
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 3886–3894
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

3886

BabyFST - Towards a Finite-State Based Computational Model of Ancient
Babylonian

Aleksi Sahala​1​, Miikka Silfverberg​1​, Antti Arppe​2​ & Krister Lindén​1

1​University of Helsinki, ​2​University of Alberta
 {aleksi.sahala, miikka.silfverberg, krister.linden}@helsinki.fi, arppe@ualberta.ca

Abstract
Akkadian is a fairly well resourced extinct language that does not yet have a comprehensive morphological analyzer available. In this
paper we describe a general finite-state based morphological model for Babylonian, a southern dialect of the Akkadian language, that
can achieve a coverage up to 97.3% and recall up to 93.7% on lemmatization and POS-tagging task on token level from a transcribed
input. Since Akkadian word forms exhibit a high degree of morphological ambiguity, in that only 20.1% of running word tokens
receive a single unambiguous analysis, we attempt a first pass at weighting our finite-state transducer, using existing extensive
Akkadian corpora which have been partially validated for their lemmas and parts-of-speech but not the entire morphological analyses.
The resultant weighted finite-state transducer yields a moderate improvement so that for 57.4% of the word tokens the highest ranked
analysis is the correct one. We conclude with a short discussion on how morphological ambiguity in the analysis of Akkadian could be
further reduced with improvements in the training data used in weighting the finite-state transducer as well as through other,
context-based techniques.

Keywords:​ Finite-State Transducer, Computational Modeling, Akkadian, Morphology

1. Introduction
In this paper, we present a finite-state based general
model for Babylonian morphology. At first we give a
brief description of the Babylonian and its morphological
features. Then we present the modeling principles of our
FST approach and measure its performance against a
manually tagged corpus. At last, we will discuss potential
ways to improve, expand and use the analyzer.

2. Brief Description of the Babylonian
Language

Akkadian, the language of ancient Babylonians and
Assyrians, is known to us by several hundreds of
thousands of clay tablets, their fragments and other
inscriptions written on various media in cuneiform script.
This text material covers a timespan of over two
millennia (2400 BCE to 100 CE), making Akkadian one
of the world’s earliest written languages, clearly predated
only by Sumerian, Elamite and Egyptian (all written
already in the fourth millennium BCE). Although a vast
majority of the excavated material consists of
administrative documents, the Akkadians also left behind
a vivid selection of cultural historically significant literary
works and inscriptions, including the Epic of Gilgameš
and the Code of law of Hammurāpi. Alongside Eblaite,
Akkadian is the only known, and the longest surviving
member of the now-extinct East-Semitic branch of
languages. As a spoken language, Akkadian was gradually
replaced by Aramaic after the Persian conquest of
Babylonia in 539 BCE, but its prestigious status kept it
alive as a literary language until the first century CE.

Unlike Sumerian, of which the grammatical description is
still widely debated, the understanding of Akkadian
morphology and grammar is well-established (cf.
grammatical analyses by Reiner 1966, von Soden 1995
and Kouwenberg 2010).

2.1 Historical development
Babylonian, a dialect of the Akkadian language, is divided
into several stages connected with the South
Mesopotamian historical events: Old Babylonian (OB:
1900–1600 BCE), Middle Babylonian (MB: 1500–1100 1

BCE), Neo-Babylonian (NB: 1000–600 BCE) and Late
Babylonian (LB: 600–100 CE) (Kouwenberg 2011: 332).
Additionally, there was an artificial literary language
known as Standard Babylonian (SB), which was used by
the Babylonians and Assyrians from the middle of the
second millennium onwards. Standard Babylonian had its
roots in Old Babylonian, but it was later affected by some
lexical, phonological and morphophonemic features of the
contemporary spoken Babylonian (especially MB and
NB) and Neo-Assyrian dialects (Kouwenberg 2011: 332).

Different stages of Babylonian are distinguished
from each other mostly by morphophonemic alternation
and phonological changes. During the Old Babylonian
period, vocalic clusters became generally contracted:
rabīum → ​rabûm ​‘great’, ​iqīaš → ​iqâš ​‘to bestow’
(Buccellati 1996: 37). Mimation, an archaic Semitic
word-final morpheme {m} was gradually lost and it
disappeared regularly by the Middle Babylonian period:
rabûm ​→ ​rabû (Streck 2011: 374). ​From this period
onwards, Babylonian was affected by an increasing

1 ​MB was used as a diplomatic ​lingua franca ​in the Middle-East
and the surrounding regions.

3887

number of assimilations (​imtagar → ​indagar ​‘it was
expensive’), dissimilations (​ibbi → ​imbi ​‘he named’), as
well as other sound changes (​issi → ​ilsi ​‘he shouted’​,
wabālu → abālu ​‘to carry’) (Buccellati 1996: 37). In the
course of the Neo- and Late Babylonian periods, the case
system was reduced and the distinction especially between
nominative {u} and accusative {a} was lost. Additionally,
many short vowels were omitted in word-final positions:
abbēšunu ‘their (masc.) fathers’ → ​abbēšun​, ​šarrātu
‘queens’ → ​šarrāt ​(Streck 2011: 385).

BabyFST is mainly designed to model Standard
Babylonian, which means that it covers most of the
synchronic and diachronic variation within different
stages of the Babylonian dialect, as well as some common
Assyrian features found in Standard Babylonian texts
known as Assyrianisms.

2.2 Akkadian morphology
Akkadian features a typical Semitic non-linear
morphology particularly in its verbal system. Verbal roots
consist of three or four radical consonants (referred
henceforth as radicals) and a vowel class, which are
interdigitated into templates in order to produce verbal
stems and their derivations. Some of the most common
derivations include the G-stem (basic stem), D-stem
(factitive, transitive), Š-stem (causative) and N-stem
(mostly passive) derivations, which all occur in different
tenses (present, preterite, perfect), moods (indicative,
imperative) and nominal forms (infinitive, active
participle, verbal adjective, stative), and can be modified
with additional -t- ​and ​-tan- infixes to produce more
nuanced meanings: iterative, intensive, reciprocal,
causative passive etc. (von Soden 1995). Verbal stems are
conjugated by applying prefixes, suffixes and circumfixes,
which are used to mark subject, object, indirect object,
direction of movement (ventive), certain modal aspects,
subjunction, and conjunction with other verbs (Table 1).

SLOT 1 vetitive marker
SLOT 2 personal prefix
SLOT 3 N/Š/ŠD-stem preformative
SLOT 4 verbal stem
SLOT 5 personal suffix or subjunctive
SLOT 6 ventive (direction)
SLOT 7 dative (indirect object)
SLOT 8 accusative (direct object)
SLOT 9 enclitic conjunction ​-ma

Table 1: Morphotactics of the Akkadian verb.

Personal conjugation distinguishes between two genders:
masculine and feminine, and three numbers: singular, dual
and plural, although the use of dual is very restricted.
There are distinct personal affixes for indicative,
precative, imperative and stative moods, of which prefixal

parts have illabial /i, a/ and labial /u/ variants used in
conjunction with different stems: G: ​i-prus​, N: ​i-pparis​,
D: ​u-parris​, Š: ​u-šapris​ (all 3rd person singular masc.).

Non-derivative nominal morphology is linear
with a few archaic exceptions. Thus, Akkadian nouns do
not form plurals by interdigitation as some other Semitic
languages like Arabic or Maltese do. Nouns may take a
feminine marker, an abstract or particularizing suffix, a
dual or plural marker, a case ending and a possessive
suffix, as well as a few archaic local case suffixes. They
may also be used as statives to form predicative clauses:
šarru ​‘king’ ​→ šarrāku ​‘I am king’.

The most complicated part of the Akkadian
grammar is its verbal morphology. Radicals can be either
strong or weak, of which the latter, /ˀ w j/, are subject to
several (morpho)phonemic alternations that make surface
forms fairly opaque. Most weak verbs contain only one
weak radical, but there are also several verbs that consist
of two or even three weak radicals. In typical cases, a
weak radical is lost completely or assimilated into an
adjacent consonant, and the surrounding vowels are
contracted together, lengthened and/or colored. Consider
the following G-stem preterites in 3rd person plural
masculine: {i-bniˀ-ū} → ​ibnû ‘they built’, {i-wšib-ū} →
ūšibū/ušbū ‘they sat down’, {i-wṣiˀ-ū} → ​ūṣû ​‘they set
forth’. Additional assimilations occur at morpheme
boundaries: {ta-ˀrub-ma} → ​tērumma ​‘you entered’;
{i-ndin-kim-šu} → OB ​iddikkiššu, ​MB+ ​imdikkiššu ​‘he
gave it (masc.) to you (fem.)’ (Buccellati 1996).

2.3 Graphemic and phonemic representation
As Akkadian was written in logosyllabic cuneiform script,
it is represented in Latin characters as a graphemic
transliteration​. The basic guidelines for transliteration
are quite uniform and standardized. For instance, E₂
ra-bu-um ​‘big house’ consists of a logogram written in
capitals, followed by a subscript that distinguishes the
sign from homophonous signs E and E₃. The three signs
in italics represent syllabic values, and square brackets
indicate that the cuneiform sign representing ​bu has been
destroyed and reconstructed by the editor. In phonological
transcription​, this is read ​bītum rabûm​. Long vowels
(and occasionally even geminates) are not consistently
spelled out in cuneiform, and thus the transcriber has to
have knowledge of the Akkadian language in order to
produce valid transcriptions. Yet, there are some
differences in how words are transcribed. Some scholars
do not distinguish between long /ā ī ū ē/ and contracted /â
î û ê/ vowels (e.g. Buccellati 1996), and there are
inconsistencies between transcribing the vowels /i/ and
/e/, mostly because cuneiform writing did not always
make a distinction between them: BI is read ​bi or ​be₂​; RI
= ​ri​, ​re​; NI = ​ni​, ​ne₂​; KI = ​qi₂​, ​qe₂​ just to mention a few.

3888

At this stage, BabyFST operates only on the
transcription. This is adequate, as there are several
thousands of transcribed texts in Oracc (the Open Richly
Annotated Cuneiform Corpus, see 2.4.) available.

2.4 Resources 2

Considering the fact that Akkadian is an extinct language
studied by a small research community, it is fairly well
resourced. Currently the largest digital resources for
Akkadian are ARCHIBAB (30k Babylonian texts), CDLI
- Cuneiform Digital Library Initiative (320k texts of
which 76k are labeled as Akkadian), SEAL - Sources of
Early Akkadian Literature (550 compositions), and Oracc,
which is a collection of texts from dozens of different
projects. Oracc comprises 1.98M tokens (17k texts) in 3

various cuneiform languages. Of these, 1.67M tokens are
labeled as various dialects or stages of Akkadian and 783k
as different stages of Babylonian. In total, 1.42M
Akkadian and 614k Babylonian tokens have been
lemmatized and POS-tagged. For Neo-Assyrian, the most 4

notable collection of texts is the State Archives of Assyria
online (504k tokens), initiated already in 1986 by Simo
Parpola in Helsinki and later lemmatized and added to
Oracc by Karen Radner and her team. Currently, none of
the afore-mentioned corpora contain a morphological
analysis of Akkadian beyond lemmatization and
POS-tagging.

3. Description of the FST-based
Computational Model of Babylonian

3.1 Previous and other relevant attempts

Kataja and Koskenniemi (1988) created the first
computational description of the Akkadian morphology
using the two-level formalism. They handled
interdigitation of verbs by intersecting two regular
lexicons, of which one described the root and its
affixation, and the other the pattern formalisms. As the
intersection approach was highly overgenerating, Kataja
and Koskenniemi experimented with constraining the
morpheme combinatorics by using unification-based
features. This work was, however, stated to be still in
progress when their paper was published.

Bamman and Andersson (2012) is a finite-state 5

description of Old Assyrian grammar purely implemented
using ​lexc and ​xfscript formalisms (Beesley and

2 ​Unfortunately, the resources do not give a transparent description of
their content in terms of token counts or language distribution.
3 ​http://oracc.org/projectlist.html
4 Counts are based on the Korp version of Oracc at ​http://korp.csc.fi/​.
The latest snapshot corresponds to Oracc as of May 2019.
5 This report is authored by Bamman alone.

Karttunen, 2003) and the Foma compiler (Hulden 2009).
It is capable of analyzing several different parts of speech
(with a lexicon comprising 255 verbal roots, 1918 nouns,
235 adjectives, 625 names, and 40 prepositions and
adverbs) and it operates on transliteration. Automatic
transcription works by duplicating or de-duplicating all
vowels and consonants in the input string, and then by
constraining the given options with the morphological
analyzer. Some common logograms are treated by
mapping them on their corresponding lemmas. The
analyzer also has a guesser for unseen lexical items,
which tries to give a correct POS-tag to unknown words.
In this model, interdigitation is handled by describing
verbs as sequences of morpheme slots, radicals and vowel
classes; e.g. ​_š_r_q_i/i​, and then by filling in the slots
with morphemes; e.g. ​i_ta_0_ā → ​ištarqā ​‘they (f.)
have stolen’. The analyzer was evaluated with a test
corpus of 10,000 tokens. It returned a non-guessed
analysis for 67.6% of the word form tokens (41.7% of
unique word form types). Manual analysis of the 50 most
frequent words in the corpus revealed that a correct
morphological analysis was among the generated
possibilities in 93.6% of the cases.

Contributions specifically to automatic analysis
of Akkadian verb morphology are Barthélemy (1998),
Macks (2002) and Sahala (2014). Barthélemy’s
analyzer/generator is based on Prolog Definite Clause
Grammar (DCG) rules. The verb morphology is described
in two levels. The first describes the paradigm for strong
verbs and the second describes phonetic transformations.
In the strong verb paradigm, verbal forms are split into
nine smaller slices, of which each is described using a
proper non-terminal (1. personal prefix, 2. stem prefix, 3.
derivative infix, 4. R₁, 5. ​t​-infix, 6. R₂ reduplication, 7.
R₂ and its vocalization, 8. R₃, 9. personal suffix). The
phonetic transformation level contains rewrite rules that
produce, for instance, weak surface forms based on the
strong verb paradigm, as well as phonological
alternations. The system is abstract and does not include a
dictionary of Akkadian roots. Macks’ analyzer/generator
is also written in Prolog by using DCG rules. The system
is able to recognize and generate strong and singly weak
verbs (in transcription) in G-, N-, Š- and D-stems, but
does not handle morphophonemic alternation in the
affixation. Similarly to Barthélemy 1998, Macks’
description operates without any knowledge of the
Akkadian lexicon. Thus, it does not contain information
about valid roots or their vowel classes, which makes it
highly overgenerating.

Sahala's approach to Akkadian verb morphology,
Babyparser​, is implemented in Python. The system
analyses Akkadian (especially OB and SB) verbs from the
transcription and syllabic transliteration by a reductive

http://oracc.museum.upenn.edu/projectlist.html
http://korp.csc.fi/

3889

process, that first recursively strips out affixation and then
compares the remainder with a series of regular
expressions automatically generated from a root
dictionary and a set of verbal stem templates. Mapping
between transliteration and transcription is done by
removing all non-alphabetic symbols, ignoring vowel
lengths, and by simple heuristic rules (e.g. *​Ca-a(-a)-aC*
→ *C​ajjaC*​). The analyzer covers all stem derivations
and verbal affixes for every verb class except for doubly
weak verbs, of which description by using a reductive
process was discovered to be too difficult and ambiguous
due to the high degree of vowel contractions. Evaluation
of 347 unique verbal forms in SB yielded a coverage of
86.1% (transliteration) and 89.0% (transcription). The
wanted morphological analysis was among the results in
93.3% (transliteration) and 96.5% (transcription) of the
cases. Our current FST implementation is based in many
aspects on ideas in the ​Babyparser​.

Currently, the most widely used analysis tool for
Akkadian is a lemmatizer known as L2 by Steve Tinney
(2018), which has been the main component for
POS-tagging and lemmatizing Oracc. This tool is
essentially an Emacs macro that works by mapping
transliterated words with their corresponding lemmas, of
which the annotator is supposed to pick the relevant one,
or to add a new lemma manually if the word form is
previously unseen.

3.2 Modeling Principles
Instead of modeling the interdigitation of the verbal stems
dynamically, we chose to pre-generate the lexicon of the
Akkadian verbal stems by using Python. In total the
enumerated lexicon consists of 352k verbal stems (178k if
vowel variation like ​parris ~ ​parres is excluded) for 1410
Babylonian lemmas. Such an enumeration was feasible, as
we had already collected and classified Akkadian verbal
roots and stems in our previous work (cf. Sahala 2014),
and practical, as the minimization algorithms in
finite-state compilers are quite efficient in identifying
recurrent character strings, thus substantially reducing the
final size of the transducer. This approach, chunking
together a complex sequence several theoretical
morphemic elements into a single unit, as well as having
multiple stems associated with a single lemma, has
previously been used successfully in the computational
modeling of typologically comparable Dene languages,
such as Tsuut’ina (Arppe et al., 2017).

The lemma-stem generator script combines root
and template information stored in two files. First, an
XML file that contains verbal roots, their conjugation
class, vowel classes, vowel color, attestations in different

dialects and time periods, and basic translations. Second, 6

it reads a description of verbal templates for different
conjugation classes (1341 patterns in total for 42
conjugation classes, including irregular verbs). Following
Akkadian text books, templates are represented by using
symbols P-R-S for radicals R₁, R₂ and R₃. Positions for
vowel-class dependent vowels are marked as V1 and V2
(e.g., P R V2 S represents strong G-preterite: ​-prus-,
-šbir-, -ndin- etc.). Additional symbols are used when
necessary. For instance, the position of the disappearing
weak radical aleph is marked with a symbol X. This is
useful for providing unambiguous contexts for rewrite
rules that handle allomorphy, vowel contraction or
lengthening and gemination at morpheme boundaries.
Also, temporary symbols ♂ and ♀ are used to constrain
suffixation of the middle weak verbs. Stems that may be
followed by only a vocalic suffix are marked with the
former (​i-dukk-ū ​‘they kill’) and the others with the latter
(​i-dâk-ma, i-dâk-Ø ‘he kills’). This solution was more
convenient than splitting the middle weak stems and all
verbal suffixes into two groups in the lexicon (Table 2).

iialef-a-indicative ; P V: a S ♀ ; G-Present

iialef-a-indicative ; P â S ♀ ; G-Present

iialef-a-indicative ; P V2 S S ♂ ; G-Present

Table 2: Patterns for middle-weak indicative G-present
stems, e.g. /qīaš, qâš, qišš/, /dūak, dâk, dukk/.

We extracted lexicons of lemma-stem pairings for nouns
and adjectives from Oracc. The starting point are the 7

Oracc lemmas, which we stemmed automatically by
removing the nominative ending {u}. For final weak
words, we replaced the contracted nominative ending with
the symbol X to preserve the position of the weak radical.
If the stem contained a final consonant cluster, we added
an epenthetic vowel between them to produce construct
forms: ​parsu ​→ ​par(a|i|u|e)s-​. This solution causes
overgeneration, but it was the simplest one as the
epenthetic vowel is often determined lexically and cannot
be guessed. The first version of the noun and adjective
lexicon, combined with morphology and rewrite rules,
could recognize about 70% of the relevant word forms in
Oracc. The remainder consisted of different lexically
restricted spelling irregularities (e.g. ​gikkigu ~ gigakku ~
giggigu​) and the syllabic alternation in the stems. In these,
about 2000 cases, we extracted the transcriptions from
Oracc and stemmed them by hand. For other parts of
speech, stemming was done manually as the number of
lexical entries was reasonably small (Table 3). Compound
words are currently not supported due to their rarity.

6 ​This root dictionary was originally manually composed by Sahala
(2014) from Black et al. (2000) and Parpola & Whiting (2007).
7 ​This data corresponds to Oracc’s content in August 2018.

3890

Lexicon Entries Transducer size
Nouns 35,354 380.9 kB
Adjectives 2755
Verbs 352,115 3.8 MB
Adverbs 518 55.2 kB
Numerals 202
Pronouns 289
Particles 29
Conjunctions 30
Adpositions 293
Interjections 23
Proper nouns 12,230 443.4 kB
Total 403,873 4.68 MB

Table 3: Overview of the lexicon and POS coverage.

The relevant morphology and morphotactics for each part
of speech is described in the corresponding lexicon. For
example, labial personal prefixes are only permitted in
front of D-, Š-, ŠD- and R-stems (and their ​-t- ​and ​-tan-
derivations) by dividing the stems into labial and illabial
groups. Circumfixes, which consist of prefixal person and
suffixal number/gender parts, such as the third person
plural {i...ū} (masc.) and {ī...ā} (fem.), are constrained by
using flag diacritics. Interestingly, this morphological
phenomenon as well as its practical computational
implementation is very similar to that applied to the
Algonquian languages, e.g. Plains Cree (Harrigan et al.,
2017). The flag-diacritics present the manifested person
prefix component of the circumfix, rather than the
associated feature, which then determines which matching
suffix components are allowable, and the morphological
feature represented by the circumfix is determined upon
encountering the suffix component.

Allomorphy, such as ventive /nim, am, m/,
vetitive /ajj, ē/ and first person singular possessive /ja, ī,
a/, which all have different realizations depending on the
context, are described as special morphophonemic
symbols. We use rewrite rules to change these symbols
into correct surface representations; e.g. ​[AJJ] -> ē

|| _ %< C ​, which maps vetitive {ajj} to /ē/ before a
consonant at the prefixal morpheme boundary marked
with <.

Phonemic and morphophonemic alternation, as
well as changes in orthography are expressed by using a
composition of 26 rewrite rules (of which most are
compositions of several rules). This handles previously
mentioned morphophonemics, typical assimilations and
dissimilations (​ibbi → imbi, inbi​), metatheses (​zitkar →
tizkar​), variation in transcription conventions (​iprusma ~
iprus-ma​), spelling variation (​awīlu ~ amēlu​), aleph
preservation/omittance (​ibanniū ~ ibannû ~ ibanniˀū​),
morphotactic constraints in middle weak verbs (​idâk ~
idukkū​) and syncope (​*taptarasī → taptarsī​). In the
current version, these rules govern features attested in all

stages of Babylonian and most of them are defined as
optional. This makes it possible to analyze several stages
of Babylonian with a single model, as well as Standard
Babylonian, which often contains both, archaisms, and
features from the contemporary spoken dialects.

In total, the compiled and minimized transducer
is 6.2MB in size and consists of 143,244 states, 405,597
arcs and 1,867,800,170,342 paths.

4. Evaluation of the Model

We evaluated the morphological analyzer with all
available transcribed Babylonian texts from Oracc, which
we split into five sub-corpora based on their dialect. As
we did not have a gold standard with complete
morphological feature tagging, our goal was to produce
the lemma and POS-tag that matched the corresponding
annotation given in Oracc. Our hypothesis was that due to
the complexity of Akkadian morphology, the analyzer is
unlikely to produce a correct lemma and POS-tag without
also producing a valid morphological analysis. We tested
the hypothesis on a small scale by comparing 100
manually produced annotations with the BabyFST results.
Of these, BabyFST did not give the wanted annotation
only in five cases: three times due to Assyrianisms, once
due to a missing feminine stem in the lexicon and once
due to undefined spelling of the locative marker.

We measure the performance with three metrics
for tokens and types in running text (Table 5 and 6).
Coverage ​indicates the percentage of word forms that
were accepted and analyzed by the transducer regardless
of the analysis. ​Recall ​indicates the percentage of word
forms that were given an annotation matching the analysis
in Oracc. ​Precision ​measures the ratio of correct analyses
(matches with Oracc) to the number of total analyses.

Dialect OB MB SB NB LB

Word count 170,339 145,805 333,559 184,439 249,263

Coverage 95.97 95.82 97.37 95.97 97.06

Recall 91.01 90.33 93.65 91.02 93.11

Precision 41.89 40.62 41.15 40.26 41.87

Table 5: Evaluation by dialect (tokens).

Dialect OB MB SB NB LB

Word count 22,132 17,861 39,950 23,226 20,667

Coverage 90.02 89.12 92.61 88.33 88.50

Recall 80.50 78.23 83.64 77.43 78.56

Precision 46.59 44.67 45.03 44.61 47.39

Table 6: Evaluation by dialect (types).

3891

Dialect OB MB SB NB LB

ADJ 77.84 76.99 66.21 76.24 79.14

ADV 75.29 73.90 85.28 78.33 76.94

N 93.00 92.08 95.45 93.14 94.04

PN 83.37 83.13 88.97 84.06 84.31

PRON 89.71 86.35 94.08 90.35 91.66

V 89.74 88.56 91.05 87.50 87.00

MISC 91.20 88.27 89.51 89.26 90.77

Table 7: Recall by POS (tokens). Rare POS are collapsed
under MISC.

Low recall (Tables 5, 6, 7) is partly explained by differing
lemmatization conventions, spelling variation, Oracc
lemmatization errors and over-analysis of certain word
forms. We examined 150 random unique mismatches with
Oracc’s annotation, of which 68 were true errors. Of these
errors, 44 were caused by missing lexical items in our
lexicon, or otherwise incorrect analyses, such as errors in
verbal stems. The rest of the errors were caused by
undefined Assyrianisms, incorrectly defined infinitives,
and undefined loss of weak radicals.

The remaining 82 mismatches actually contained
correct analyses that did not match the Oracc lemma due
to lack of normalization. Of these mismatches, 41 were a
result of over-analysis. For example, where Oracc has a
lemma ​kullu​+V, the analyzer returns ​kâlu​+V+D+Inf,
which is essentially the same form, but it is just
represented in a more atomistic way. Similarly, several
adverbs formed with {iš} and feminine nouns formed with
{at} are broken up into smaller components, while the
Oracc lemmatization displays them as lexicalized units
(​ūmu+​N+Adv ~ ​ūmiš​+AV; ​qerbu​+N=Fem ~ ​qerbetu​+N).
In 29 of the cases a correct analysis mismatched due to
spelling variation in the lemma (​melammu​+N ~
melemmu​+N), or because the lemma was represented in
Oracc in its Assyrian form (​walādu​+V ~ ​ulādu​+V). The
rest of the mismatches were caused by lemmatization
errors in Oracc (e.g. ​gašri​+N instead of ​gašru​+N). In
these cases, BabyFST ​returned the correct lemma. Taking
this into account, up to half of the missing recall is caused
by a lack of normalization between BabyFST and Oracc.

4.1 Ambiguity
Considering the whole corpus on the token level, the
average number of given analyses (correct or not) for each
POS is as follows: adjectives (6.38), adpositions (3.44),
adverbs (5.75), conjunctions (1.52), interjections (3.72),
proper nouns (4.42), nouns (4.12), numerals (4.40),
pronouns (3.89) and verbs (3.28).

The confusion matrix (Table 8) represents the
distribution of POS tags (horizontal) given to an input

(vertical). For example, nouns receive on average 4.12
analyses. Of these analyses on average 56.66% are tagged
as nouns, 34.89% as verbs, 5.57% as adjectives and
2.88% as proper nouns or something else.

I/O ADJ ADV N PN PRON V MISC Σ

ADJ 21.89 0.04 37.68 0.11 0.01 39.07 1.20 100.00

ADV 17.09 17.68 31.06 0.37 0.14 26.8 6.87 100.00

N 5.57 0.10 56.66 0.91 0.26 34.89 1.60 100.00

PN 0.24 0.00 1.10 96.16 0.00 1.49 1.00 100.00

PRON 0.20 0.12 30.35 0.56 26.75 10.77 31.25 100.00

V 3.49 0.01 12.44 0.50 0.15 82.05 1.36 100.00

MISC 1.78 0.40 42.09 1.07 5.34 11.13 38.18 100.00

Table 8: POS confusion matrix.

4.2 Unweighted Model
We set the baseline for disambiguation by analyzing the
Standard Babylonian corpus and sorting the results by
lemma frequency. We calculate recall in three settings:
taking into account the morphological analyses with only
(1) the most frequent, (2) two most frequent, and (3) three
most frequent lemmas (Table 9).

 Recall @ 1 Recall @ 2 Recall @ 3

Tokens 78.12 90.19 92.65

Types 63.89 77.87 81.70

Table 9: Baseline recall for tokens/types.

4.3 Weighted Model
As stated in Section 4.1, the average number of possible
morphological analyses for Akkadian words is relatively
high (Fig. 1). In this section, we present a simple
weighting algorithm for finite-state analyzers. The
algorithm utilizes a manually disambiguated list of
training examples consisting of input word forms and
morphological analyses. The aim is that each analysis in
the training data receives a higher likelihood than other
plausible analyses for the relevant input word forms.
Because of shared states and transitions in finite-state
networks, this behavior is expected to generalize to other
word forms as well. We provide no theoretical guarantees
for the weighting algorithm, since success depends on
network topology, and the experimental results presented
in Section 4.3.2 show that having ​only hand-validated
lemma and POS information but ​not validated complete
morphological analyses in the training of a weighted
finite-state transducer provides moderate success in
ranking the most likely analyses highest.

3892

Figure 1. Token/type ambiguity of BabyFST analyses.

4.3.1 Weighting Algorithm
Our weighting algorithm is based on traversing

the states and transitions in a deterministic finite-state
transducer using aligned string pairs given as training
examples. The algorithm loops through all examples in
the training set and adds counts of state-to-state transitions
in the unweighted finite-state transducer. It then
normalizes these counts into probability distributions in
each state. Below, we give a more formal explanation of
the algorithm.

Following Allauzen et al. (2007), we view
finite-state transducers as finite-state acceptors of strings
consisting of symbol-pairs ​x:y, ​where ​x and ​y belong to
finite input and output alphabets, respectively. As a
special case, either ​x or ​y can be the empty symbol ​ε. We 8

denote transitions in ​T as 5-tuples ​(s, t, x, y, w)​, where ​s
and ​t ​denote the source and target state, respectively; ​x:y
is a symbol pair and ​w​t is a real-valued weight. A subset
of the states in ​T are final states. Each final state ​s has a
real-valued final weight ​w​s ​. If ​T is a transducer, it can be
determinized as a finite-state acceptor. Below, we will
assume that all transducers are deterministic in this sense.

In order to assign weights to the transitions of
transducer T​, we need a set ​P = {p​1​,...,p​m​} or strings ​p =
x​1​:y​1​, …, x​n ​:y​n ​, where each string ​p ​is accepted by
transducer ​T. ​We start by associating each state ​Q of
transducer ​T with a transition counter ​C​Q , ​which maps
symbol-pairs ​x:y to counts ​C​Q ​(x:y), ​and a finality count ​f​Q ​.
If string ​p=x​1​:y​1​, …, x​n ​:y​n is accepted by transducer ​T​,
then each symbol-pair ​x​i​:y​i corresponds to a unique
accepting state ​Q​i because transducer ​T is deterministic.
Moreover, each string p is associated with a unique final
state ​F​p​.

Let

8 Note that ​ε:ε ​is not a valid pair.

Here indicator [​a = ​b​] evaluates to 1, if ​a = b, ​and 0,
otherwise. In the equations above, α is a smoothing term
which we set to 1 in all experiments.

For a transition ​(s, t, x, y, w) ​in T​, we now define
the transition weight ​w ​as:

We define the final weight ​w​S ​ of a final states ​S​ as:

4.3.2 Experiments
Currently, the human-validated corpora available for
Akkadian, while substantial, only indicate the lemma and
POS tag of each word form token, rather than a full
morphological feature analysis disambiguated in context,
which would normally be necessary for training a
weighted finite-state transducer. Thus, we set forth to
explore whether we could nevertheless make use of such
validated data in combination with our unweighted
finite-state transducer to prune the extent of ambiguous
analyses. Therefore, we first ran through the 333,560
tokens in the Standard Babylonian subcorpus of Oracc
through our finite-state transducer to retrieve full
morphological analyses, which are potentially ambiguous
as noted above in Section 4.1. Second, we used the
validated lemmas and part-of-speech tags provided in the
Oracc subcorpus per each token to select only those full
morphological analyses which matched the validated
coding. As a result, the remaining ambiguity amounted on
average to 1.57 morphological analyses per token, as a
majority (57.4%) of the tokens had a single, unambiguous
full morphological analysis (Table 10).

% Cumul. % Tokens No. of analyses

57.4 57.4 191,502 1

20.1 77.5 66,889 2

12.2 89.7 40,799 3

1.0 90.7 3,230 4

0.3 90.9 886 5

9.1 100 30,254 6-93

Table 10: Ambiguity of morphological analysis remaining
after pruning with validated lemma and POS tags, which

is used as the training data in weighting.

Third, we used these pairings of tokens and their
lemma-disambiguated full morphological analyses to
weight our Akkadian finite-state transducer according to
the algorithm described in Section 4.3.1. Throughout this,
we used HFST - Helsinki Finite-State Technology

3893

compiler (Lindén & al., 2011) which is capable of
compiling and running weighted transducers.

Fourth, we re-analyzed all the tokens from the
training corpus with the weighted finite-state transducer in
order to evaluate its baseline performance. Since the only
validated linguistic information we had for these tokens
were their lemma and part-of-speech, we focused on the
rank of the best-weighted full morphological analysis that
corresponded to the validated POS tag.

The results in Table 11 should be compared with
Fig. 1 which shows that in the not yet disambiguated data
only 20% of the tokens had a single reading. After
weighting all the readings, 55% of the tokens had the
correct analysis (in terms of matching a validated lemma
and part-of-speech tag) ranked as the first analysis , while 9

the average rank of the (highest) ranked “correct” analysis
was 2.03, and when considering the three top-most ranked
analyses together we exceeded (80.9% match with the
validated lemma and part-of-speech coding) what could
be achieved with a baseline heuristic of using
lemma-frequency alone for selecting the most likely
analysis (with a recall of 78.12%). 10

% Cumul. % Tokens Rank

55 55 183,310 1

16.6 71.6 55,487 2

9.4 80.9 31,204 3

5.5 86.4 18,353 4

2.4 88.8 7,903 5

4.9 93.7 16,242 6+

6.3 100 21061 N/A

 Table 11: Rank of morphological analysis matching with
validated lemma and POS tags.

Nevertheless, we may conclude that due to the inherent
ambiguity of Akkadian, validated lemma+POS
information simply is neither enough for selecting the
correct complete morphological analyses, nor for
adequately weighting a finite-state transducer for
Akkadian.

9 ​The results did not essentially improve if we used as training
data in the weighting of the finite-state transducer only those
tokens for which the Oracc lemma and POS tag accepted a
single, unambiguous complete morphological analysis.
10 ​Note that the discrepancy between the 55.0% proportion of
first-ranked analyses for tokens with the weighted finite-state
transducer vs. the 57.4% proportion for tokens receiving a single
morphological analysis using the Oracc lemma and POS tags, as
post hoc disambiguation after the application of the unweighted
finite-state transducer, is due to the fact that the hand-validated
information may prune some unweighted analyses that the
weighted finite-state transducer may still output and assign a
better weight than other analyses matching the Oracc tags.

5. Further Work and Future Directions

In order to properly evaluate the morphological tagging, a
completely morphologically analyzed and disambiguated
gold standard is required. Fortunately, a manually
analyzed corpus of royal inscriptions written in Standard
Babylonian is currently being annotated by the Akkadian
Treebanking project at the University of Helsinki. The 11

gold standard will provide accurate data for weighting the
transducer and will also allow us to evaluate methods for
disambiguating the morphological analyses in context.

We aim to include support for analyzing
transliterated input. The support for transliterated text will
make it possible to lemmatize, POS-tag and
morphologically analyze transliterated but not yet
transcribed large text corpora such as CDLI. Being able to
operate directly on transliterated input can later be
combined with OCR in order to process scanned pictures
of cuneiform tablets.

6. Conclusions
BabyFST is a unified morphological model for different
stages of Babylonian dialects (1900 BCE – 100 CE), and
currently the most comprehensive morphological analyzer
for Akkadian. It operates on transcriptions and is able to
achieve a coverage up to 95.82–97.37% with a recall of
90.33–93.65% (on tokens) depending on the dialect. Up to
half of the missing recall is caused by normalization
issues rather than an incomplete definition of the lexicon
or lacking morphotactic descriptions. We still do not have
a robust way to disambiguate the results due to the lack of
a morphologically tagged gold standard. Nevertheless, in
combination with ​post hoc disambiguation using the
lemma and POS tags in Oracc, BabyFST can already now
be used to provide complete, unambiguous morphological
analyses for 57.4% (191,502) of the tokens in the
Standard Babylonian subcorpus and, using only a
weighted transducer, the correct analysis can be provided
among the top-3 for 80.9% of the input tokens. Our next
goal is to tackle morphological disambiguation and
transliteration in context applying the analyzer to
available text corpora.

Acknowledgements
We acknowledge funding from the Academy of Finland
for the Centre of Excellence in Ancient Near Eastern
Empires and from the University of Helsinki for the Deep
Learning and Semantic Domains in Akkadian Texts
Project (PI Saana Svärd for both).

11 PI of the project is Niek Veldhuis (UC Berkeley / University
of Helsinki) and the annotations are being made by Mikko
Luukko (University of Helsinki).

3894

Bibliographical References

Allauzen, C.; Riley, M.; Schalkwyk, J.; Skut, W. &

Mohri, M. (2007). ​OpenFst: A General and Efficient
Weighted Finite-State Transducer Library​. In
Conference on Implementation and Application of
Automata.

Arppe, A.; Cox, C.; Hulden, M.; Lachler, J.; Moshagen, S.
N.; Silfverberg, M. & Trosterud, T. (2017).
Computational Modeling of Verbs in Dene Languages:
The Case of Tsuut’ina. In Jaker, A. (ed.), ​Working
Papers in Athabaskan (Dene) Languages​, 51-69.
Alaska Native Language Center Working Papers 13.
Fairbanks: Alaska Native Language Center.

Bamman, D. (2012). 11-712 NLP Lab Report.
https://github.com/dbamman/akkadian-morph-analyzer/
blob/master/doc/latex/whitepaper.pdf

Barthelémy, F. (1998). A Morphological Analyzer for
Akkadian Verbal Forms with a Model of Phonetic
Transformations. In Computational Approaches on
Semitic Languages​.

Beesley, K, and Karttunen, L. (2003). ​Finite State
Morphology. ​Palo Alto, California: CSLI Publications.

Black, J. A., George, A. R. and Postgate J. N. (2000). ​A
Concise Dictionary of Akkadian​. Wiesbaden:
Harrassowitz Verlag.

Buccellati, G. (1996). ​A Structural Grammar of
Babylonian​. Wiesbaden: Harrassowitz Verlag.

Harrigan, A.; Schmirler, K.; Arppe, A.; Antonsen, L.;
Moshagen, S. N.; Trosterud, T. & Wolvengrey, A.
(2017). Learning from the Computational Modeling of
Plains Cree Verbs. ​Morphology​, 27(4), 565–598.

Hulden, M. (2009). Foma: a Finite-State Compiler and
Library. In Proceedings of the 12th Conference of the
European Chapter of the Association for Computational
Linguistics (EACL): Demonstrations Session, 29–32.
Athens: Association for Computational Linguistics.

Kataja, L. and Koskenniemi, K. (1988). ​Finite-State
Description of Semitic Morphology: A Case Study of
Ancient Akkadian. Coling Budapest 1988 Volume 1:
International Conference on Computational Linguistics.

Kouwenberg, N. J. C. (2010). ​The Akkadian Verb and its
Semitic Background. Languages of the Ancient Near
East 2. Winona Lake: Eisenbrauns.

Kouwenberg, N. J. C. (2011). Akkadian in General. In
Semitic Languages. An International Handbook. S.
Weninger, G. Khan, M. P. Streck & J. C. E. Watson
(Eds.), De Gruyter Mouton, pp. 330–340.

Lindén, K., Axelson, E., Hardwick, S., Pirinen, T. A. &
Silfverberg, M. (2011). HFST-Framework for
Compiling and Applying Morphologies. In ​Systems and
Frameworks for Computational Morphology. Mahlow,
C. & Piotrowski, M. (eds.). Springer-Verlag, pp. 67-85
19 p. (Communications in Computer and Information
Science; vol. 100).

Macks, A. (2002). ​Parsing Akkadian Verbs with Prolog.
SEMITIC '02 Proceedings of the ACL-02 workshop on

Computational approaches to Semitic languages. pp
1–6.

Parpola, S. and Whiting, R. M. (2007). ​Assyrian-English-
Assyrian Dictionary​. Helsinki: The Neo-Assyrian Text
Corpus Project.

Reiner, E. (1966). ​A Linguistic Analysis of Akkadian.
Janua Linguarum, Series Practica 21. The Hague:
Mouton.

Sahala, A. (2014). ​Babylonian diskontinuatiivisen
morfologian ohjelmallinen jäsentäminen​. MA Thesis,
University of Helsinki.

Soden, von, W. (1995). ​Grundriss der akkadischen
Grammatik​, 3., ergänzte Auflage (Analecta Orientalia
33/47) Roma: Pontificio Istituto Biblico.

Streck, P. M. (2011). Babylonian and Assyrian. In Semitic
Languages. An International Handbook. S. Weninger,
G. Khan, M. P. Streck & J. C. E. Watson (Eds.), De
Gruyter Mouton, pp. 359–398.

Tinney, S. (2018). ​L2: How It Works. Oracc: The Open
Richly Annotated Cuneiform Corpus.
http://oracc.org/doc/help/lemmatising/howl2works/

Language Resource References
ARCHIBAB. (2008). Archives babyloniennes (XX​e​-XVII​e

siècles) ​http://www.archibab.fr/
CDLI. (2000). The Cuneiform Digital Library Initiative.

https://cdli.ucla.edu/
Oracc. (2014). The Open Richly Annotated Cuneiform

Corpus. ​http://oracc.org
SAA(o). (1986). State Archives of Assyria (online).

http://www.helsinki.fi/science/saa/
SEAL. (2008). Sources for Early Akkadian Literature.

https://www.seal.uni-leipzig.de/

https://github.com/dbamman/akkadian-morph-analyzer/blob/master/doc/latex/whitepaper.pdf
https://github.com/dbamman/akkadian-morph-analyzer/blob/master/doc/latex/whitepaper.pdf
http://oracc.museum.upenn.edu/doc/help/lemmatising/howl2works/
http://www.archibab.fr/
https://cdli.ucla.edu/
http://oracc.org/
http://www.helsinki.fi/science/saa/
https://www.seal.uni-leipzig.de/

