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Abstract
Natural Language Image Editing (NLIE) aims to use natural language instructions to edit images. Since novices are inexperienced with
image editing techniques, their instructions are often ambiguous and contain high-level abstractions which require complex editing
steps. Motivated by this inexperience aspect, we aim to smooth the learning curve by teaching the novices to edit images using low-level
command terminologies. Towards this end, we develop a task-oriented dialogue system to investigate low-level instructions for NLIE.
Our system grounds language on the level of edit operations, and suggests options for users to choose from. Though compelled to
express in low-level terms, user evaluation shows that 25% of users found our system easy-to-use, resonating with our motivation.
Analysis shows that users generally adapt to utilizing the proposed low-level language interface. We also identified object segmentation
as the key factor to user satisfaction. Our work demonstrates advantages of low-level, direct language-action mapping approach that can

be applied to other problem domains beyond image editing such as audio editing or industrial design.
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1. Introduction

Image editing has long been in demand since the invention
of photography. However, learning image editing is time-
consuming. It involves a wide assortment of features, and
combinations of these features to achieve a desired effect.
As of today, most novices edit their images by requesting
experts for help. These requests come in the form of Im-
age Edit Requests (IER) — natural language descriptions
which express desired changes to be made. When experts
see these requests, they can accurately edit these images via
a two-stage process: (i) First, experts look at the original
image and the IER and interprets the high-level concepts
expressed by the novice. (ii) Second, they come up with
one or more low-level edit operations for these concepts
and apply these edits. Can we build machines that do the
same thing? This motivates the study on Natural Language
Image Editing (NLIE).

There are mainly two approaches towards NLIE. The
two-stage approach follows the editing process of ex-
perts. Several works have developed semantic parsers
for the first stage, with datasets collected from crowd-
sourcing (Manuvinakurike et al., 2018al), online image edit-
ing communities (Mohapatra, 2018), or spoken conversa-
tion with experts (Manuvinakurike et al., 2018b). Though
these semantic parsers are able to capture the high-level in-
tent of novices, little has been discussed about the second
stage — how to infer edits with these parsers. These datasets
still require expert annotations for generating edits, which
is a difficult one-to-many mapping. On the other hand, the
image generation approach directly generates an edited im-
age given the original image and an IER using the end-to-
end adversarial learning (Goodfellow et al., 2014)) frame-
work. This approach is appealing as it learns image edits
end-to-end, but also suffers from major drawbacks which
limits the number of edit features it can support. (i) First,
image generation is data hungry and domain specific. To
support a new edit feature, a new dataset needs to be col-
lected. For example, a model trained to modify color of
flowers cannot modify color of birds (Chen et al., 2018]).

(ii) Second, image generation is mostly restricted to global
manipulations (Wang et al., 2018)). Editing a particular re-
gion loses the end-to-end appeal as it requires a separate
segmentation module (Lin et al., 2014), bringing it back to
the two-stage approach.

One major challenge we observed in NLIE is the novice
language. Having little or no knowledge of terminolo-
gies and techniques, novices use open-domain vocabulary
to express their needs. As a result, novice IERs have cer-
tain characteristics: (i) ambiguous, (ii) abstract, and (iii)
imprecise. Though experts are able to disambiguate or
fill-in missing details for novice IERs, grounding open-
domain vocabulary have posed difficulties for NLIE. For
the two-stage approach, annotators have low or near chance
level agreement on certain entities (Brixey et al., 2018),
and datasets collected under different scenarios require dif-
ferent annotation schemas (Manuvirakurike et al., 2018).
For the image-generation approach, IERs are often impre-
cise and includes multiple edit operations in a single re-
quest (e.g., enhance white balance and contrast) (Wang et
al., 2018). If novices have some knowledge of image edit-
ing tools, machines could understand IERs more easily and
will be able to perform edits more precisely.

In this paper we investigate the potential of low-level lan-
guage for image editing. Motivated by the difficulty of
open-domain vocabulary, we propose to use dialogue to
bridge novice language (open-domain vocabulary) to im-
age editing terminologies (in-domain vocabulary). Our hy-
pothesis is that, dialogue interaction is an accessible way
for users to learn these in-domain low-level terms. Our end
goal is different from previous works as they aim to de-
velop conversational agents (Manuvinakurike et al., 2018bj
Cheng et al., 2018)) to complete image edits for users, while
we focus on smoothing the learning curve for novices.

To validate our hypothesis, we developed an image edit-
ing dialogue system that grounds on terminologies and con-
ducted a study of 83 users. Our system is able to segment
common objects using referring expressions (Dale and Re-
iter, 1995)), and adjust image attributes of these segmented
regions. Users interact with our system via typed text, and
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Figure 1: Illustration of our system architecture. Our system contains 4 components: (i) STATE TRACKER, (ii) DIALOGUE
MANAGER, (iii) VISION ENGINE, (iv) IMAGE EDIT ENGINE. Users interact with our system using text inputs.

can see the immediate effects of their expressed edits. Our
system received a Fair to Good rating, and users generally
liked the smooth experience of dialogue. Through our anal-
ysis and user’s feedback, we identified object segmentation
as the key factor that leads to user (dis-) satisfaction. We
further proposed Vision Accuracy, a metric based on dia-
logue act which correlates with user ratings.

Overall, our contributions can be summarized as follows:

e We show that combining dialogue with low-level IERs
is a promising solution for supporting NLIE.

e Our analysis and collected dialogues provide insights
on user behavior and system aspects of image editing.
Additionally, we propose a novel metric that correlates
with user ratings and discuss the strengths and limita-
tions of our system.

e We collected two novel datasets to promote future re-
search: (i) low-level IERs (ii) low-level image edit-
ing dialogues. Also, our modular system can be easily
extended to support more image edits and be used to
collect image editing dialogues.

2. Related Work
2.1.

It is easy to imagine a dialogue for information-seeking
domains (Raux et al., 2005; Bohus and Rudnicky, 2009j
Dhingra et al., 2017; [Wen et al., 2017} |[El Asri et al., 2017}
Budzianowski et al., 2018) such as restaurant booking or
movie booking, as these conversations exist in everyday
life. Nevertheless, the same could not be said for image
editing, as users interact with software tools (without lan-
guage input) (Bychkovsky et al., 2011) or post on online
communities (without multi-turn interaction) (Mohapatra,
2018; Tan et al., 2019). For NLIE, several works have
crowdsourced novice IERs by giving image or paired im-
ages (Manuvinakurike et al., 2018a; Wang et al., 2018;
Cheng et al., 2018). However, they did not consider im-
age editing tools while collecting, and their IERs are often
free form in expression. The most similar data to our work

Dialogue

is the human-to-human dialogues collected in Conversa-
tional Image Editing (Manuvinakurike et al., 2018b)), where
novice uses only spoken language and an expert carries out
the edits. Our work explores the potential of low-level lan-
guage for image editing dialogues, focusing on smoothing
the learning curve.

2.2. Language and Vision

There are many research fields which learns to align seman-
tics between visual information and language, usually with
an image and a natural language description. Our work falls
under the category of a more recent setup, where language
is related to the difference between paired images. Sev-
eral works have been proposed for edited image generation
using attention for alignment (Chen et al., 2018} Wang et
al., 2018; [Cheng et al., 2018)). Other works focus more on
the language side, either by determining whether a caption
is true considering a pair of images (Suhr et al., 2019)), or
generating captions that describes the difference with latent
variables (Jhamtani and Berg-Kirkpatrick, 2018)) or atten-
tion (Tan et al., 2019). Our system is simpler as it grounds
language at a low-level, and processes visual information
with an independent segmentation module.

ADJUST
MASK ATTRIBUTE VALUE
EDIT OPERATION
REFER INPUT FROM VISIONENGINE
INPUT FROM USER

Figure 2: Domain ontology of our system. ADJUST opera-
tion depends on slots MASK, ATTRIBUTE, and VALUE. Slot
MASK further depends on slot REFER.
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3. Task
3.1. Definition

We define the task as instructing the system to perform im-
age edit operations using natural language. To perform this
task, the system needs to extract slot values from user’s nat-
ural language inputs, locate the specified region in the im-
age, and execute the requested edit.

3.2. Domain Ontology

ADIJUST, which involves manipulating the value of some
image property, is the most frequent edit in image editing
and is usually realized with a slider; some editing tools pro-
vide only ADJUST operations (Bychkovsky et al., 2011). In
our system, we study only the ADJUST edit, as it already
includes image properties which novices typically have no
knowledge about.

To perform ADJUST, three slot arguments are required (Fig-
ure @) The first slot is MASK, which is a particular re-
gion in an image the user wants to modify, and further de-
pends on slot REFER. This is a referring expression (Krah-
mer and Van Deemter, 2012) given by the user for the sys-
tem to identify an object in an image. The second slot is
ATTRIBUTE, which is a modifiable property of an image.
The third is VALUE, which is the degree of manipulation
of an ATTRIBUTE. We include 5 common ATTRIBUTES:
{brightness, contrast, hue, saturation, lightness} (Foley et
al., 1996)). The range of VALUE is from —100 to 100.

4. Natural Language Understanding

We first describe the key component of our system, which
is Natural Language Understanding (NLU). To build our
NLU, we collected low-level IERs (Section and
trained a BIO tagger (Section to parse REFER, AT-
TRIBUTE, VALUE.

4.1. ILLC-IER Dataset

Image Edit Request (IER) has a broad definition and comes
in many different forms. To ensure that the NLU corpus
contains instances of all slots in the ontology, we collected
sentences that instructs an image edit in imperative form,
and includes all the low-level edit arguments. We refer to
these specific type of sentences as “Imperative Low-Level
Complete Image Edit Requests (ILLC-IERs)”.

Collection We crowd-sourced ILLC-IERs using the
Amazon Mechanical Turk (AMT) platform. We asked
workers to provide a sentence that specifies an image
edit and contains REFER, ATTRIBUTE, VALUE elements.
For these slots, we provide (i) an image with a high-
lighted object, (ii) several referring expressions of the high-
lighted object, (iii) a randomly sampled ATTRIBUTE, and
(iv) a randomly sampled VALUE. We used the RefCOCO
dataset (Kazemzadeh et al., 2014)) for (i) and (ii), and sam-
pled 900 from train, 100 from dev, and 100 from test.

Anneotation Similar to the data collection, we also crowd-
sourced annotations using AMT. We choose 4 categories
for ILLC-IER BIO tagging (i) ACTION (ii) REFER (iii) AT-
TRIBUTE (iv) VALUE. REFER, ATTRIBUTE, VALUE are
slots in our ontology. ACTION is the imperative verb that
corresponds to the edit action (e.g., “increase”, “decrease”,

“modify”) and indicates the sign of VALUE. For example,
“decrease brightness by 10” is equivalent to “change bright-
ness by -10”.

Statistics We collected 2,537 ILLC-IERs. Based on the
data splits in RefCOCO, we split them into 2,055 for train,
242 for dev, and 240 for test. The average number of words
per IER is 12.7, and the average length of the referring ex-
pressions is 5.4. The total number of tokens is 32,194, and
the number of unique tokens is 1,034.

4.2. Training BIO Tagger

We preprocessed ATTRIBUTE and VALUE by replacing
them with abstract tokens <attribute> and <value>
since these 2 slots have a closed set of values. We then
trained a one-layer LSTM (Hochreiter and Schmidhuber,
1997) BIO tagger that reached a mean 98.69 F1 score on
the test set. We also compiled a list of ACTION words that
indicate a negative VALUE (e.g., “decrease”, “lower”, “re-
duce”).

Note that ILLC-IER includes all slot values in a single
sentence, which imposes a high degree of constraint, and
largely limits the number of ways that users can express
IERs. This establishes our grounding of in-domain vocab-
ulary.

5. System

Our system architecture is based on the multimodal sys-
tem of (Lin et al.,, 2018) and consists of 4 components:
(i) STATE TRACKER, (ii) DIALOGUE MANAGER, (iii) VI-
SION ENGINE, (iv) IMAGE EDIT ENGINE, along with a
web-based interface. The main differences between the
work of (Lin et al., 2018)’s and ours are: (i) their focus
is on policy learning with multimodal dialogue state, while
we investigate whether users would like the experience of
low-level image editing dialogue. (ii) On the technical side,
their system is multimodal which also allows gesture input,
while ours only allows text inputs. However, their NLU is
based on regular expressions, while ours is based on recur-
rent neural networks. Figure [T| shows the system diagram
with dialogue actions. We describe each component in de-
tail below.

5.1. State Tracker

STATE TRACKER contains the (i) NLU (Section [#]) com-
ponent that extracts slot values, and a (ii) STATE UPDATER
that aggregates NLU outputs over multiple turns. At every
turn, STATE TRACKER takes the current user utterance and
the previous turn’s dialogue state, and outputs the dialogue
state for the current turn. This dialogue state is then passed
to DIALOGUE MANAGER.

NLU Our NLU is based on the LSTM tagger in Sec-
tion 4] with the addition of a string matcher that detects
{yes, no} intents. The latter handles responses when DIA-
LOGUE MANAGER (Section decides to Confirm and
expects a yes or no input (e.g., “Is the current detected re-
gion correct? (yes/no)”).

State Updater STATE UPDATER aggregates turn level
outputs from NLU, and clears all slot values when DIA-
LOGUE MANAGER decides to EXECUTE an adjustment. It
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Dataset ‘ ACTION ATTRIBUTE

REFER  VALUE ‘ MEAN

ILLC-IER
Dialogue

96.39
63.15

100.0
94.59

98.06  100.0 | 98.69
63.15  99.69 | 84.13

Table 1: NLU FI scores on ILLC-IER dataset (Section[4]) and user study dialogues (Section[6)).

Rating | VERY POOR  POOR  FAIR

GOoOD EXCELLENT

Users | 6 22

22 29 4

Table 2: Performance ratings by users. Our system received a Fair to Good rating.

also removes MASK value when a new REFER value is de-
tected by NLU. For simplicity, we assume that all edits are
independent, and a new REFER should have a new MASK.

5.2. Dialogue Manager

DIALOGUE MANAGER takes the current dialogue state
(from STATE TRACKER) and outputs an action. The ac-
tions are: (i) Request. (ii) Confirm (iii) Query (iv) Execute.
Request asks the user for a slot value. Confirm asks whether
the current tracked slot value is correct. Query passes the
current tracked REFER to VISION ENGINE and receives a
MASK. Execute sends the tracked MASK, ATTRIBUTE, and
VALUE to IMAGE EDIT ENGINE for execution.

Policy In image editing, users will commonly identify a
region they want to modify, then decide on the types of edit.
Based on this observation, we use a rule-based policy that
obtains slots in the order of REFER, MASK, ATTRIBUTE,
and VALUE. At the beginning of a dialogue, our DIALOGUE
MANAGER will first Request the slot REFER. After obtain-
ing REFER, it will Query the VISION ENGINE then Confirm
whether the returned MASK is correct. Finally, it will Re-
quest the slots ATTRIBUTE and VALUE from the user and
then Execute the ADJUST operation.

Suggestive Response We use a template-based ap-
proach (Raux et al., 2005) to generate system responses.
Since one of our goals is to ease the learning curve, we in-
cludes suggestions or options in the templates. These sug-
gestions aim to guide the user through the image editing
process. For example, we show the value range “(-100 to
100)” when asking for VALUE. Figure[5]shows an example
of our policy and suggestive response.

5.3. Vision Engine

VISION ENGINE is called when DIALOGUE MANAGER de-
cides to Query. The main function of VISION ENGINE is
to infer a localized image region from user’s referring ex-
pression. It acts as an API endpoint for the system, taking
image and REFER as input and returns a MASK that outlines
the referred object. In our system, we return only the MASK
with the highest confidence score.

We use MattNet (Yu et al., 2018)) as our system’s VISION
ENGINE. MattNet is a modular network that decomposes
referring expressions into subject appearance, location, and
object relationship components. It then uses language and
visual attention to infer the referred object in the image. For
consistency with NLU, we used MattNet weights trained
on RefCOCO (Section ).

5.4. Image Edit Engine

IMAGE EDIT ENGINE displays the image and MASK to the
user, and performs edits when DIALOGUE MANAGER de-
cides to Execute an edit operation. We developed our own
Image Edit Engine using OpenCV (Bradski, 2000), which
is sufficient for our use cases. Our IMAGE EDIT ENGINE
supports the ATTRIBUTE adjustments listed in Section
and can highlight particular regions given a MASK.

5.5. Interface

Users interact with our system through a web-based inter-
face. To simulate an image editing software tool, our inter-
face displays the image, with a highlighted region if MASK
is provided. We display the supported list of attributes (Sec-
tion [3)) and sliders. We also show the currently tracked
REFER to users so that they can see the result of their input.
Natural language is the only way to enter IERs; users are
restricted to text inputs (i.e. sliders are not functional).

6. Evaluation
6.1. Setup

To simulate a real world scenario, we used the test images
from our NLU dataset (Section [f)), so that both NLU and
VISION ENGINE would be exposed to unseen data. We
assigned a single AMT user to each image, so each task is
done by a different user. We released our code and data on
Github.

Instructions We introduced our system as “an image
editing chatbot that is able to detect objects in the image and
adjust several image attributes”. We asked users to perform
at least 2 edits and interact with our system for at least 10
turns. There were no restrictions on what to edit. To limit
overall dialogue length, users could end the dialogue at 30
turns. Upon task completion, we asked users to rate overall
system performance, plus 3 specific system features. We
then asked users to provide feedback on what they liked,
disliked and what improvements would make the system
better.

6.2. Results

Edits We assess our system by the number of edits users
can complete in each dialogue. All 83 users completed the
required 2 edits, with 5 users exceeded 30 turns. 25 users
(30.1%) performed 3 or more edits, with the maximum ob-
served being 5. This implies that our system is usable, and

"https://github.com/tzuhsial/ImageEditingWithDialogue
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Figure 3: Ratings of NLU-REFER (Blue), VISION
ENGINE (Red), and NLU-ATTRIBUTE/VALUE ( ).
(Strongly) Agree/Disagree were chosen according to a
statement “I found it difficult for the chatbot to use
<feature>”. <feature> is the system feature descrip-
tion.

B Edit1 W Edit2

Users

Turns

Figure 4: Number of turns to perform the 1st edit (Blue)
and the 2nd edit (Red).

engaged users enough for them to have done more than the
minimum required.

Ratings Performance and feature ratings are shown in
Table 2] and Figure [3] Performance ratings are rated on
a 5-point Likert Scale from Very Poor, Poor, Fair, Good,
to Excellent. Good received the most ratings (29), and
few users (10) rated our system as Very Poor or Excel-
lent. For system features, we choose NLU-REFER (NLU
performance on REFER), VISION ENGINE (Object seg-
mentation), NLU-ATTRIBUTE/VALUE (NLU performance
on ATTRIBUTE and VALUE) for rating. ATTRIBUTE and
VALUE were combined because of similar preprocessing.
According to a statement “I found it difficult for the chatbot
to <feature>”, where <feature> is a system feature
description, system features are rated on a 4-point Likert
Scale, from Strongly Disagree, Disagree, Agree, to Strongly
Agree. Most users agreed the system had difficulty tracking
REFER and inferring the correct MASK (VISION ENGINE).
Most users agreed that the system could correctly track AT-
TRIBUTE and VALUE.

7. Analysis and Discussion

Statistics We collected 83 dialogues with 1359 user ut-
terances (2,753 tokens, 534 unique). The mean number of
turns in a dialogue is 17.4; it took an average of 6.3 turns to
make an edit.

7.1. Quantitative Analysis

Turns Our initial conjecture was that after performing the
1st edit, users would become more familiar with our system
and would need fewer of turns. However, after plotting the
turn count the 1st and 2nd edits (Figure EI), we found that
the turn distributions were very similar. A Kolmogorov-
Smirnov test gives a p-value of 0.93, in-
dicating sampling from the same distribution. While this
suggests that our system does not have a learning curve,
this phenomena is likely a result of our STATE UPDATER’s
clearing all slot values after execution. Users may want to
edit the same object, but have to select MASK again. We

leave slot carry-over (Naik et al., 2018) for future work.

NLU Coverage To understand NLU performance in ac-
tual dialogue, we annotated dialogue utterances and com-
puted the F1 scores (Table [[). Though ATTRIBUTE and
VALUE retained a F1 score of over 90%, ACTION, REFER
dropped from 96% to 63%. This coincides with the system
feature ratings from the users, which gave a better rating for
NLU-ATTRIBUTE/VALUE than for NLU-REFER.

Vision Accuracy Object segmentation is important for
image editing, and is usually evaluated by Intersection
over Union (IoU) with a fixed threshold (Lin et al., 2014).
Nonetheless, users have many reasons to accept/reject a
MASK, regardless of IoU. To assess how MASK affects
user’s ratings, we propose a simple metric to evaluate object
segmentation accuracy for image editing systems, based on
dialogue actions.

# FExecute

#Query (1)
0 < #FExecute < #Query

Vision Accuracy =

Vision Accuracy divides # Ezecute (number of Execute)
by #Query (number of Query). Since DIALOGUE MAN-
AGER will always Confirm MASK, an edit (Execute) will
only contain a MASK users deem acceptable. #Query can
therefore be thought as the number of attempts to get a
better MASK, with # FExecute being the number of accep-
tances. Vision Accuracy represents the object segmentation
performance of the whole system rather than just VISION
ENGINE, since it depends on NLU and our policy.

We computed a Pearson correlation between Vision Accu-
racy and user ratings. We found that Vision Accuracy has
a higher correlation with system performance (0.46) than
with VISION ENGINE ratings (0.32). This suggests that our
proposed metric, though initially conceived to capture VI-
SION ENGINE ratings, could also serve as an indicator of
system performance.

7.2. User Feedback

Likes After examining user likes, we classified them into
5 categories: (i) Easy to use (ii) Quick (iii) Capable (iv)
Experience (v) Other. For (i), feedback that mentioned the
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Frame 1 Turns 0 to 2

System: Hi! This is an image
editing chatbot. How may | h-
elp you?

User: Hi make the cows bright-

er
System: Sending "cows brighte-
r" to vision engine.

Vision: Detected 1 result.
System: | detected "cows brig-
hter" in your sentences. Is t-

he current region (green) in
the image correct? (yes/no)

Frame 6 Turns 12 to 12

User: no

System: What object would you
like to adjust? Please descr-
ibe the object as a whole (e.

g., the man) instead of a det-
ail (e.g., his eyebrows)

Frame 2 Turns 3 to 5

User: yes
System: What attribute (brigh-
tness, contrast, hue, saturat-
ion, lightness) would you lik-

e to adjust?

User: brightness

System: What value (-100 to 1-
00) would you like to adjust?
User: 50

System: Execute image edit.(c-
ows brighter, brightness +50)

Frame 7 Turns 13 to 14

User: house or barn

System: Sending "or barn" to
vision engine.

Vision: Detected 1 result.
System: | detected "or barn"
in your sentences. Is the cur-

Frame 3 Turns 6 to 7

User: adjust saturation of bi-
gger cow

System: Sending "bigger cow"
to vision engine.

Vision: Detected 1 result.
System: | detected "bigger co-
w" in your sentences. Is the
current region (green) in the
image correct? (yes/no)

Frame 8 Turns 15 to 15

User: no

System: What object would you
like to adjust? Please descr-
ibe the object as a whole (e.

g., the man) instead of a det-
ail (e.g., his eyebrows)

Frame 4 Turns 8 to 9

User: yes
System: What value (-100 to 1-
00) would you like to adjust?
User: 40

System: Execute image edit.(b-
igger cow, saturation +40)

Frame 9 Turns 16 to 17

User: thats all. thank you.
System: Sending "all" to visi-
on engine.

Vision: Detected 1 result.
System: | detected "all" in y-
our sentences. Is the current

Frame 5 Turns 10 to 11

User: make the barn darker
System: Sending "barn darker"
to vision engine.

Vision: Detected 1 result.
System: | detected "barn dark-
er" in your sentences. Is the
current region (green) in th-
e image correct? (yes/no)

Frame 10 Turns 18 to 18

User: (nds dilogu)

rent region (green) in the im-
age correct? (yes/no)

region (green) in the image
correct? (yes/no)

Figure 5: An example dialogue from our user study (Section [6]). At the beginning of the dialogue, user expressed a
high-level IER “Hi make the cows brighter”. Our system Confirms the MASK then Requests low-level edit arguments
ATTRIBUTE, VALUE from the user. After the 1st edit, user accommodated to our system and expressed an low-level IER
“adjust saturation of bigger cow” (Frame 3 Turns 6 to 7). After the 2nd edit, user tried to select the barn “make the barn
darker” (Frame 5 Turns 10 to 11), and paraphrased “house or barn” (Frames 7 Turns 13 to 14) when our VISION ENGINE
failed to detect the correct object. Finally, user relents and ends the session.

Other
8.4%
Experience

Easy to use

9(10.8%) 21 (25.3%)

43 (51.8%)

Capable

51.8%

Figure 6: User feedback on what they liked about our sys-
tem. We divided into 5 categories (i) Easy to use (Blue),
(i1) Quick (Red), (iii) Capable (Yellow), (iv) Experience
(Green) (v) Other (Orange).

system was easy to use (e.g., “The edit process seemed
straightforward”, “I liked the ease of use”) or mentioned the
system actions Request or Confirm (e.g., “it let you know
what it wanted”, “It would ask clarifying questions”). For
(i1), we included feedback that mentioned our system was
quick. For (iii), feedback that mentioned the system was
able to understand user utterances, automatically select ob-
jects in the image, or perform edits (e.g., “It understood

what I said”, “Auto select of the area”). For (iv), feedback
that praised the whole experience. All other feedback went
to (v).

This is summarized in Figure [} users generally liked the
concept of an NLIE system (Capable: 51.8%), and that di-
alogue created a smooth experience (Easy to use: 25.3%,
Experience: 10.8%).

Suggestions For dislikes and suggestions, most users first
named a thing they disliked, and then suggested improving
it. We report only suggestions from the users.

Most suggestions were centered around object segmenta-
tion. 38 users (46%) wanted more accurate MASKS, with
several mentioning that they want the system to show a
list of objects it could recognize beforehand. Several other
users suggested including selection tools to modify the pre-
dicted MASK or just select the object themselves.

Another trend we observed what users cared about was
speed. 9 users (10.8%) suggested using a better NLU,
others wanted the system to stop repeating the same mis-
takes, implying that we should design or learn a better pol-
icy (Williams and Young, 2007). For the interface, some
suggested that the system should let users directly mod-
ify ATTRIBUTE/VALUE instead text inputs. One user sug-
gested speech recognition, stating that it would be more ef-
ficient to speak and edit at the same time. Also, another
9 users (10.8%) suggested that responses be made more
human-like.
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Overall users indicated acceptance if not preference for a
language-based interface; other suggestions were for im-
provements in the language channel. Users seemed to ex-
pect that a language interface would somehow be more in-
telligent and would better understand the task. We believe
this is a critical requirement for such interfaces.

7.3. Discussion

One of our original goals was to ease the learning curve for
image editing tools. From our evaluation and analysis, dia-
logue actions that guide users through the task (one slot at
a time) is an effective way to do this. The ability to use nat-
ural language descriptions for object selection eases overall
effort.

The greatest limitation of our current system is that the
range of regions that could be selected is bounded by VI-
SION ENGINE capabilities. As shown in Figure [5} users
typically relent after paraphrasing REFER multiple times.
Most object segmentation models (Lin et al., 2014)) are re-
stricted to detecting common objects, while users may ac-
tually want to modify less common objects or non-object
regions. A possible solution is to include selection tools
and the option to modify system’s inferred MASK; region
selection is a very delicate procedure. Users should be able
to enjoy the convenience of using referring expressions and
fall back to manual selection whenever needed. It could be
useful to have a learning system that tries to relate region
selection to language.

Apart from object segmentation, another limitation is that
users would have to express ATTRIBUTE and VALUE us-
ing natural language. Initially users are unfamiliar with
the jargon and the nature of effects; the dialogue manager
should suggest one of the possible ATTRIBUTES. However,
as users learn the ATTRIBUTES and how they perform, they
would know where the ATTRIBUTE sliders are and prefer-
ably manipulate the sliders themselves.

To summarize, for a task like image editing which exhibits
a steep learning curve, dialogue systems can help users get
familiar with a complex tool. However, once users famil-
iarize with the features, they would choose to interact with
natural language if it is easier than performing edit oper-
ations themselves (Rudnicky, 1993). Understanding the
characteristics of this threshold should shed more light on
the design of dialogue systems for tools that have steep
learning curves. Additionally, it would be interesting to
compare against a high-level language based system (Wang
et al., 2018) and see under which circumstances would the
user prefer. [

8. Conclusion

Image editing is difficult and takes time to master. With the
goal of improving the learning curve, we developed a low-
level task-oriented dialogue system for image adjustments.
Even though our system has only one edit type and requires
users to type low-level edit arguments, we find that users
take well to a language-based dialogue interface, notable
for an essentially visual task. Our work demonstrates the

2 According to the original authors, their data was lost and thus
their work could not be compared.

potential of grounding image editing dialogues at low-level,
and our analysis shows important aspects for user satisfac-
tion.

For future work, we plan to incorporate additional edit
types and develop a multimodal setting that includes ges-
ture manipulations; we expect that language will provide an
easy-to-learn interface for users, one that remains available
in later use. With the expanded system, we plan to collect
a dialogue corpus for dialogue state tracking and training
end-to-end models.

9. Bibliographical References

Bohus, D. and Rudnicky, A. I. (2009). The ravenclaw di-
alog management framework: Architecture and systems.
Computer Speech & Language, 23(3):332-361.

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s
Journal of Software Tools.

Brixey, J., Manuvinakurike, R. R., Le, N., Lai, T., Chang,
W., and Bui, T. (2018). A system for automated im-
age editing from natural language commands. CoRR,
abs/1812.01083.

Budzianowski, P., Wen, T.-H., Tseng, B.-H., Casanueva,
1., Ultes, S., Ramadan, O., and Gasic, M. (2018).
Multiwoz-a large-scale multi-domain wizard-of-oz
dataset for task-oriented dialogue modelling. In Pro-
ceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 5016-5026.

Bychkovsky, V., Paris, S., Chan, E., and Durand, F. (2011).
Learning photographic global tonal adjustment with a
database of input / output image pairs. In The Twenty-
Fourth IEEE Conference on Computer Vision and Pat-
tern Recognition.

Chen, J., Shen, Y., Gao, J., Liu, J., and Liu, X. (2018).
Language-based image editing with recurrent attentive
models. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 8721—
8729.

Cheng, Y., Gan, Z., Li, Y., Liu, J., and Gao, J. (2018).
Sequential attention gan for interactive image editing via
dialogue. arXiv preprint arXiv:1812.08352.

Dale, R. and Reiter, E. (1995). Computational interpreta-
tions of the gricean maxims in the generation of referring
expressions. Cognitive science, 19(2):233-263.

Dhingra, B., Li, L., Li, X., Gao, J., Chen, Y.-N., Ahmed,
F., and Deng, L. (2017). Towards end-to-end reinforce-
ment learning of dialogue agents for information access.
In Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pages 484-495.

El Asri, L., Schulz, H., Sharma, S., Zumer, J., Harris, J.,
Fine, E., Mehrotra, R., and Suleman, K. (2017). Frames:
a corpus for adding memory to goal-oriented dialogue
systems. In Proceedings of the 18th Annual SIGdial
Meeting on Discourse and Dialogue, pages 207-219.

Foley, J. D., Van, F. D., Van Dam, A., Feiner, S. K., Hughes,
J. F, HUGHES, J., and ANGEL, E. (1996). Com-
puter graphics: principles and practice, volume 12110.
Addison-Wesley Professional.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,

411



Y. (2014). Generative adversarial nets. In Advances
in neural information processing systems, pages 2672—
2680.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural computation, 9(8):1735-1780.
Jhamtani, H. and Berg-Kirkpatrick, T. (2018). Learning to
describe differences between pairs of similar images. In
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4024-4034.

Kazemzadeh, S., Ordonez, V., Matten, M., and Berg,
T. (2014). Referitgame: Referring to objects in pho-
tographs of natural scenes. In Proceedings of the 2014
conference on empirical methods in natural language
processing (EMNLP), pages 787-798.

Krahmer, E. and Van Deemter, K. (2012). Computational
generation of referring expressions: A survey. Computa-
tional Linguistics, 38(1):173-218.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollar, P, and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Eu-
ropean conference on computer vision, pages 740-755.
Springer.

Lin, T.-H., Bui, T., Kim, D. S., and Oh, J. (2018). A mul-
timodal dialogue system for conversational image edit-
ing. NeurIPS 2018 2nd Conversational Al Workshop:
Today’s Practice and Tomorrow’s Potential.

Manuvinakurike, R., Brixey, J., Bui, T., Chang, W., Kim,
D. S., Artstein, R., and Georgila, K. (2018a). Edit me:
A corpus and a framework for understanding natural lan-
guage image editing. In Proceedings of the Eleventh
International Conference on Language Resources and
Evaluation (LREC-2018).

Manuvinakurike, R., Bui, T., Chang, W., and Georgila, K.
(2018b). Conversational image editing: Incremental in-
tent identification in a new dialogue task. In Proceedings
of the 19th Annual SIGdial Meeting on Discourse and
Dialogue, pages 284-295.

Manuvirakurike, R., Brixey, J., Bui, T., Chang, W., Art-
stein, R., and Georgila, K. (2018). Dialedit: Annotations
for spoken conversational image editing. In Proceedings
14th Joint ACL-1SO Workshop on Interoperable Seman-
tic Annotation, pages 1-9.

Massey Jr, F. J. (1951). The kolmogorov-smirnov test for
goodness of fit. Journal of the American statistical As-
sociation, 46(253):68-78.

Mohapatra, A. (2018). Natural language driven image ed-
its using a semantic image manipulation language. Mas-
ter’s thesis, Virginia Tech.

Naik, C., Gupta, A., Ge, H., Lambert, M., and Sarikaya, R.
(2018). Contextual slot carryover for disparate schemas.
Proc. Interspeech 2018, pages 596—600.

Raux, A., Langner, B., Bohus, D., Black, A. W., and Eske-
nazi, M. (2005). Let’s go public! taking a spoken dialog
system to the real world. In Ninth European conference
on speech communication and technology.

Rudnicky, A. I. (1993). Factors affecting choice of speech
over keyboard and mouse in a simple data-retrieval task.
In Third European Conference on Speech Communica-
tion and Technology.

Suhr, A., Zhou, S., Zhang, A., Zhang, 1., Bai, H., and Artzi,
Y. (2019). A corpus for reasoning about natural lan-
guage grounded in photographs. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics.

Tan, H., Dernoncourt, F., Lin, Z., Bui, T., and Bansal, M.
(2019). Expressing visual relationships via language.
arXiv preprint arXiv:1906.07689.

Wang, H., Williams, J. D., and Kang, S. (2018). Learning
to globally edit images with textual description. arXiv
preprint arXiv:1810.05786.

Wen, T., Vandyke, D., Mrksic, N., Gasic, M., Rojas-
Barahona, L., Su, P, Ultes, S., and Young, S. (2017).
A network-based end-to-end trainable task-oriented di-
alogue system. In I5th Conference of the European
Chapter of the Association for Computational Linguis-
tics, EACL 2017-Proceedings of Conference, volume 1,
pages 438-449.

Williams, J. D. and Young, S. (2007). Partially observ-
able markov decision processes for spoken dialog sys-
tems. Computer Speech & Language, 21(2):393-422.

Yu, L., Lin, Z., Shen, X., Yang, J., Lu, X., Bansal, M., and
Berg, T. L. (2018). Mattnet: Modular attention network
for referring expression comprehension. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1307-1315.

412



	Introduction
	Related Work
	Dialogue
	Language and Vision

	Task
	Definition
	Domain Ontology

	Natural Language Understanding
	ILLC-IER Dataset
	Training BIO Tagger

	System
	State Tracker
	Dialogue Manager
	Vision Engine
	Image Edit Engine
	Interface

	Evaluation
	Setup
	Results

	Analysis and Discussion
	Quantitative Analysis
	User Feedback
	Discussion

	Conclusion
	Bibliographical References

