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Abstract
Genes and proteins are the fundamental entities of molecular genetics and deeper knowledge about their interactions constitutes a cor-
nerstone for advancing precision medicine. We here introduce PROGENE (formerly called FSU-PRGE), a corpus that reflects our efforts
to cope with this important class of named entities within the framework of a long-lasting large-scale annotation campaign at the Jena
University Language & Information Engineering (JULIE) Lab. We partitioned the entire corpus into 11 subcorpora covering various
biological domains to achieve an overall subdomain-independent corpus. It consists of 3,308 MEDLINE abstracts with over 36k sen-
tences and more than 960k tokens annotated with nearly 60k named entity mentions. Two annotators strove for carefully assigning entity
mentions to classes of genes/proteins as well as families/groups, complexes, variants and enumerations of those where genes and proteins
are represented by a single class. The main purpose of the corpus is to provide a large body of consistent and reliable annotations for
supervised training and evaluation of machine learning algorithms in this relevant domain. Furthermore, we provide an evaluation of two
state-of-the-art baseline systems—BIOBERT and FLAIR—on the PROGENE corpus. We make the evaluation datasets and the trained
models available as a benchmark to encourage comparable evaluations of new methods in the future.
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1. Introduction
Genes and proteins are the fundamental entities of molecu-
lar genetics and deeper knowledge about their interactions
constitutes a cornerstone for advancing precision medicine.
Hence, they attracted the interest of the biomedical NLP
community for a long time already, with focus on two infor-
mation extraction tasks. The first one, named entity recog-
nition and grounding, aims at locating gene and protein
mentions in a document and, in a second step, mapping
such mentions onto some well-established identifier system
or name space, such as provided by Gene Ontology (GO)
(Gene Ontology Consortium, 2001), UNIPROT (UniProt
Consortium, 2017), NCBI GENE (Brown et al., 2015) or
KEGG (Kanehisa et al., 2012). Both tasks were particu-
larly featured in several iterations of the BIOCREATIVE
Challenge (Hirschman et al., 2005; Krallinger et al., 2008;
Arighi et al., 2011; Mao et al., 2014). The second task aims
at extracting relations between genes or proteins in terms
gene/protein interactions from documents (as investigated
in several iterations within the BioCreAtIvE (Krallinger et
al., 2008; Leitner et al., 2010; Arighi et al., 2011; Doğan et
al., 2017) and BioNLP relation extraction challenges (Kim
et al., 2009; Pyysalo et al., 2011; Kim et al., 2011; Pyysalo
et al., 2012; Kim et al., 2013; Nédellec et al., 2013; Bossy
et al., 2015)). Also of interest to the biomedical NLP com-
munity are other types of gene-induced relations (as wit-
nessed by corresponding challenge tasks) like gene–disease
relations (Pyysalo et al., 2015; Wang et al., 2019) or gene-
chemical interactions (Krallinger et al., 2017).
For both kinds of tasks, annotated corpora are needed—
either as repositories from which training data for classi-
fiers can be drawn in a supervised learning mode, or as
gold standards for evaluating the performance of named en-
tity or relation taggers (Rebholz-Schuhmann et al., 2013).

Yet, existing corpora differ greatly in size, thematic fo-
cus, annotation quality, granularity of the underlying con-
ceptual entity representation and the way individual entity
classes are defined—even when different corpora cover the
same entity classes. Thus, merging all available annotations
into one large corpus and regard it as a coherent source of
gene/protein annotations (Wang et al., 2009; Wang et al.,
2010; Galea et al., 2018) might not be advisable. This
stresses the need for large-scaled, consistently annotated
and quality-checked corpora for specific entity classes.
We here describe such a large-scale protein annotation cam-
paign of MEDLINE abstracts and introduce the PROGENE
corpus, with special emphasis on biologically reliable and
annotation-wise consistent metadata. An earlier version of
that corpus is described by Hahn et al. (2010) and has
community-widely been referred to as the FSU-PRGE cor-
pus (cf., e.g., Habibi et al. (2017; Dang et al. (2018)). How-
ever, the FSU-PRGE version did not offer fully detailed
annotation levels but collapsed the largest part of the avail-
able annotations in the single protein/gene (PrGe) class
for reasons of simplicity. In PROGENE, we now enrich
the whole corpus with annotation levels for genes/proteins,
families/groups, complexes, variants and enumerations in
their original annotation format. The new corpus version is
available at DOI 10.5281/zenodo.3698568.

2. A Survey of Gene/Protein Annotation
In this section, we give a chronological overview of existing
corpora with focus on gene or protein annotations summa-
rized in Table 1. Unless stated otherwise, the listed corpora
use a single annotation level to manually1 mark occurrences

1Hence, we here exclude an alternative stream of work on so-
called silver standards (Rebholz-Schuhmann et al., 2010; Sousa et
al., 2019) where annotations are derived using automatic taggers.



4586

Name Text Type # Texts # Sentences # Tokens # Genes # Relations

Named Entity Focused (Genes/Proteins)

GENIA v3.02 abstracts 2,000 20,546 472,006 30,269 n/a
JNLPBA abstracts 2,404 24,806 568,786 35,366 n/a
GENETAG sentences 20,000 20,000 547,801 23,996 n/a
PRODISEN abstracts 2,466 21,000 469,000 n/a
OSIRIS abstracts 105 1,043 28,697 768 n/a
AIMED PROTEINS abstracts 748 7,785 195,396 5,287 n/a
PENNBIOIE abstracts 2,514 14,305 357,313 17,427 n/a
CRAFT v4.0 full texts 97 30,830 793,651 23,578 n/a
CELLFINDER full texts 10 2,177 65,031 1,621 n/a
IGN abstracts 543 4,807 126,368 5,948 n/a
GNORMPLUS abstracts 694 6,583 168,853 10,639 n/a
PHARMACONER clinical reports 1,000 396,988 3,009 n/a
PROGENE abstracts 3,308 36,223 960,757 59,514 n/a

Relation Focused (with Genes/Proteins as Arguments)

IEPA various 200 243 151,74 1109 335
LLL sentences 77 77 1,496 117 165
ITI/TXM full texts 455 137,400 3,900,000 16,1448 44,686
BIOINFER sentences 1,100 1,100 33,858 6,349 2,662
AIMED INTERACTIONS abstracts 225 2,202 59,700 4,227 1,069
GENEREG abstracts 314 3,125 82,747 1,971 1,770
VARIOME full texts 33 6,051 172,987 4,613 12,885

BIONLP 2009 abstracts 1,210 11,346 267,450 14,969 Task 1: 13,588
Task 2: 13,623

BIONLP 2011 GE TASK abstracts 1,210 11,346 267,450 14,969 13,603
full texts 14 80,962 6,580 4,444

BIONLP ’13/’16 GE TASK full texts 34 187,989 12,068 9,364
AGAC abstracts 500 5,080 1,154 1,514
BIOCREATIVE VI abstracts 597 5,724 149,469 8,833 760
PGXCORPUS sentences 945 945 29,016 1,762 2,875

Table 1: Text corpora with gene/protein annotations (‘#’ stands for ‘number of’, ‘n/a’ for ‘not applicable’) in the order of
publication year. The number of texts relates to the document sort making up the corpus, i.e. abstracts, full texts, sentences
or other. The number of relations refers to all relations in the corpus, not just those that incorporate genes or proteins.

of genes and gene products, such as proteins or mRNA, in
texts. It is common practice in biomedical annotation to
create a more abstract annotation class as an umbrella for
all entities that relate to specific parts of a DNA sequence
due to the difficulties that arise in the attempt of a more
fine-grained approach (Ohta et al., 2009). Especially the
difference between the mentions of actual gene sequences
as opposed to the expressed proteins of the same gene is
sometimes difficult to distinguish, even for human experts
(Hatzivassiloglou et al., 2001). The statistics on token, sen-
tence, gene/protein and annotation counts given for each
corpus in this section are taken from the respective official
publication, the overview table of Habibi et al. (2017)2 or
computed by ourselves, in this order of availability.
The structure of this section is as follows. We define two
groups of corpora. The first are those that are annotated
for genes and/or proteins – possibly amongst other entity
classes – without primarily disclosing relation information
about the annotated entities. The second group consists

2Even though they applied their own segmentation, the num-
bers they found are close to the official ones when available.

of corpora that ultimately aim for the annotation of rela-
tions between gene/protein entities. Both groups are in-
ternally ordered chronologically by first release of the cor-
pus or their publication year. In this manner, this section
serves as a historical overview of gene/protein corpus cre-
ation (for alternative surveys of text corpora annotated with
gene/protein metadata, cf. Habibi et al. (2017); Pyysalo
et al. (2008) compare five early protein relation corpora—
AIMED, BIOINFER, HPRD50, IEPA, and LLL).

Proteins or Genes.

The GENIA corpus (Ohta et al., 2002; Kim et al., 2003)
was the first large corpus annotated for biomedical entities
containing about 472k tokens. Its documents were gathered
from a MEDLINE search for “human, blood cells and tran-
scription factors,” thus defining the thematic focus of the
corpus. GENIA is a notable exception of the otherwise com-
mon practice to collapse genes, gene products and other re-
lated concepts into a single class. It uses an ontology of 47
classes including proteins and DNA which both exhibit
a number of subclasses like complex or subunit (pro-
teins) and family or group or domain or region
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(DNA) the latter of which is roughly used to denote genes
in the annotated text, as long as the physical instance of
DNA is referred to. However, this fine annotation granu-
larity comes at the cost of lowered annotation consistency
(Ohta et al., 2009). To alleviate this issue and to make
GENIA comparable to annotation schemes using higher-
level concepts, such as the GENETAG corpus (see be-
low), GENIA was reannotated with the GGP (gene or
gene product) class (Ohta et al., 2009). This follow-
up version contains 12k GGP annotations and 15,5k an-
notations of the original protein class. The GENIA cor-
pus also includes a subset annotated for protein-protein-
interactions, the GENIA interaction corpus that was used
for the BIONLP Shared Tasks in 2009 (Kim et al., 2009)
and 2011 (Kim et al., 2011) (see below).
The JNLPBA challenge corpus (Kim et al., 2004) comprises
all of GENIA version 3.02 as its training set. The corpus
added another 404 documents with nearly another 97k to-
kens annotated for a wide variety of entities of importance
in molecular biology. Taken together, the corpus features
569k tokens and 35k annotations for genes or proteins.
There is a revised, cleaned version of this corpus available
(Huang et al., 2019) that (according to the authors) is more
consistently annotated than the original one.
Another early corpus containing gene and protein annota-
tions, also of a considerable size, is GENETAG (Tanabe et
al., 2005). It comprises nearly 550k tokens and 24k annota-
tions of genes or proteins. The documents constituting the
corpus were selected by automatically estimating the prob-
ability of MEDLINE abstracts containing gene mentions or
not. By applying the same method to the sentences of those
abstracts exactly 20,000 sentences, half of them chosen
from the highest-ranking sentences and the other half from
the lowest-ranking sentences, were ultimately sampled for
the corpus. In effect, no specific biological domain was tar-
geted. The corpus was used for the BIOCREATIVE I (Yeh
et al., 2005) (15,000 sentences) and II (Smith et al., 2008)
(all 20,000 sentences) challenges on gene mention recogni-
tion. GENETAG took another route to gene/protein anno-
tation than GENIA and created an umbrella class for genes
and gene products as was described at the beginning of the
section and later also adopted for the GENIA corpus.
Whereas the corpora discussed so far assigned an annota-
tion span to gene/protein information, PRODISEN is ag-
nostic to such span information. Recognizing the issue of
thematic disbalance in existing annotated biomedical cor-
pora, PRODISEN is an approach to sample PUBMED on a
large scale with as little topic bias as possible. For the Pro-
tein Description Sentence (PRODISEN) corpus (Krallinger
et al., 2006), randomly selected PUBMED articles were
screened by biological experts who had to classify sen-
tences into three categories: whether they explicitly or im-
plicitly contained information about proteins (and genes),
or did not contain such descriptions, or whether the experts
were unsure about making such a decision. The first class
was additionally classified in sentences containing infor-
mation on relevant aspects of a gene, gene product, gene
group, protein family or protein domain based on the anal-
ysis of the contextual information. Altogether, PRODISEN
incorporated 21k sentences extracted from 2,466 abstracts,

with 469k tokens. The corpus was split into two halves,
one containing the randomly selected abstracts, the other
one enriched by citation overlap.
The OSIRIS (Furlong et al., 2008) system finds mentions of
Single Nucleotide Polymorphisms (SNPs), i.e., gene varia-
tions, in the scientific literature. For its evaluation, a corpus
of 29k tokens with 768 gene/protein annotations (Habibi et
al., 2017) was created.
The AIMED corpus (Pyysalo et al., 2008) contains two
parts, one annotated purely for genes/proteins, AIMED
PROTEINS, the other for protein-protein-interactions,
AIMED INTERACTIONS (for details, cf. Table 1). The doc-
uments are focused on the human genome. Taking both
parts together, AIMED is composed of 9987 sentences,
255k tokens and contains 9514 gene/protein annotations.
The PENNBIOIE corpus,3, version 1.0, consists of two
thematically disparate parts, one dealing with oncology,
the other with the inhibition of the CYP450 enzyme. The
whole corpus comes with 357k tokens and about 17k anno-
tations (Habibi et al., 2017) of genes and gene-related en-
tities in the oncology subset and substance annotations
in the CYP450 subset that mostly refer to proteins.
In contrast to using abstracts from MEDLINE, the CRAFT
corpus takes full texts from PUBMED CENTRAL. The orig-
inal release that was described in Bada et al. (2012) con-
tained 67 full text articles annotated for a range of enti-
ties including genes/proteins. For the BIONLP OST 2019
CRAFT Task (Baumgartner et al., 2019), another 30 articles
were added as test data, amounting to 97 full texts. For
the statistics given in this paper, especially in Table 1, we
downloaded release 4.0.0 from GITHUB4 and extracted the
PoS tags and sentences and the PR(OTEIN) levels with the
script offered in the download. The corpus contains nearly
800k token and 24k gene/protein annotations.
CELLFINDER (Neves et al., 2012) is also based on full-
texts (10 documents, 2,177 sentences), with a focus on stem
cell research. It offers annotations for anatomy, cell compo-
nents, cell lines, cell types, genes and species mentions, in-
cluding 65,031 tokens with 1,621 gene/protein annotations.
Two corpora originated from the BIOCREATIVE II Chal-
lenge on Gene Normalization, the Instance-Level Gene
Normalization corpus IGN (Dai et al., 2013) and the
GNORMPLUS corpus (Wei et al., 2015), mainly composed
of the MEDLINE abstracts used in that challenge. Both ex-
tend the original annotation data, basically lists of NCBI
Gene identifiers for the human genes mentioned in the ab-
stracts, with mention-level annotations rooted in the ab-
stract text by providing the respective character offsets.
Both corpora also provide the NCBI GENE identifiers for
the mentions with a varying level of completeness; the
GNORMPLUS data also contain annotations for gene fam-
ilies or groups and domain motifs. To this point, both cor-
pora consist of 543 abstracts, with 4,8k sentences and 126k
tokens. The GNORMPLUS corpus contains additional 151
documents from the Citation GIA test collection.5

3https://catalog.ldc.upenn.edu/LDC2008T21
https://catalog.ldc.upenn.edu/LDC2008T20

4https://github.com/UCDenver-ccp/CRAFT/
tree/v4.0.0

5https://ii.nlm.nih.gov/TestCollections

https://catalog.ldc.upenn.edu/LDC2008T21
https://catalog.ldc.upenn.edu/LDC2008T20
https://github.com/UCDenver-ccp/CRAFT/tree/v4.0.0
https://github.com/UCDenver-ccp/CRAFT/tree/v4.0.0
https://ii.nlm.nih.gov/TestCollections
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The PHARMACONER corpus evolved from the BIONLP
OST 2019 PHARMACONER Task (Gonzalez-Agirre et al.,
2019) and is unique for several reasons. Unlike all the other
English-language corpora discussed here, it features Span-
ish language data and primarily deals with chemical com-
pounds and drugs, but it also carries 3,009 protein anno-
tations. It consists of a manually classified collection of
1,000 clinical case report sections (397k tokens) derived
from open access Spanish medical publications, named the
Spanish Clinical Case Corpus (SPACCC).6

Relations Involving Proteins or Genes as Arguments.
The IEPA corpus (Ding et al., 2002) was created to repre-
sent a diverse set of interactions between chemicals, mostly
proteins. The main goal was to compare relation extrac-
tion efforts on different sizes of textual units. The corpus
contains 243 sentences, with 15k tokens. There are 1,109
annotations of genes or proteins whose names occur in a
list of 16 gene/protein names (Pyysalo et al., 2008). While
the original documents were drawn from MEDLINE ab-
stracts, the corpus documents themselves represent diverse
text spans, from single sentences to whole abstract text bod-
ies which describe the interaction between two entities.
The LLL corpus was created for the Learning Language in
Logic – Genic Interaction Extraction Challenge (Nédellec,
2005) and comes with 77 sentences involving protein-gene
interactions in Bacillus subtilis. The annotations consist
of agent-target pairs where agents are proteins and targets
are genes resulting in 117 annotations of genes/proteins be-
longing to a list of 116 names (Pyysalo et al., 2008).
The ITI TXM corpus (Alex et al., 2008) annotation effort
resulted in two large biomedical corpora. The first cor-
pus copes with protein-protein-interactions (PPI), the sec-
ond focuses on tissue expressions (TE). Both corpora are
larger than all other corpora we discuss here, including our
own, with 2M and 1.9M tokens, respectively. They feature
a protein annotation level due to its importance for the
relation types in focus, and also contain a number of other
entity types that may also play a role in those relations like
complex, mRNAcDNA, disease and others (altogether
15 entity classes). For the TE corpus only, a gene anno-
tation level was added. The PPI corpus was selected from
full texts containing keywords pointing at protein-protein-
interactions such as bind, interact etc. and contains
89k protein annotations, whereas the TE corpus holds 61k
protein and 12k gene annotations. However, The combined
corpus was not publicly available as of March 2020.
The BIOINFER corpus (Pyysalo et al., 2007) was created
by searching PUBMED for pairs of proteins known for their
interactions. From the found articles, the abstracts were
searched for occurrences of these pairs which resulted in
1,100 sentences (about 34k tokens) in the original version.
For the annotation process, BIOINFER builds on the GE-
NIA physical type and relation ontology and each sentence
is separately assigned annotations at the entity, relation-
ship, and (syntactic) dependency level. Entity types include
physical entities, such as individual genes, proteins, pro-
tein families and compexes, or RNA, processes (e.g., phos-
phorylation) and properties associated with entity states,

6https://github.com/PlanTL-SANIDAD/SPACCC

e.g., amount, location, function, dynamics, and physical
state. The relationship ontology covers four major classes,
namely partonomic part-of and taxonomic is-a, (ex-
perimental) observations, and causal relations. BIOINFER
contains 6,349 entity and 2,662 relationship annotations.
The GENEREG corpus (Buyko et al., 2010) consists
of 314 PUBMED abstracts dealing with the regulation
of gene expression in the model organism E. coli. An-
notation is based on nine categories referring to the
Gene Regulation Ontology (GRO) (Beisswanger et al.,
2008), viz. Gene Expression, Transcription,
Regulation of Gene Expression (ROGE),
Positive ROGE, Negative ROGE, and Experi-
mental Intervention, with subtypes Genetic
Modification, Artificial Increase, and
Artificial Decrease. GENEREG comes with 1,770
relation annotations that are linked to the GENIA corpus,
as well as to biomedical and general language domain
lexicons. There is also an overlap with PROGENE for 149
documents, yet gene annotations in GENEREG focus more
on additional entity types (such as transcription factors)
than on finer granularity, the goal of PROGENE.
The VARIOME corpus focuses on “human genetic varia-
tion and its relationship to disease” (Verspoor et al., 2013).
Its annotations of genes, body parts, patient cohorts and
other clinically relevant types culminate in the annotation
of relationships between those entities to express that pa-
tients have a particular genetic variation and how this re-
lates to diseases the patients have. The corpus is built
from 33 PUBMED CENTRAL full texts with 173k tokens,
6,051 sentences and 4,613 gene/protein annotations.
The BioNLP Shared Task on Event Extraction issues
a series of continuously updated and enhanced relation-
centered corpora aiming at the construction of an NFκb
knowledge base. Starting with the first challenge in 2009,
the complete reference corpus (including training, devel-
opment and test data) (Kim et al., 2009) is composed of
1,210 PUBMED abstracts, with roughly 11k sentences or
267k tokens. It is based on the GENIA event corpus (Kim
et al., 2008) and contains 13.6k annotations of nine dif-
ferent event types taken from the GENIA event ontology
(Gene expression, Transcription, Protein
catabolism, Phosphorylation, Localization,
Binding, Regulation, Positive and Negative
regulation). Gene/protein annotations were taken from
the modified GENIA corpus (Ohta et al., 2009).
The follow-up event featured the GENIA Event (GE) Task
2011(Kim et al., 2011) using the same nine relation types
(and annotations) as in 2009, but added to the abstract por-
tion from 2009 a new full-text segment composed of 14
articles (with 82k tokens) , thus adding 6,580 annotations
for genes and proteins and 4,444 relation annotations.
The third edition of this shared task in 2013 came
up with a new, more recent full-text-only corpus ex-
tracted from the Open Access subset of PUBMED
CENTRAL (Kim et al., 2013). Four new event
types were added; Protein modification and its
three sub-types, Ubiquitination, Acetylation
and Deacetylation. Furthermore, the Protein
modification types were modified such that they were

https://github.com/PlanTL-SANIDAD/SPACCC
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directly linked to causal entities, which was only possible
through Regulation events in previous editions. This
corpus comprises 34 full texts (14 were taken over from the
2011 campaign), with 188k tokens, 12k protein and 9,4k
event annotations.
For the fourth edition of the BIONLP Shared Task in 2016
the original corpus from the third round was cleaned and
further augmented by assignments of UNIPROT IDs for
named entity grounding (Kim et al., 2016).
In the 2019 edition of the BIONLP Shared Task, Wang et
al. (2019) introduced the Active Gene Annotation Corpus
(AGAC) for the task of drug repurposing. They collected
500 MEDLINE abstracts, with slightly more than 5k sen-
tences, using the Mesh terms “Mutation/physiopathology”
and “Genetic Disease” and annotated AGAC with four an-
notators for eleven types of named entities, which were cat-
egorized into bio-concepts (e.g., Variation or Pathway), reg-
ulation types, and other entities (among them Disease, En-
zyme, and 1,1k mentions of Gene/Protein), as well as two
types of thematic relations between them.
For the latest Precision Medicine Track in BioCreative VI,
Doğan et al. (2017) created two corpora, one with rel-
evance judgments for abstracts in the precision medicine
domain, the second annotated with PPIs that are affected
by a mutation. Other interaction relations have not been
annotated for this corpus. The gene/protein arguments of
the annotated PPIs are also marked in the corpus and la-
beled with their NCBI GENE ID. We determined the statis-
tics about the relation corpus reported in Table 1 from the
download of the relation training dataset from the BIOCRE-
ATIVE website7 in XML format. We extracted the titles
and abstracts from the XML documents and counted 5,724
sentences with nearly 150k tokens. From the XML annota-
tions, we gathered 1,762 gene annotations and 2,875 men-
tions of relations.
The PGXCORPUS (Legrand et al., 2020) focuses on the
pharmacogenomics domain. The corpus download con-
tains 945 tokenized sentences taken from 911 PUBMED ab-
stracts (roughly 30k tokens). 1708 (plus 54 genomic varia-
tion) annotations relate to the level of Gene or protein,
besides the Chemical, Phenotype and more general
Genomic factor annotation classes (overall, 6,761 PGx
entities and 2,875 relationships between them were anno-
tated).

3. The PROGENE Corpus
3.1. Data and Annotation Setup
The development of the PROGENE corpus started at the
JULIE Lab Jena in 2008 (at that time, informally referred
to as FSU-PRGE). There were two annotators, one of them
an expert biologist, the other an NLP researcher with strong
biomedical background. The main goals of the annotation
project were

• to construct a consistent and (as far as possible)
subdomain-independent and comprehensive protein-
annotated corpus

7https://biocreative.bioinformatics.udel.
edu/

• to differentiate between protein families and groups,
protein complexes, protein molecules, protein variants
(e.g. alleles) and elliptic enumerations of proteins—
much needed distinctions for professional biologists.

To achieve a large coverage of biological subdomains, doc-
uments from multiple existing protein/gene corpora were
reannotated. To increase coverage, new document sets
were created. All documents are abstracts from PUBMED/
MEDLINE. The final corpus consists of the union of all
the documents in the different subcorpora. The annotation
guidelines were primarily created by the expert biologist
with support from the other annotator. The active learning-
based Jena Annotation Environment (JANE) (Tomanek et
al., 2007) was chosen to manage the annotation project.
JANE leverages the MMAX2 tool (Müller and Strube, 2006)
for the annotation process which is why the primary anno-
tation format of the corpus is the MMAX2 format.
An overview of the subcorpora is given in Table 2. The sub-
corpus designations are of a technical nature which is the
result of the original document selection process to reach a
large domain coverage. We keep the names for reference to
the original data.

Entity Type # of Entity PercentageAnnotations

protein 43,070 0.72
protein family or group 12,304 0.21
protein complex 2,858 0.05
protein variant 665 0.01
protein enum 617 0.01

Total 59,514 1.00

Table 2: Number of occurrences of named entities within
the PROGENE corpus

In the following, we provide an overview of the annota-
tion levels in PROGENE. Despite the convention that level
names carry a protein prefix, all levels also include annota-
tions for gene and mRNA mentions. Thus, the annotations
make no difference between proteins, genes, or mRNAs.

protein. Mentions of genes or proteins are regarded as
textual mentions referring to an entity that can be found
in a relevant database, most importantly UNIPROT.8 This
class of entities also includes mentions with promotor des-
ignations or organism indicators. Note that mentions that
actually denote a group of exactly two elements also be-
long to this class, leaving the protein enumeration class
for larger groups and families. Consider as an example:
[STAT5]protein, even though it is a group for STAT5a and
STAT5b, but for only exactly those two.

protein family or group. This class bun-
dles families or groups of genes/proteins,
e.g. [transcription factors]protein family or group or
[aquaporins]protein family or group. However, it does not
incorporate very general terms (lipoprotein), locations
(mitochondrial genes), functions (RNA-binding proteins)

8https://www.uniprot.org/

https://biocreative.bioinformatics.udel.edu/
https://biocreative.bioinformatics.udel.edu/
https://www.uniprot.org/


4590

or similarity-descriptions (Caspase-like proteins). The
identification of such groups and families is especially im-
portant for gene/protein grounding tasks which commonly
assign database IDs to mentions of concrete genes/proteins
but not for groups or families of them, frequently leading to
false positives for taggers that do not differentiate between
the two.

protein complex. Complexes of at least two different
proteins, e.g., [IL-2 receptor]protein complex .

protein variant. Annotations of allelic variants of a gene
or protein isoforms, e.g., [apoE2]protein variant .

protein enum. Elliptic enumerations of two or more pro-
teins, e.g., [STAT11 and 12]protein enum. This annotation
level is not used for enumerations of separate, yet com-
plete protein/gene names, such as with [STAT4]protein and
[STAT11]protein .

The corpus does not contain nested annotations. For ex-
ample, the elements of an enumeration are not annotated
as proteins. In general, the annotation guidelines strive to
avoid high complexity in the structure of the annotations in
order to achieve a higher annotation consistency.

3.2. Corpus Characteristics
Putting all pieces together, the PROGENE corpus consists
of 3,308 documents with 36,223 sentences and 960,757 to-
kens. For a more detailed description of the sub-corpora,
cf. Table 3 which depicts the distribution of documents and
sentences as well as a short description of the correspond-
ing sub-corpora. Each sub-corpus is contained in a direc-
tory of its own in the download package so that either spe-
cific sub-corpora can directly be addressed for specific in-
depth analysis or the entire corpus for more general pur-
poses.
As can be seen from Table 2 and Figure 1 the number of
entities is not equally distributed within the corpus. The la-
bel protein dominates the annotated entities with around
43k occurrences summing up to about 70% of all entities.
Figure 1 contains the overall count of entities as well
as their number of extensions—the tokens other than the
first—if an entity consists of more than one token. The

Figure 1: Number of entities (blue) and the number of their
extensions or additional tokens (red)

protein family or group and protein enum
are frequently comprised of multiple tokens which is
especially true for the protein family or group
class. Yet the annotated spans of protein variant
and protein enum are typically two or four tokens long,
respectively. On second sight, this is not surprising as the
protein family or group describes gene/protein
families which often have the token factor or protein at-
tached as second token. Similarly, the protein enum
class describes enumerations of more than one protein (see
Section 3.1. for detailed descriptions).
The download release of the PROGENE corpus contains the
annotations in MMAX2 and IOB format.

4. Baseline Classifiers
When we want to evaluate different methods on a given
dataset, a baseline is needed for better comparison. Here,
we provide a realistic multi-class classification baseline for
this corpus. We decided to use two state-of-the-art meth-
ods: FLAIR (Akbik et al., 2019) and BIOBERT (Lee et al.,
2020). For statistical evaluation, we split the PROGENE
corpus into a fixed set of 10 train-test partitions (with dis-
joint test sets) and performed a 10-fold cross-validation.
The respective code is contained in the download release
as well.

4.1. FLAIR
ELMO (Peters et al., 2018) marked a breakthrough in con-
textualized embedding techniques. In this approach, word
embeddings are created which depend on their particular
lexical surroundings in a text rather than representing each
word with a single, static embedding vector. Akbik et
al. (2018) extended the approach by introducing a purely
character-based technique that does not use a fixed vocabu-
lary of words any more. This method was implemented in
FLAIR (Akbik et al., 2019), an NLP framework mainly for
sequence tagging and text classification using PYTORCH
(Paszke et al., 2017). As with ELMO, BILSTM-based lan-
guage models are trained that, at test/prediction time, cre-
ate vector representations for each (character) position in a
given text. This is done in a forward and backward man-
ner based on the head or the tail of the text, respectively,
relative to the specific position in the text.
In our experiments, we used custom-trained FLAIR (for-
ward and backward) and FASTTEXT embeddings. For the
training of all three embedding models, we created a set
of nearly 750M PUBMED abstracts with 1,226B words ac-
cording to FASTTEXT without pre-processing for text nor-
malization. The documents were selected by tagging a late
2018 snapshot of MEDLINE for genes with BANNER (Lea-
man and Gonzalez, 2008) that had been trained on the com-
plete train and test set of the BIOCREATIVE II (Smith et
al., 2008) Gene Mention data. Documents in which BAN-
NER found at least one gene mention were added to the
corpus dedicated for embedding learning.
For the FASTTEXT embeddings, we set the number of di-
mensions to 300. To use them in FLAIR, it was necessary to
convert them into the GENSIM format (Řehůřek and Sojka,
2010). The text representation was used to create the final
vector representation employed in our FLAIR tagger.
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Subcorpus name # Documents # Sentences Description

genes cytorec 253 2,433 MEDLINE abstracts focusing on cellular receptors

genes genetag 1 594 7,155 Part 1 of the reannotated GENETAG corpus (Tanabe et al., 2005),
disjoint ffom genetag 2

genes genetag 2 541 6,317 Part 2 of the reannotated GENETAG corpus (Tanabe et al., 2005),
disjoint from genetag 1

genes LLL / AiMed 296 2,824 all documents from which sentences were drawn for the LLL
corpus (57 documents), 116 documents from the AIMED corpus
plus 123 additional documents from MEDLINE

genes PIR 282 2,778 MEDLINE abstracts selected to cover proteins in the PIR
database (http://pir.georgetown.edu/)

genes x45 shuffled 317 3,441 The ’shuffled’ suffix refers to a random selection of documents
from a larger base set for annotation. It is only kept for consis-
tency reasons internal to the JULIE LAB

proteins 0 201 2,102 despite the naming similarity, these documents are disjoint from
those in ’proteins 0 shuffled’

proteins 0 shuffled 236 2,829 despite the naming similarity, these documents are disjoint from
those in ’proteins 0’

proteins 5 324 3,662 MEDLINE abstracts focusing on proteins

proteins ecoli 148 1,519 MEDLINE abstracts focusing on papers using E. coli

proteins KIR 114 1,146 MEDLINE abstract selected to cover proteins from the KIR
database (https://www.ebi.ac.uk/ipd/kir/)

total 3308 36,223

Table 3: Detailed information and important hints for using the PROGENE corpus and its various sub-corpora.

FLAIR embeddings are BILSTM language models. In
order to train them, we split the embedding corpus into
train, dev and test subsets. The dev and test sets were ap-
proximately 1% of the size of the train set or 150k lines
each, where the lines were the title or the abstract text of a
MEDLINE citation and for each citation its title and its text
body was included as separate lines. The forward and back-
ward models were trained with the same set of parameters
(with the exception of the direction) and were learned using
FLAIR in version 0.4.2. We employed the FLAIR-provided
chars dictionary since we mainly dealt with English text.
We used a single hidden layer for each model with a size of
2048, respectively. We set the sequence length to 250, the
mini batch size to 100, the patience to 25, the anneal factor
to 0.25 and the maximum of epochs to 10. We chose those
parameters similar to the recommendations of the FLAIR
team which they reported to work well for them. We trained
both models for 40 days on a GeForce GTX 1080 graphics
card. The forward model achieved its best and final per-
formance on the dev set after 23 days. The dev loss had
reached 0.71, the perplexity was 2.04. The test set for the
final model showed a loss of 0.72 and a perplexity of 2.05.
The backward model took 13 days to reach the minimal dev
loss of 0.72, perplexity 2.06, the test performance was also
a loss of 0.72 and a perplexity of 2.06.

The three embedding models were then used to build one
single stacked embedding, i.e., the concatenation of the em-
bedding vectors created for a specific word occurrence in

the text (the FLAIR word representations encode the state of
the language model after or before the word, for the forward
and backward model, respectively). We created one FLAIR
model for each of the 10 cross-validation splits where from
each train partition 5% was used as the dev set by sampling
each 20th sentence from the original train set.
FLAIR leverages a CRF-BILSTM architecture for se-
quence tagging. We set the hidden size of the BILSTM to
256, 1 hidden layer, used no dropout, set the learning rate
to 0.12, the anneal factor to 0.5, the patience to 3, the mini
batch size to 32 and the maximum number to 200. Those
settings were chosen in accordance with the ones recom-
mended by the FLAIR team, as well. All training runs ter-
minated after 60 to 80 epochs due to no further improve-
ments on the development set and the following vanishing
of the learning rate by annealing. Each model training took
4 to 5h on an NVIDIA GeForce RTX 2080.

4.2. BioBERT
In contrast to FLAIR, bidirectional encoder representations
from transformers (BERT) (Devlin et al., 2019) constitute
an unsupervised method to train language models on unla-
beled texts. To fine-tune the model for a specific domain
or to solve a specific task, only one additional output layer
is needed and no further adjustments in the model itself are
required.
Lee et al. (2020) recently proposed a variant of BERT,
BIOBERT, especially adapted to the biomedical domain,

http://pir.georgetown.edu/
https://www.ebi.ac.uk/ipd/kir/
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with both code and models accessible on GitHub.9 As
vanilla BIOBERT is only able to service binary classifica-
tion tasks, we modified the code to enable multi-class clas-
sification.
We used the BIOBERT PUBMED v1.0 model trained on
PUBMED abstracts and PUBMED CENTRAL full articles
as the basis for fine-tuning on the training dataset using an
NVIDIA GeForce RTX 2080 (8 GB) GPU with 100 epochs
and a batch size of 16 for training. The other parameters
were left as suggested by Lee et al. (2020). It is important
to mention that BIOBERT uses its own tokenization when
enabling the do predict flag which splits all non-word
characters. Thus, the number of generated tokens and the
ones in the test set may differ, unless the tokenization is
adapted, which leads the program to crash. Fine-tuning
on one of the train-test splits usually took about 7 hours,
whereas prediction consumed only about 5 minutes. The
largest amount of time for prediction is needed to load the
language model and start the process, not the prediction it-
self. The training time can be significantly reduced by using
the default number of epochs (3) which, in turn, lowers the
amount of training time to less than one hour per run.

4.3. Results
Although FLAIR works fine on the original tokenization of
PROGENE, for better comparison this evaluation has been
carried out on exactly the same tokenization as created for
BERT. As can be seen in Table 4, FLAIR performed slightly
better than BIOBERT.

Entity Metric FLAIR BioBERT

proteins Precision 86.42 82.93
Recall 90.64 86.31

F1 0.885 0.846

protein Precision 78.87 71.4
complex Recall 66.35 58.25

F1 0.719 0.638

protein Precision 68.91 55.08
enum Recall 55.73 60.91

F1 0.610 0.572

protein Precision 80.01 72.03
family Recall 75.57 72.68
or group F1 0.777 0.723

protein Precision 72.78 50.61
variant Recall 36.48 28.12

F1 0.480 0.356

All Accuracy 97.59 97.04
Precision 84.66 79.77

Recall 85.39 81.21
F1 0.850 0.805

Table 4: Classification results of FLAIR and BIOBERT on
the 10-fold cross-validation.

The single classification results and the confusion ma-
trix (see Figure 2) show that FLAIR consistently pro-

9https://github.com/dmis-lab/biobert

Figure 2: Confusion matrix of the FLAIR prediction results
over all 10 test-splits. The rows show the true label. The
columns depict how often entities of the true label were pre-
dicted as the label represented by the column. The matrix
for BIOBERT has a similar appearance.

duces higher scores than BIOBERT except for the re-
call value on the protein enum class. The most
prominent mismatched categories are protein and
protein variant. Taking the definitions of both
labels into consideration, this is not surprising. A
protein variant is defined as an allelic variant
of a gene or protein isoform, thus its name is in
many cases only slightly different from the correspond-
ing proteins name and thus hard to distinguish. In a
similar way, it appears that protein complex and
protein family or group are hard classes to recog-
nize. Entities of those categories often do not give away
their nature just by their name or context since they are of-
ten used interchangeably with individual proteins in the lit-
erature and thus require resources like family lists.

5. Conclusion
In this paper, we described the PROGENE corpus with
annotations for five named entity types for genes/proteins,
namely protein, protein family or group,
protein complex, protein variant and pro-
tein enum. PROGENE consists of 3,308 documents
with about 36k sentences or more than 960k tokens.
We built a consistent and as far as possible subdomain-
independent and comprehensive protein-annotated corpus
with a metadata set of nearly 60k manually added, fine-
grained entity annotations from different protein types. Al-
though the creation of the initial corpus started 10 years
ago, it is still the largest publicly available abstract-based
protein/gene corpus world-wide, resulting from a single-
site annotation campaign.
As a baseline for comparison, we tested two state-of-the-art
classifiers: FLAIR and BIOBERT. The results show higher
scores on our specific cross-validation splits for FLAIR in
terms of accuracy, precision, recall and f1-score.

https://github.com/dmis-lab/biobert
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