variable considered is the input
word embeddings. Models are implemented with the Py-
torch framework (Paszke et al., 2017) and remain relatively
simple since we are not interested in state of the art perfor-
mance but in variations of the performance with regard to
input word embeddings.

Named entity recognition. The BiLSTM-CREF architec-
ture, proposed by Lample et al. (2016)), is chosen for this
task. We replaced LSTM by GRU for simplicity without
compromising the performance of the architecture as shown
by [Chung et al. (2014). The CRF layer is taken from Al-
lenNLP (Gardner et al., 2017). We fixed the number of
BiGRU layers to 1 with 2x256 units. Before being fed to the
CRE, a linear layer turns the 512 features of the BIGRU to
5 features corresponding to the classes of the dataset. This
model achieves near state-of-the-art performances (91.27%
Flscore) with a 300-dimensional FastText trained following
Bojanowski et al. (2017).

Sentiment analysis. A BiGRU with identical hyper-
parameters (as NER) is chosen for this evaluation. The
last hidden vectors of both directions are concatenated, such
that the input sentence is turned into a vector. A linear
layer and a softmax transform this vector into a vector of
probabilities indexed by sentiment classes.

Text classification. Sentiment analysis model is used here.
All text is passed into the BiGRU model and the last hid-
den layer is used to infer text classes. Instead of senti-
ment classes, the output is a vector of probabilities on topic
classes.

4.3. Results

Each FastText embedding is assessed by evaluations men-
tioned in Section E} Therefore, each word embedding is
represented by the output scores of evaluation procedures.
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analogy-MSR-acc| coefficlient

similarity-RW
similarity-MEN
similarity-SimVerb
similarity-RG
similarity-HyperLex
similarity-SimLex
similarity-WordSim
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Figure 2: Pearson correlation matrix between extrinsic and intrinsic evaluations. The first three columns are extrinsic tasks,
while the rest are intrinsic ones. For each evaluation, we indicate the category of evaluation followed by the dataset. For
extrinsic task, we eventually add the aggregation metric (Fscore or Accuracy).
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(a) Spearman correlation matrix for perank

edim-1.0| spearman
coefﬁcl'\ent
edim-0.9
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edim-0.7,

edim-0.6

edim-0.5]
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edim-0.3|
edim-0.2
dim-0.1
edaim: 0
9 9
/5, ",
W, VoG
Sy 0
R, 9
9 .,
¢

(b) Spearman correlation matrix for edim

Figure 3: perank and edim @) correlation matrices with other evaluations. Each row corresponds to a different value of
p and is labelled in the following format perank—{p} and edim—{p}.
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The objective of this part is to investigate correlations be-
tween those scores.

For clarity, we divided the results into four different figures:

o Figure[2|summarises the Pearson correlation coefficient
between each pair of extrinsic or intrinsic evaluations.
Pearson coefficient is chosen here because we assume
the dependence between scores to be linear: the im-
provement of a specific task must be proportional to
other task improvements.

e Figure [3a gives Spearman correlation coefficient be-
tween powered effective rank and extrinsic/intrinsic
evaluations. Spearman is preferred instead of Pearson
since the correlation between global metrics and evalu-
ations is potentially not proportional. We do not report
correlations using GIDM since those metrics do not
correlate well with other evaluations.

e Figure 3b] gives Spearman correlation coefficient be-
tween powered effective rank and extrinsic/intrinsic
evaluations.

e Figure[]reports the scores for each intrinsic and extrin-
sic task explained by global metrics (edim and perank,
for values of p leading to the best correlation scores,
and low correlation with the embedding dimension).

4.4. Synthesis
Based on our results, we derived three main remarks.

Task / Dataset independence. Figure 2] shows linear cor-
relations between pair of tasks. As visible on this figure, a
large number of intrinsic tasks are strongly correlated (coeffi-
cient > 0.9). 7 tasks seem remarkably independent from oth-
ers (from left to right): NER, SA, TC, categorisation-Battig,
similarity-RW, analogy-MSR and analogy-Google. An ex-
planation for this is that those tasks catch language aspects
not handled by other evaluations. For instance similarity-
RG and similarity-Wordsim are particularly linearly depen-
dent since they assess the same notion: similarity of com-
mon words. At the opposite, similarity-RW and similarity-
Wordsim are not as dependent since RW essentially contains
infrequent words. With such figures, we can constitute a set
of tasks assessing independent aspects of language, avoiding
redundancy. In practice, we should avoid measuring redun-
dant information and focus on evaluations catching distinct
language aspects. In doing this, we would obtain a more
accurate picture of embedding qualities.

Fast selection. A common problem in downstream tasks
is hyper-parameters optimisation. This step is time-
consuming and often ignores the optimisation of word em-
bedding parameters. Indeed, it focuses only on the hyper-
parameters of the downstream model. Figure [2] 3aand [3b|
expose moderate correlations between intrisic/global eval-
uations and extrinsic tasks. This result is important since
intrinsic and global evaluations are faster to carry out than
extrinsic ones. Therefore, considering a set of word embed-
dings trained with different hyper-parameters, they can help
choosing the word embedding likely to yield the best results.

This seems confirmed by Figure i} best performances are
obtained for the highest values of global metrics (perank and
edim). However, we must admit that intrinsic / global eval-
uations are only indicators pointing toward the best word
embedding. If possible, one must still prefer optimising
word embeddings with regard to the final downstream objec-
tive, as shown by |Claveau and Kijak (2016) and [Schnabel et
al. (2015).

Optimisation criterion. For certain values of p, powered
effective rank and empirical dimension are positively corre-
lated with most of evaluations, as shown in Figure [3_E] and
b} This implies that maximising perank / edim would si-
multaneously increases scores of other evaluations. This
point is also suggested on Figure ] However, we saw in
Section [2] that maximising perank / edim is equivalent to
equalising singular values. This means that the word embed-
ding matrix should be orthogonal or close to an orthogonal
matrix. Consequently, it would be beneficial to regularise
this matrix such that it cannot be far from being orthogonal.
This could be achieved using the SRIP regulariser proposed
by|Bansal et al. (2018)), or SVD parameterisation as in the
work of Zhang et al. (2018) and |Arora et al. (2019). The
major problem is the size of the word embedding matrix
which makes the optimisation process time-consuming.

Actually, the points on optimisation criterion and fast se-
lection are closely related. They both stand in favour of
the maximisation of edim or perank. As shown in Figure 3|
and[4] it seems crucial to have the highest edim (or perank)
possible in order to perform well on intrinsic or extrinsic
tasks.

5. Conclusion

In this work, we created and evaluated a large variety of
FastText embeddings. From these experiments we outlined
significant correlations between all kinds of evaluations. Em-
pirical dimension is a global metric taken from computer
vision. This one helped us to discover the necessity of or-
thogonal regularisation. Indeed, a high empirical dimension
seem to positively influence the performance on various
intrinsic and extrinsic evaluations. Therefore, maximising
the empirical dimension while learning word embeddings
should improve its downstream effectiveness.

In addition to edim, we defined the powered effective rank
(perank), an extension of the effective rank introducing a
parameter controlling the orthogonal sensitivity. The empir-
ical dimension was already proposing to control that aspect.
However, the perank is defined on a larger domain and, thus,
we expect it to discover new regions hidden by the domain
constraints of the empirical dimension. We observed that
perank is less sensitive to the embedding dimension for high
values of p than edim. Thus, a criterion based on perank
may be more adapted to regularise intrinsic vector structures,
than a criterion based on edim.

This study exposes the complexity of evaluation and its im-
portance. Our experiments probed task independence. This
is an important point since one prefers to assess a model
with a set of independent tasks in order to obtain a big and
complete picture of the quality of its model. Considering our
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Figure 4: Scores (vertical axis) for all intrinsic and extrinsic tasks explained by edim or perank (horizontal axis), respectively
with p = 1 or p = 2.5. Each point corresponds to a word embedding and represents its performance on extrinsic or intrinsic

tasks (y-axis) and its edim or perank value (x-axis).

work and the state of the art, correlations seem to be signifi-
cant if underlying embeddings are trained with an identical
algorithm and different parameters. Future investigations
may try to use global metrics as regularisation terms during
the learning process and observe whether it improves corre-
lated extrinsic evaluations. Another important future study
is to apply this methodology to other categories of algorithm.
As we only studied FastText here, it would be essential to see
if our work generalises to other word embedding techniques.
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