
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 3868–3876
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

3868

Bag & Tag’em - A New Dutch Stemmer

Anne Jonker1, Corné de Ruijt1 and Jornt R. de Gruijl2
Vrije Universiteit Amsterdam, Faculty of Science 1, Bright & Company2

annejonker@gmail.com, c.a.m.de.ruijt@vu.nl, jornt.de.gruijl@brightcompany.nl

Abstract
We propose a novel stemming algorithm that is both robust and accurate compared to state-of-the-art solutions, yet addresses several
of the problems that current stemmers face in the Dutch language. The main issue is that most current stemmers cannot handle 3rd

person singular forms of verbs and many irregular words and conjugations, unless a (nearly) brute-force approach is used. Our algorithm
combines a new tagging module with a stemmer that uses tag-specific sets of rigid rules: the Bag & Tag’em (BT) algorithm. The tagging
module is developed and evaluated using three algorithms: Multinomial Logistic Regression (MLR), Neural Network (NN) and Extreme
Gradient Boosting (XGB). The stemming module’s performance is compared with that of current state-of-the-art stemming algorithms
for the Dutch Language. Even though there is still room for improvement, the new BT algorithm performs well in the sense that it is
more accurate than the current stemmers and faster than brute-force-like algorithms. The code and data used for this paper can be found
at: https://github.com/Anne-Jonker/Bag-Tag-em
Keywords: Stemming, PoS tagging, Dutch

1. Introduction
The increased availability of both text data and computa-
tional power has resulted in an increase in applications us-
ing text mining for various purposes: it has been applied
in sentiment analyses to determine the overall reputation of
a company (Pang et al., 2008), identifying and analysing
cybercrime activities (Kontostathis et al., 2010) and fraud
detection (Phua et al., 2010), to name a few.
In order to perform such analyses and develop applications
based on unstructured text data, data is commonly prepro-
cessed in a number of ways. One such common preprocess-
ing step in text mining is to reduce the number of variants
of a word to a common root in order to reduce noise and en-
hance the accuracy of the analyses that follow. This process
of reducing variants of words to a common stem is referred
to as stemming. Stemming has been studied thoroughly for
the English language and considerable success has already
been achieved. This is commonly done through use of the
Porter algorithm (Porter and others, 1980) that uses a rigid
rule-based system to stem a word.
The problem with many other languages, including the
Dutch language, is that they have been less of a focal point
for research and that many words are irregular when it
comes to their inflections. As such, they do not conform
to the otherwise established rule sets, forming exceptions.
Our aim was to construct a new algorithm that is both more
accurate and robust than the state-of-the-art algorithms cur-
rently in use for the Dutch language. Our algorithm, the
Bag & Tag’em (BT) algorithm, achieves this through the
two components it comprises.
The first component is a new tagging model that categorises
a word based on bi-grams of characters in singular words.
This differs from established tagging algorithms which use
large corpora of pre-tagged words to look up a correspond-
ing category. An example of such an algorithm is Frog
(Bosch et al., 2007). In theory, our approach decreases
the requisite computational resources at the cost of some
degree of accuracy. Furthermore, it should increase robust-
ness and allow the algorithm to better process typos and

neologisms, for example.
The second component applies pre-determined rules to
stem a word based on its assigned tag. This part of the
approach is similar to the Porter algorithm, but uses rules
specific to the Dutch language instead.
The final algorithm could aid in analysing large quantities
of Dutch text documents, due to its accuracy, robustness
and computational efficiency compared to current stan-
dards. As such, applications of text mining stand to gain
from the algorithm described in this article.
We give an overview of stemming methods in Section 2.,
followed by the methods on how the BT algorithm was built
in Section 3. The results of the experiments are shown in
Section 4. and discussed in Section 5.2.

2. Literature
2.1. Stemming
Stemming is the process by which words or grammatical
forms are reduced to common stems (Jivani and others,
2011). An example of this is to reduce the words walking
and walked to their common stem: walk. The purpose of
doing so is to decrease the number of occurrences of words
that have different forms, yet convey the same meaning.
Several stemming algorithms are applied in the text mining
field, and can be categorised as one of three classes (Jivani
and others, 2011):

1. Truncating Methods (e.g. Lancaster, Porter, Snow-
ball). These stemming algorithms use affix stripping
to reduce a word to its corresponding stem.

2. Statistical Methods (e.g. Hidden Markov Models
(HMM)). These stemming algorithms use probabili-
ties to determine what the correct stem should be, of-
ten done in forms of Neural Networks.

3. Mixed or Inflectional and Derivational Methods
(IDM) (e.g. Part of Speech). These methods com-
bine rule-based approaches and statistical approaches

https://github.com/Anne-Jonker/Bag-Tag-em

3869

and therefore tend to be more morphologically accu-
rate. These stemming algorithms rely more on large
corpora and context information.

In this paper we will focus on IDM, where we will make
use of truncating and PoS tagging algorithms.

2.2. Truncating algorithms
Affix stripping algorithms rely on a set of rules in order to
remove certain parts of words, be it at the start (prefix) or at
the end (suffix). A few basic rules for the English language
(out of many rules) are as follows (Willett, 2006): If the
word ends with -ing, remove ing. If the word ends with
-ed, remove ed. If the word ends with -s, remove s.
However, problems occur with irregular verbs; for exam-
ple run and ran. Both have the same stem - run - but this
technique would identify two different stems instead. The
Dutch language contains many irregular verbs and nouns
and is therefore problematic in this regard. Every language
has its own characteristics, practically necessitating use of
a language-specific stemmer for best results.
There are a few different variants of stemming algorithms
that serve a specific purpose. Some require the stripped
stem to be a word that is contained in the lexicon of the
language (akin to the process of lemmatisation or reducing
a word to its canonical form). If this is not the case, a new
rule has to be applied to reduce it even further to derive a
proper stem, or expand the lexicon itself.
The benefit of rule-based stemming techniques is fast pro-
cessing of documents (Jivani and others, 2011), but the
downside is the potential for large inaccuracies due to pre-
fixes or suffixes of words wrongly triggering rules or pre-
venting rules from being applied. We investigated the fea-
sibility of improving performance through use of specific
subsets of rules, depending on the word’s structure.
The most common algorithms for affix stripping are: Porter
(Willett, 2006), Lancaster (Paice, 1990) and Snowball
(Porter, 2001). Snowball is a version of the Porter algorithm
adapted to make the set of rules more language-specific, as
the affix stripping rules are different for each language.

2.3. Inflectional and Derivational Methods
A different approach to stemming is to make use of Part
of Speech Tagging (PoS), in which words are tagged based
on their function in the sentence and then accordingly han-
dled further by different sets of rules (Monz and De Rijke,
2001).
The algorithm tags words as a type or “speech tag”, e.g.
noun, adjective, verb and so on. An approach based on
probability was proposed by (Brill, 1992). In this case, the
algorithm assigns a PoS tag to each word by using the cor-
responding tag probability for a word as obtained from a
large previously tagged corpus. A word will therefore al-
ways be assigned the same specific tag, disregarding con-
text. The example that was presented in the original paper
shows that in the following two sentences the word run is
tagged as a verb, since run was most frequently a verb in the
tagged corpus, rather than a noun as in the first sentence:

1. The run lasted thirty minutes.

2. We run three miles every day.

One potential downside of this approach is that there seems
to be no direct way to assign a tag to words not contained
in the training corpus. This was mitigated by assigning a
tag based on the last three letters of such unknown words.
Relatively small (parts of) suffixes, and potentially other
letter combinations, may therefore be highly indicative of a
corresponding tag.
The paper showed that the performance of this relatively
simple part-of-speech tagger was roughly the same as that
of other taggers, but had several advantages. These include
speed, applicability and ease of transfer to different lan-
guages.
Two PoS taggers for the Dutch language are Alpino
(Van der Beek et al., 2002) and Frog (Bosch et al., 2007).
Both use a large pre-tagged corpus from the CELEX
database (Van der Wouden, 1990). Frog is generally re-
garded as highly accurate for the Dutch language and may
be considered a benchmark representing the state-of-the-
art in terms of performance. Frog determines both tag and
stem (or lemma) based on a single word rather than any ad-
ditional information from the sentence that word was taken
from. Since PoS tagging shows promising results in liter-
ature and due to the availability of the Frog algorithm as a
ground truth, we investigated the feasibility of a novel ap-
proach that combines a token-based (single-word) tagging
module and a rule-based stemming module.

3. Methods
The scope of this paper limits itself to the Dutch language.
We evaluated the following three algorithms for the multi-
nomial classification problem of tagging: Multinomial Lo-
gistic Regression (MLR), Neural Network (NN), Extreme
Gradient Boosting (XGB). For the actual stemming based
on PoS tags, we developed a new rule-based stemmming
module as part of the Bag & Tag’em (BT) algorithm. Table
1 shows the used tags combined with their translation and
examples. The tags are the common abbreviations in the
Dutch language.

Tag Translation Example Dutch
OTT Present tense Walk Loop
ZNW Noun Dog Hond
OVT Simple past tense Walked Liep
VTT Past perfect tense Walking Gelopen

BVNW Adjective Big Groot
BW Adverb Other Ander

Table 1: Tags explained

3.1. Tagging algorithms
To evaluate the performance of MLR, XGB and NN in as-
signing tags, the F1 score was used. This is preferable to
accuracy and based on both precision and recall, which are
otherwise common measures for performance.
The MLR is one of the most basic regression techniques for
multinomial classification problems (Schmid, 1994), and
was selected as a benchmark for the other algorithms. Due

3870

to the rise and extensive documentation on XGB (Chen and
Guestrin, 2016) with very promising results in other fields,
we investigated its performance on PoS tagging. To our
knowledge, this is uncommon: we are not aware of any
other work that uses XGB for PoS tagging purposes. Lit-
erature also suggests that NN show promising results in
Natural Language Processing (NLP) (Schmid, 1994) and
therefore we also investigated a PoS tagging implementa-
tion using neural networks.
The algorithms were implemented using packages from
Scikit-learn (Pedregosa et al., 2011). To improve the pre-
dictions of the algorithms, hyperparameters were tuned.
The tuning was performed through grid searches, optimis-
ing the F1 score, which we used as performance measure.
For experimental purposes two datasets (DS1, DS2) were
created, where in the first dataset (DS1) no feature selec-
tion was implemented, in contrary to the second dataset
(DS2). Both datasets are based on the training set, which
will be discussed in more depth in Section 3.3. DS1 and
DS2 were grid searched separately while using the same
train and test words. As the results on DS1 are similar and
lead to the same conclusion, only the results of DS2 are
shown here. Since the results with feature selection outper-
formed those without feature selection, the final models are
based on dataset with feature selection.
To combine the F1 score for each tag, we consider the
weighted F1 score, which we write as (1)

F̄ =
K

∑
k=1

F(k)
1 Sk

∑
K
k=1 Sk

, (1)

where F(k)
1 denotes the F1 score for tag k ∈ {1, . . . ,K} and

Sk is the support for tag k. An overview of the found F(k)
1 ,

Sk and F̄1-scores is given in Table 2.

DS2 NN XGB MLR Support
OTT 0.85 0.91 0.85 7313
ZNW 0.68 0.75 0.67 2982
OVT 0.78 0.88 0.80 2458
VTT 0.81 0.65 0.83 1438

BVNW 0.48 0.61 0.48 824
BW 0.21 0.32 0.26 219
F̄ 0.77 0.84 0.77 15234

Table 2: F1-scores on DS2 (with feature selection)

3.2. Stemming algorithms
The quality of a stemmer is determined by its ability to
accurately reduce words belonging together to a common
stem while ensuring that words that do not belong together
yield different stems (Moral et al., 2014). There are two
main errors that can occur and both relate to the aggres-
siveness of the stemmer in removing parts of the words.
If the stemmer is not aggressive enough, insufficient pre-
fixes and/or suffixes are deleted, which results in an incor-
rect stem. This type of error is called understemming, since
the stripping of characters is under the required level. As a
consequence, variants of a word may end up with different
stems.

Conversely, the other type of error is overstemming. In this
case, the stemmer is too aggressive and removes too much
of a word, potentially clearing parts of the morphological
root. As a result, different words may be wrongly assigned
the same stem.
The BT algorithm classifies the words in the dataset into
the six tags introduced in Table 1. Each subcategories rep-
resents a tag which follows different stemming rules.

3.2.1. Verbs (OTT, OVT, VTT)
The first step of stemming a verb is to determine if it is a
compound verb. This is done by comparing the first three
characters of the verb and a list of known compound verb
prefixes. Examples of such prefixes are: af, bij, in, op, over,
uit.
After testing there were a few verbs that were not stemmed
properly due to this way of splitting, these were added to
the exception list. The exception list consists of edge cases
to which our stemming rules do not apply, e.g. irregular
verbs. After the word is initially passed through the stem-
ming algorithm, it is checked against the exception list to
see if further lemmatisation is needed.
The Dutch language contains roughly 235 irregular verbs
(Haeseryn et al., 1997). These verbs have different vow-
els and structures in different tenses, although they should
stem to the same root. The stemmed version of the irregular
verbs are added to the exception list.
For stemming it is important to know if a verb is singular or
plural. Verbs that have characteristics of being an infinitive
(suffix -en) obtain plural, whereas all others obtain singular.
There are infinitives where the suffix is -enen, for example
in rekenen (to calculate) and zegenen (to bless): the singular
form of these verbs do have a suffix of -en. To prevent these
singular form verbs to be processed as plural, these verbs
are added to the exception list.
For readability purposes and stemming of adjectives, the
stem that is used as the actual stem is the first-person sin-
gular present simple. Therefore, additional rules are im-
plemented to transform the stem to the first-person singular
present simple form. The rules are applied in a particular
order based on Dutch grammar rules.
In the Dutch language, no word ends with a v or a z. There
are exceptions, but these words originate from other lan-
guages. Examples of such words are quiz and jazz and
could be stemmed incorrectly. Due to the fact that the num-
ber of such words is limited, a few of these are also included
in the exception list. After removing the suffixes of a verb,
thus reducing the verb to its root, the last letter is examined.
If the last letter is a v, then it is replaced by the letter f, and
likewise if the last letter is a z, then it is replaced by the let-
ter s. These are known in the Dutch language as the valse s
en valse f (valse translates to false).
To check if a verb is irregular, the exception list is called
after affix removal. This is done in order to keep the size of
the exception list to a minimum, as not all forms of a verb
need to be stored.
The irregular verbs were obtained from a Dutch dictionary
website (Mijnwoordenboek.nl, 2004). This website main-
tains a large database of almost all verbs, nouns and adjec-
tives with their various forms.

3871

When the verb is stemmed to the root, doubling of vowels is
needed to bring it back to the actual stem. The first-person
singular present simple form of lopen is loop. Following
the stemming rules, the root of the word lopen would be-
come lop. Therefore an additional o must be placed before
the last letter.
This is also the case for the letters a, e and u. To see if
a vowel is doubled, the algorithm looks at the last three
letters of the stemmed word, which was originally a plural.
If the first letter is a non-vowel and the second letter is a
vowel, then the second letter gets doubled. To go back to
the previous example of lopen, which was determined to be
a plural verb in the first step, following the stemming rules
suffix -en is removed. Afterwards the last three letters (lop)
are examined. “L” is the first letter and a non-vowel, o is
the second letter and therefore is doubled, resulting in loop,
which indeed is the first-person singular present simple of
lopen.
The final step in ensuring the correct stem is removing dou-
ble letters at the end of a verb in case this is a non-vowel.
This is due to the fact that these do not exist in the Dutch
language.

3.2.2. Adjectives (BVNW), Noun (ZNW) and Adverbs
(BW)

The adjectives require fewer rules to bring the adjective
back to the root. The root of an adjective is defined as its
shortest possible form, e.g. stripping suffixes indicating su-
perlatives or grammatical gender. As a design choice, su-
perlatives were brought back to the normal form. For exam-
ple goed (good), beter (better), best (best) were all reduced
to goed through the exception list.
The stem of a noun is defined as the singular form of the
noun. Therefore, the first step is to determine if a noun is
plural or singular. If the noun ends on suffix: en, jes or s,
it is considered to be plural. There is an additional require-
ment on the suffix s to be a plural and that is a reversed
doubling of vowel method. In Dutch, a noun that is actu-
ally in singular form but ends on s will generally have a
repeated vowel before the s. Since this does not occur in
plural form, such a noun is then marked as singular. For
example, the noun moeders (moms) will be stripped of the
suffix s, but vaas (vase) will not be stripped from the s due
to the double aa.
The plural nouns are then stripped of their respective suf-
fixes, that marked them as plural and checked against the
exception list.
Since the adverbs are words that are likely to be removed
after stemming due to lack of information gain, these are
also not stemmed. Names of countries, people or compa-
nies follow many different rules to accurately stem them
and are therefore currently tagged as a BW, effectively plac-
ing stemming of named entities and related terms out of
scope.

3.3. Data Collection
To determine which algorithms to use in the final BT al-
gorithm, documents were collected to conduct analysis and
for training purposes. To increase the probability of ‘cor-
rect’ usage of the Dutch language, certain types of publi-

cations are preferred over others. An example can be So-
cial Media information, where sentences can contain many
grammar mistakes. The probability of correctly constructed
Dutch sentences is likely to be higher in legal documents.
The data collection was done by downloading publicly
available collective labour agreements (CLA) as PDF files
from the website of the largest Dutch trade union: FNV
(FNV, 2019). Besides the CLAs, pages from Wikipedia and
Dutch children’s books were used to diversify the words
in our dataset. The PDF documents where parsed using a
combination of Tika parser (Mattmann and Zitting, 2011)
and Tesseract (Smith, 2007), both of which are open source
in Python 3.6. All programming was conducted in the Ana-
conda environment using Spyder (3.3.4) and Jupyter Note-
books (5.7.8).
In total 252 CLAs, five pages from Wikipedia and three
children’s book chapters were parsed. The unique words
were converted into a Pandas dataframe for further analy-
sis. To prevent overfitting on words due to frequency of
occurrence, the unique words were used to ensure assign-
ing each the same weight during training. If the word de
(the) would frequently be contained in the dataset, it could
result in having the feature de (also a common OVT suf-
fix in Dutch) more likely to contribute to labelling words
as BW (adverb), instead of OVT (simple past tense). The
manner in which class imbalance was handled is discussed
in more detail in Section 3.4.
To obtain a ground truth for the training set, the dataframe
of unique words was processed through a connection to the
Frog algorithm using LaMachine (van Gompel and Hen-
drickx, 2019) via a virtual machine to obtain the tag for
each word. Since Frog uses a taxonomy of tags that is more
complex than needed for our classification purposes, Frog
tags were converted into the six tag categories, shown in
Table 1, which are also the categories the BT algorithm is
trained to predict.
For purposes of simplification and since Dutch verbs can be
assigned to one of three categories (OTT, OVT, VTT), these
were the only categories used for verbs. There are differ-
ences in how sentences may be constructed, but looking at
the prefix and suffix of the main verb is generally sufficient
to assign a verb to one of those categories.
The final dataset consisted of 76,167 unique words after
cleaning, with the distribution of the tags shown in Figure
1. During writing of the code, all words that were not a
verb, noun or adjective were labelled BW. For stemming
purposes it was a matter of convenience to list these as BW
due to the fact that these words will not be stemmed.

3.4. Feature space
The words were converted into a feature space word. A
feature space word is a word with a ‘ ’ symbol added to
the beginning and end of the word. This ensures that in the
next step it is still clear what the first and final letters of
the word were. To convert the text to a vector space, we
used bi-grams of the characters of each word, which were
converted to a vector using one-hot encoding.
The feature space consisted of 27 · 27− 1 = 728 different
vectors. There are 26 letters in the Dutch alphabet, together
with the new symbols on the beginning and the end of the

3872

0

10000

20000

30000

OTT ZNW OVT VTT BVNW BW
Tag

Ta
g

fr
eq

ue
nc

y

Figure 1: Distribution of tags for unique words in the
dataset

word. The one excluded combination is , i.e. the empty
word.
The distribution of the features was skewed, which is to be
expected in textual data. Some combinations are more com-
mon (e.g. en) than others, while some do not occur at all
(e.g. xd) in the Dutch language. Based on manual inspec-
tion, features that occurred less than 200 times in the data
were removed to decrease possible noise in the algorithms
later on. For experimental purposes, all of the models were
trained on the entire dataset and on the dataset with the fea-
ture selection.
Since the distribution of the different tags (Figure 1) was
imbalanced, the different train and test sets were carefully
constructed. First a stratified (80/20) sample was obtained
from DS1. In order to keep information while mitigat-
ing the risks of over-sampling, we used an approach called
SMOTE (Chawla et al., 2002). SMOTE is an over-sampling
method in which minority classes are over-sampled by cre-
ating synthetic observations.

3.5. Model evaluation
To determine how accurate the entire model (i.e. tag-
ging and stemming modules) is, a new evaluation dataset
was used consisting of four documents: ESn for n ∈
{1,2,3,4}. Every ESn was stemmed manually and inde-
pendently twice: once by the first author, and once by a
group of two native speakers. The Cohen’s kappa was cal-
culated as a measure of inter-rater agreement on the doc-
ument and thus to determine the accuracy of the manually
checked stems (Berry and Mielke Jr, 1988). The Cohen’s
kappa was calculated at 0.96. Given this high inter-rater
agreement, we considered the manual tags sufficiently ac-
curate to be used in further evaluation.
Words that were disagreed upon during the check, e.g. due
to a typo or ambiguity, were analysed and changed where
necessary. The documents that were used were not previ-
ously seen by the tagging algorithm.

Since the type of language that the models were trained on
mainly focused on CLAs, it is interesting to see how the
models perform on other types of text.
The description of the four ESn are presented below

1. ES1: A chapter of the Dutch translation of Roald
Dahl’s book ”the BFG” (i.e. “de GVR” in Dutch), to
see how the model handles non-existing words (Dahl,
2013).

2. ES2: A newspaper article (Marcelis, 2019) on the
earthquakes happening in the northern part of the
Netherlands due to gas extraction. This article con-
tains more technical language.

3. ES3: A Wikipedia page containing information on the
university where this model has been developed (Vrije
Universiteit Amsterdam) (Wikipedia, 2019).

4. ES4: A vacancy for a position at the Dutch football
club Ajax, to examine how the model performs on
business language text documents (Ajax, 2019).

The stemming algorithms were tested along three dimen-
sions: understemming, overstemming and computational
speed. The combinations and results of the various mod-
els will be discussed in Section 4..
The documents were manually processed and so Frog was
not used to determine the tags taken as ground truth. As a
result, evaluation of the performance of the Frog algorithm
was made possible.
An overview of ESn is presented in Table 3. The distribu-
tion of tags shows that the OVT and VVT categories are
underrepresented in this dataset. The number of words that
were unknown to the CELEX database will affect the per-
formance of the Frog algorithm, since Frog uses CELEX
to determine the tag. If Frog is unable to determine the tag
through CELEX it uses an additional algorithm, but the ex-
act workings of this additional algorithm are unknown to
the authors.

ESn ES1 ES2 ES3 ES4 Total
Words 390 340 443 340 1513

Unique Words 230 194 270 201 772
CELEX unknown 27 17 40 19 102

OTT 34 24 41 18 103
ZNW 48 47 88 47 224
OVT 10 8 0 10 24
VTT 3 9 3 7 22

BVNW 33 17 33 31 110
BW 75 72 65 69 187

Table 3: ESn overview in unique word counts

To calculate understemming and overstemming, the unique
stems of the manually checked file were taken as the ground
truth, as using Frog for this purpose led to some incorrectly
tagged words. Understemming and overstemming were
computed as follows: let S be the set of all unique stems
found by some algorithm in dataset D, and let S

′
be the set

of all manually found stems in D. Furthermore, let g(s
′
) be

a function which maps some s
′ ∈ S

′
to the set of uniquely

3873

found algorithm stems, for all words which were manually
stemmed s

′
in D. Likewise, g−1(s) maps some algorith-

mically found stem s to the set of all manual stems, for
words which were algorithmically stemmed s in D. Then
understemming and overstemming, written as λ

−
D and λ

+
D

respectively, are computed as

λ
−
D =

∑s′∈S′
(
|g(s′)|

)−1

|S′ |
, (2)

λ
+
D =

∑s∈S
(
|g−1(s)|

)−1

|S|
. (3)

Computational speed was determined by using the method
“cell magic” (The IPython Development Team, 2019) in
Jupyter Notebook. The averages were taken from 100 test
runs and 100 loops each. Experiments were conducted on
a computer with an Intel i7 processor, using three out of
four cores, running at 2904 MHz, using 16 GB of RAM,
operating on Windows 10.

4. Results
The ESn was processed to determine understemming, over-
stemming and the computational speed of the various stem-
ming algorithms. The Total that is mentioned in these sec-
tions relates to the concatenated ESn, that is, the ESn were
combined and from these the unique words were used. This
is done to ensure that the number of words in a document
does not influence the average on multiple documents.

4.1. Performance of the models
Looking at understemming, Table 4 shows that the tag-
ging algorithms outperform Lancaster, Porter and Snow-
ball, while the manual and model tagged algorithms per-
form similar to the case where tagging is done using the
Frog algorithm. This result seems to be consistent over all
ESn. This is to be expected, since the pure stemming algo-
rithm has less information than an IDM algorithm on how
to accurately stem.
There is some variation in the understemming accuracy
among the various ESn, but all tend to a follow the same
trend. The dataset where all documents were concatenated
(Total), scores the worst. The dataset containing informa-
tion on the university from the Wikipedia page, scores the
best.
Surprising is the fact that the Frog algorithm actually per-
forms well on the datasets where the number of unknown
words to the CELEX database (1 and 3), was largest. This
high performance suggests that the Frog algorithm, that
gets activated if a word is unknown, performs very well.
The overall best scoring method was the BT algorithm us-
ing the manual tags to stem the words. This was to be ex-
pected, since the BT algorithm was designed to reduce a
word to a stem that corresponds with the manual stem.
Table 5 shows similar results as Table 4, although the differ-
ences are smaller. The Porter algorithm in particular shows
high accuracy in overstemming, indicating that it is conser-
vative in how much of a word is truncated. The BT algo-
rithm performs similar to the Frog tagger, despite not rely-
ing on a combined approach of almost brute-force lookup

ESn ES1 ES2 ES3 ES4 Total
Porter 0.93 0.93 0.97 0.94 0.91

Lancaster 0.93 0.95 0.98 0.94 0.93
Snowball 0.93 0.95 0.97 0.94 0.93

BT
+ Frog tag 0.98 0.98 0.99 0.98 0.97

BT
+ Manual tag 0.98 0.98 0.99 0.98 0.99

BT
+ model tag 0.97 0.98 0.98 0.98 0.97

Table 4: F1-score on understemming of the algorithms on
ESn

for known words and Frog’s well-performing algorithm for
handling unknown words.

ESn ES1 ES2 ES3 ES4 Total
Porter 0.98 0.98 0.99 0.98 0.98

Lancaster 0.97 0.97 0.96 0.97 0.95
Snowball 0.98 0.99 0.98 0.98 0.97

BT
+ Frog tag 0.99 0.99 0.97 0.99 0.97

BT
+ Manual tag 0.98 0.98 0.98 0.99 0.97

BT
+ model tag 0.99 0.99 0.97 0.99 0.97

Table 5: F1-score on overstemming of the algorithms on
ESn

The third performance measure was computational speed.
Table 6 only takes into account to computation time needed
to stem the words after a tag was determined by the tagging
module. An important note while considering the compu-
tation times is that Porter, Lancaster and Snowball have
been written in C, which may be considered a low-level
programming language compared to Python. The BT al-
gorithm was written in Python 3.6, which is a higher-level
programming language. Some optimisation was done in the
programming, but there is still room for improvement. Pro-
grams written in C are usually faster than programs written
in Python (Oliphant, 2007). A comparison study (Prechelt,
2000) among various programming languages showed that
the average computation time could be improved by a factor
2 or 3, whereas the memory consumption would decrease
similarly.
Table 6 shows that the BT algorithm is considerably slower,
in part due to the reasons previously mentioned, but is
still able to stem a single document in under one second
(1000ms). Through parallelisation more speed improve-
ments could be made, but this was not implemented for this
paper.
Table 7 shows the difference in computation time on deter-
mining a tag between the Frog algorithm and the BT algo-
rithm. Again an important note while interpreting Table 7 is
that Frog runs on a server. Therefore the computation speed
is not only determined by how fast the algorithm is able to

3874

ESn ES1 ES2 ES3 ES4 Total
Porter 9.21 9.15 10.60 8.44 30.60

(Std. dev) (2.04) (3.13) (2.22) (2.84) (4.71)
Lancaster 9.10 7.83 10.80 7.46 29.40
(Std. dev) (2.21) (1.66) (2.30) (1.74) (3.27)
Snowball 6.20 5.67 7.67 5.74 20.60
(Std. dev) (1.35) (1.54) (2.39) (1.43) (3.76)

BT 737.14 702.84 754.18 676.38 2,580
(Std. dev) (18.63) (17.25) (19.31) (17.45) (65.90)

Table 6: Computation time of stemmers in ms: mean (std.
dev.) of 100 runs, 100 loops each

process the information, but also by the internet speed of
the user. Before a file can be stemmed, there are some pre-
processing steps required and these are taken into account
when Table 7 is examined.

ESn ES1 ES2 ES3 ES4 Total
Frog 79.32 49.81 53.12 47.29 136.84

(Std. dev) (3.23) (1.10) (4.14) (0.98) (7.38)
BT 2.83 1.79 2.11 1.64 6.21

(Std. dev) (0.21) (0.14) (0.18) (0.17) (0.92)

Table 7: Computation time of the Frog and BT tagger in
seconds: mean (std. dev.) of 100 runs, 100 loops each

As the Frog tags were considered the ground truth during
the training of the various models, a comparison is made
between the manual tags and the Frog tags. The confusion
matrix of this comparison is presented in Table 8, with the
Frog F1 scores being presented in Table 9. Due to the fact
that the Frog tags are taken as the ground truth for the BT
training, the F1 scores shown in Table 9 would ideally have
been higher.

Frog
\

Manual
OTT ZNW OVT VTT BVNW BW Total

OTT 154 10 0 3 2 0 169
ZNW 2 273 5 0 17 2 299
OVT 0 0 36 0 6 0 42
VTT 0 3 2 18 1 0 24

BVNW 0 5 1 2 131 0 139
BW 2 65 4 0 30 454 555
Total 158 356 48 23 187 456 1228

Table 8: Confusion matrix Frog and manual tags

Tag F1 - Score
OTT 0.9249
ZNW 0.8235
OVT 0.8000
VTT 0.7660

BVNW 0.8037
BW 0.8447

Table 9: F1-scores of the Frog tagging algorithm on the
manual dataset

5. Conclusion & Discussion
5.1. Conclusion
The goal of this paper was to build a new stemmer that
would be more accurate than the state-of-the-art stemmers
(i.e. Porter, Lancaster and Snowball), as well as faster than
the Frog algorithm, for the Dutch language. Based on the
results discussed in Section 4., it seems that the new BT al-
gorithm works well for the stemming and tagging of words
in the Dutch language. Our findings indicate that this ap-
proach indeed shows promise, while still leaving room for
a high degree of technical optimisation.
Out of the three algorithms - MLR, NN, XGB - that were
tested, XGB was shown to be the most accurate for PoS
tagging purposes. This is a surprising result, since no
other instances of XGB being used as a tagging algo-
rithm were found in the literature, despite the fact that it
showed promise with other classification problems (Fan et
al., 2018).
The number of rules that are implemented in the BT algo-
rithm is relatively small compared to the current state-of-
the-art stemming algorithms (i.e. Porter, Lancaster, Snow-
ball). This is mainly due to the fact that the words follow
tag-specific rules, obtained from the tagging algorithm.
The combination of the XGB model and new stemming
rules manages to perform well with the manually tagged
and stemmed database in terms of under- and overstem-
ming, as well as computation speed, and thereby resulted
in the new BT algorithm.
As can be expected, the Frog algorithm performed its tasks
slower in the case that it encountered words that are not in-
cluded in the CELEX database (i.e. ES1 on the BFG). Sur-
prisingly though, its resulting accuracy was fairly high, in
some cases even performing better than situations wherein
words could be found in the CELEX database.
The newly-built BT algorithm is not yet completely opti-
mised in terms of programming and its rule set. Program-
ming it in a language that is faster than Python 3.6, such
as C, should increase the computation speed. Additional
experiments should be conducted on larger datasets to see
whether the stemming rules need tuning for the accuracy to
be further improved.
The overall speed of the BT algorithm is faster than the cur-
rent Frog algorithm. Combining this with the fact its per-
formance with under- and overstemming was slightly worse
than when using the Frog algorithm, yet still better than the
truncating algorithms, suggest that this new development
can be considered a preliminary success. The entire process
of inserting PDF documents into the algorithm, preprocess-
ing, then tagging and stemming them takes an estimated
time of around 8 to 10 seconds. Previous literature sug-
gests that it can be inferred that this time can be improved
by factor of 2 or 3.
Finally, after having tested the performance of the Frog al-
gorithm, its performance turned out to be less strong than
initially thought. This is especially relevant due to the fact
that it was considered the ground truth for the training mod-
els. The F1 scores combined with the confusion matrix
from Tables 8 and 9 show that 65 nouns were predicted to
be an adverb (BW), which suggests that the BT algorithm

3875

would not have stemmed these nouns when provided the
Frog tag or (potentially) when using its own PoS tagging
model.

5.2. Discussion
The new tagging module only differentiates between six
possible tags, while there are more that could be stemmed.
For example, various pronouns can be stemmed back to
their respective personal pronouns. Numerical word types
can also be reduced to one of the overarching numerical
word types. However, this changes the meaning of the word
which is not always desirable. Currently, they are tagged as
an adverb, and are therefore not stemmed.
The evaluation dataset, though small, provides an indica-
tion of the performance of the algorithms on various types
of documents. Extending the dataset could prove worth-
while, e.g. if it is to be a standard approach for benchmark-
ing stemming and/or tagging algorithms for the Dutch lan-
guage. Extending the evaluation dataset would, however,
be a rather tedious job as it requires manual annotation.
Like any other machine learning model, the XGB-classifier
can also be enhanced further by adding more training data.
By expanding the training set with a larger variety of cor-
rectly tagged words, XGB could make more accurate pre-
dictions. The grid search space can also be expended,
which might result in a better model.
With the promising results presented in this paper and a
clear path for the future, the goal of building a new stem-
ming algorithm that is more accurate than the current state-
of-the-art stemmers, but faster than the Frog algorithm, has
been achieved.

5.3. Further Research
Since there was no available data that was pre-tagged and
included full sentences, sequential models could not yet be
implemented. Despite the encouraging results achieved in
this paper with respect to under- and overstemming, this
could be the logical next step, as the literature suggests that
this could enhance the tagging performance, and thereby
stemming algorithms (Elbayad et al., 2018). The sequen-
tial model should not replace the current tagging module
but may be used as a source of additional correction after a
word is initially tagged by the tagging algorithm.
One suggestion would be to make use of anchor points that
are provided to the tagger in order to assist the sequential
model. Anchor points in a sentence would be very common
words: personal forms, articles, forms of the most used
verbs (to have, to shall, to do, to will). In addition, this
could be combined with a Named-entity recognition algo-
rithm to identify names and geographic locations (Nadeau
and Sekine, 2007).
The sentence information can be used in a pervasive at-
tention model which would not only look at sequences but
also anchor points, as described by (Elbayad et al., 2018).
Combining the predicted tag with a prefix and suffix model
would further enhance the probability of selecting the cor-
rect tag.
Further analysis on feature importance has to be conducted
to determine whether certain features should be excluded

from the BT algorithm to improve the XGB model, due to
the possibility of overfitting.
As the BT algorithm works for the Dutch language, this ap-
proach could be investigated for similar languages as well.
Finally, because of the many exceptions in the Dutch lan-
guage, further research regarding lemmatisation could yield
solutions that are more accurate than our BT algorithm.
However, since lemmatisation generally replaces inflected
words with their canonical form through looking up known
words in a database, this approach will likely come at the
expense of robustness, e.g. in coping with neologisms.

6. Bibliographical References
Ajax, P., (2019). Ajax is op zoek naar een Assistent-

Controller. Retrieved from: https://www.ajax.
nl/club/vacatures.html, accessed February 7,
2019.

Berry, K. J. and Mielke Jr, P. W. (1988). A generalization
of Cohen’s kappa agreement measure to interval mea-
surement and multiple raters. Educational and Psycho-
logical Measurement, 48(4):921–933.

Bosch, A. v. d., Busser, B., Canisius, S., and Daelemans,
W. (2007). An efficient memory-based morphosyntac-
tic tagger and parser for Dutch. LOT Occasional Series,
7:191–206.

Brill, E. (1992). A simple rule-based part of speech tagger.
In Proceedings of the third conference on Applied natu-
ral language processing, pages 152–155. Association for
Computational Linguistics.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). SMOTE: synthetic minority over-
sampling technique. Journal of artificial intelligence re-
search, 16:321–357.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable
tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining, pages 785–794. ACM.

Dahl, R. (2013). De GVR. de Fontein Jeugd.
Elbayad, M., Besacier, L., and Verbeek, J. (2018).

Pervasive attention: 2d convolutional neural networks
for sequence-to-sequence prediction. arXiv preprint
arXiv:1808.03867.

Fan, J., Wang, X., Wu, L., Zhou, H., Zhang, F., Yu, X., Lu,
X., and Xiang, Y. (2018). Comparison of Support Vector
Machine and Extreme Gradient Boosting for predicting
daily global solar radiation using temperature and pre-
cipitation in humid subtropical climates: A case study in
China. Energy conversion and management, 164:102–
111.

FNV, (2019). Cao Sector. Retrieved from: https:
//www.fnv.nl/cao-sector, accessed January 8,
2019.

Haeseryn, W. J.-M., Romijn, K., Geerts, G., Rooij, J. d.,
and Van den Toorn, M. C. (1997). Algemene Neder-
landse spraakkunst [2 banden].

Jivani, A. G. et al. (2011). A comparative study of stem-
ming algorithms. International Journal of Computer Ap-
plications in Technology, 2(6):1930–1938.

Kontostathis, A., Edwards, L., and Leatherman, A. (2010).
Text mining and cybercrime. Text Mining: Applications

https://www.ajax.nl/club/vacatures.html
https://www.ajax.nl/club/vacatures.html
https://www.fnv.nl/cao-sector
https://www.fnv.nl/cao-sector

3876

and Theory. John Wiley & Sons, Ltd, Chichester, UK,
pages 149–164.

Marcelis, H., (2019). Groningen getroffen door
vierde aardbeving in twee weken tijd. Re-
trieved from: https://www.ad.nl/
binnenland/groningen-getroffen-door-\
vierde-aardbeving-in-twee-weken-tijd,
accessed June 13, 2019.

Mattmann, C. and Zitting, J. (2011). Tika in action. Man-
ning Publications Co.

Mijnwoordenboek.nl, (2004). Mijnwoordenboek
werkwoorden. Retrieved from: https://www.
mijnwoordenboek.nl/werkwoorden/NL/,
accessed March 03, 2019.

Monz, C. and De Rijke, M. (2001). Shallow morpho-
logical analysis in monolingual information retrieval for
Dutch, German, and Italian. In Workshop of the Cross-
Language Evaluation Forum for European Languages,
pages 262–277. Springer.

Moral, C., de Antonio, A., Imbert, R., and Ramı́rez, J.
(2014). A survey of stemming algorithms in information
retrieval. Information Research: An International Elec-
tronic Journal, 19(1):n1.

Nadeau, D. and Sekine, S. (2007). A survey of named en-
tity recognition and classification. Lingvisticae Investi-
gationes, 30(1):3–26.

Oliphant, T. E. (2007). Python for scientific computing.
Computing in Science & Engineering, 9(3):10–20.

Paice, C. D. (1990). Another stemmer. In ACM Sigir Fo-
rum, volume 24, pages 56–61. ACM.

Pang, B., Lee, L., et al. (2008). Opinion mining and senti-
ment analysis. Foundations and Trends R© in Information
Retrieval, 2(1–2):1–135.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
(2011). Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830.

Phua, C., Lee, V., Smith, K., and Gayler, R. (2010). A
comprehensive survey of data mining-based fraud detec-
tion research. arXiv preprint arXiv:1009.6119.

Porter, M. F. et al. (1980). An algorithm for suffix strip-
ping. Program, 14(3):130–137.

Porter, M. F., (2001). Snowball: A language for
stemming algorithms. Retrieved from: http:
//snowball.tartarus.org/algorithms/
dutch/stemmer.html, accessed February 16, 2019.

Prechelt, L. (2000). An empirical comparison of C,
C++, java, perl, python, rexx and tcl. IEEE Computer,
33(10):23–29.

Schmid, H. (1994). Part-of-speech tagging with neural net-
works. In Proceedings of the 15th conference on Com-
putational linguistics-Volume 1, pages 172–176. Associ-
ation for Computational Linguistics.

Smith, R. (2007). An overview of the Tesseract ocr engine.
In Ninth International Conference on Document Analysis
and Recognition (ICDAR 2007), volume 2, pages 629–
633. IEEE.

The IPython Development Team, t., (2019). Built-
in magic commands. Retrieved from: https:
//ipython.readthedocs.io/en/stable/
interactive/magics.html, accessed June 2,
2019.

Van der Beek, L., Bouma, G., Malouf, R., and Van Noord,
G. (2002). The Alpino dependency treebank. In Com-
putational linguistics in the Netherlands 2001, pages 8–
22. Brill Rodopi.

Van der Wouden, T. (1990). Celex: Building a multifunc-
tional polytheoretical lexical data base. Proceedings of
BudaLex, 88:363–373.

van Gompel, M. and Hendrickx, I. (2019). LaMachine: A
meta-distribution for NLP software. In Selected papers
from the CLARIN Annual Conference 2018, Pisa, 8-10
October 2018, number 159, pages 209–221. Linköping
University Electronic Press.

Wikipedia, (2019). Vrije Universiteit Amsterdam. Re-
trieved from: https://nl.wikipedia.org/
wiki/Vrije_Universiteit_Amsterdam/,
accessed June 12, 2019.

Willett, P. (2006). The Porter stemming algorithm: then
and now. Program, 40(3):219–223.

https://www.ad.nl/binnenland/groningen-getroffen-door- \ vierde-aardbeving-in-twee-weken-tijd
https://www.ad.nl/binnenland/groningen-getroffen-door- \ vierde-aardbeving-in-twee-weken-tijd
https://www.ad.nl/binnenland/groningen-getroffen-door- \ vierde-aardbeving-in-twee-weken-tijd
https://www.mijnwoordenboek.nl/werkwoorden/NL/
https://www.mijnwoordenboek.nl/werkwoorden/NL/
http://snowball.tartarus.org/algorithms/dutch/stemmer.html
http://snowball.tartarus.org/algorithms/dutch/stemmer.html
http://snowball.tartarus.org/algorithms/dutch/stemmer.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://nl.wikipedia.org/wiki/Vrije_Universiteit_Amsterdam/
https://nl.wikipedia.org/wiki/Vrije_Universiteit_Amsterdam/

	Introduction
	Literature
	Stemming
	Truncating algorithms
	Inflectional and Derivational Methods

	Methods
	Tagging algorithms
	Stemming algorithms
	Verbs (OTT, OVT, VTT)
	Adjectives (BVNW), Noun (ZNW) and Adverbs (BW)

	Data Collection
	Feature space
	Model evaluation

	Results
	Performance of the models

	Conclusion & Discussion
	Conclusion
	Discussion
	Further Research

	Bibliographical References

