
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 3782–3789
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

3782

OpusTools and Parallel Corpus Diagnostics

Mikko Aulamo, Umut Sulubacak, Sami Virpioja, Jörg Tiedemann
Department of Digital Humanities

University of Helsinki, Helsinki / Finland
{mikko.aulamo, umut.sulubacak, sami.virpioja, jorg.tiedemann}@helsinki.fi

Abstract
This paper introduces OpusTools, a package for downloading and processing parallel corpora included in the OPUS corpus collection.
The package implements tools for accessing compressed data in their archived release format and make it possible to easily convert
between common formats. OpusTools also includes tools for language identification and data filtering as well as tools for importing data
from various sources into the OPUS format. We show the use of these tools in parallel corpus creation and data diagnostics. The latter is
especially useful for the identification of potential problems and errors in the extensive data set. Using these tools, we can now monitor
the validity of data sets and improve the overall quality and consistency of the data collection.

Keywords: Corpus (Creation, Annotation, etc.); Machine Translation; Tools, Systems, Applications

1. Introduction
OPUS (Tiedemann, 2012) is the biggest collection of
openly available parallel corpora. The collection has been
growing constantly over the years and is widely used in
work on machine translation and cross-linguistic research.
Currently it contains 57 released corpora covering over 700
languages and language variants creating more than 70,000
bitexts in the sense of aligned language pairs across all cor-
pora in the collection. The size and popularity of OPUS
makes it necessary to build an efficient infrastructure that
enables the various users to obtain and access the data and
this paper introduces two packages that provide tools for
that purpose. The goal of those packages is it to make it
easy to download, convert and process the data included in
OPUS from the command line or from applications using
the library implementing those tools. The two packages re-
fer to a Python library with command-line tools and a com-
plementary Perl module, both provided as open source and
with permissive licenses.
In the sections below, we introduce the tools and their basic
use and also discuss how we applied those tools to create
new data sets and to run systematic diagnostics of the entire
data base. With the availability of the OpusTools it is now
possible to run careful sanity checks on the extensive data
sets to verify validity of encoding, to find broken links and
structures and to identify other issues with the data.

2. Characteristics of OPUS
OPUS includes parallel corpora from a wide variety of
sources. Each of them comes with their own peculiari-
ties and the properties can differ substantially depending
on the original data and their distribution. The philosophy
in OPUS is to keep markup and annotation as much as pos-
sible but to unify the essential data format to make access
to parallel data as transparent as possible. This means that
corpus data is converted to standalone (schema-free) XML
that keeps original markup but consistently adds essential
markup that is necessary for alignment and further linguis-
tic processing. Alignment is stored as standoff annotation
in XCES Align format (for sentence alignment) and “Moses
format” (for word alignment). Using this principle, data

can be kept apart from alignment annotation, which enables
efficient implementation and storage of massively parallel
data and also allows alternative alignments if necessary.
Figure 1 shows an example of standoff annotation used in
OPUS for specifying links between sentences. Each sen-
tence alignment file may include an arbitrary number of
linkGrp elements to align documents from a data col-
lection. Documents are specified using a path relative to
the XML root of the OPUS sub-corpus and link elements
provide the sentence alignments by sets of sentence ID’s
that are separated by semicolon. Creating an alternative
alignment is simply done by creating a new sentence align-
ment file and no further modifications need to be done with
the original corpus data. Note that sentence alignment is
bilingual as shown in the example. However, standoff an-
notation makes it possible to align massively parallel data
sets across all language pairs without duplicating any of
the linked data files. Furthermore, there can be alternative
corpus files with different levels of annotation without the
need of re-aligning those alternative files. Figure 2 shows
examples of such annotated files all aligned in the same
way with the standoff sentence alignment stored in external
files. More details about the data structures in OPUS can
be found on the OPUS Wiki.1

Another principle in OPUS is to provide the data in other
common formats to make them easily accessible for a wide
range of applications. Those data formats are, however,
just generated from the underlying XML-based encoding,
which serves as the master copy of each corpus. Users of
OPUS data are typically not aware of those principles and
download the data format that most suits their needs.
The idea of OpusTools is now to unify the access to master
data in XML and to the other generated formats by provid-
ing essential libraries and command-line tools to retrieve
and convert corpus data. They also provide convenient tools
for basic filtering and random access in archived data in
their compressed form that is used for distributing the data.
The latter is especially important as the size of some cor-

1http://opus.nlpl.eu/trac/wiki/
DataFormats

http://opus.nlpl.eu/trac/wiki/DataFormats
http://opus.nlpl.eu/trac/wiki/DataFormats

3783

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE cesAlign PUBLIC

"-//CES//DTD XML cesAlign//EN" "">
<cesAlign version="1.0">
<linkGrp targType="s"

fromDoc="en/0/1089124/4995691.xml.gz"
toDoc="fr/0/1089124/4588599.xml.gz">

<link id="SL0" xtargets="1;1" overlap="0.331" />
<link id="SL1" xtargets="2 3;2" overlap="0.560" />
<link id="SL2" xtargets="4;" />
<link id="SL3" xtargets="5 6;3" overlap="0.854" />
<link id="SL4" xtargets="7 8 9;4" overlap="0.699" />
<link id="SL5" xtargets="10 11;5" overlap="0.776" />
...

Figure 1: An example of standoff sentence alignment in
XCES Align format. The linkGrp element specifies the
document pairs that are aligned and links between individ-
ual sentences are given in the link elements. The optional
overlap attributes in this example refer to time overlap
ratios that are used as a feature in subtitle alignment.

pora is extensive in such a way that it is demanding for
common file systems to handle the data in raw, uncom-
pressed form. For example, the latest OpenSubtitles corpus
contains roughly 3.7 million individual documents across
67 languages with alignment in over 3,600 bitexts. One of
the latest additions, JW300 covers 380 languages in over
46,000 bitexts. Altogether there are over 9.2 million indi-
vidual documents only in the latest releases of all corpora
and this number is doubled by the different pre-processing
types that are provided, raw text and tokenised corpora that
are partially annotated with additional linguistic informa-
tion. Furthermore, bitexts are released in native XML for-
mat (see Figure 2), plain text format and translation mem-
ory exchange (TMX) format. The releases currently occupy
a total of 5.9 TB of space in compressed format.
The numbers above illustrate the need for proper infrastruc-
tures and efficient tools to manage the various data sets.
This is the motivation for implementing the freely available
OPUS tools described below. They create a convenient li-
brary and tool box for downloading, extracting and convert-
ing data from the OPUS collection. Additionally, they help
to run systematic diagnostics on the collection to identify
errors and problems in the data sets. Below, we will first
present the two packages and their functionality. Thereafter
we provide information about their use in creating new data
sets and, finally, we report on the application of OPUS tools
for diagnostic studies and sanity checks.

3. The OpusTools Package
The OpusTools package is a toolkit for downloading and
managing parallel corpora data from OPUS. The pack-
age consists of a Python library and related command-line
scripts. Additionally, there is a Perl package for creating
new data sets and accessing parallel data.

3.1. Command-Line Tools
The OpusTools package includes five Python 3 based
command-line scripts: opus read, opus express,
opus cat, opus get and opus langid.2 The scripts

2https://github.com/Helsinki-NLP/
OpusTools

allow downloading OPUS data, outputting the data in spe-
cific formats, extracting training, development and test sets
from the data, and more. Figure 3 shows an overview of the
scripts.

opus read is a script for downloading parallel corpora
and converting them to desired formats. OPUS corpora
contain XCES format alignment files that point to two
XML sentence files in different languages. The XCES
alignment format links the sentences in source files to the
sentences in target files using sentence ID’s. The sentence
files in OPUS corpora are compressed into ZIP archives and
opus read makes it convenient to read the data directly
from the compressed files. opus read parses a given
alignment file and produces an output in one of four for-
mats: normal, moses, TMX or XCES links. opus read
first tries to read the OPUS files from local directories. If
the required files are not found, the tool offers an option to
download them. The sentence files can be downloaded in
raw, tokenised or parsed format.
opus read includes basic filters for removing unwanted
sentence pairs before creating the output file. Non-
alignments, where the source or target segment is empty,
can be left out. Alternatively, a certain number of source
and target segments can be specified, e.g. it is possible to
include only one-to-one alignments in the output. Some
corpora include an attribute score for each sentence pair.
For example, sentence pairs in the OpenSubtitles corpus
have overlap scores that indicate to what degree the time
stamps of the two segments overlap. opus read is able
to filter out sentence pairs that do not cross a given attribute
score threshold. Furthermore, segment pairs can be re-
moved based on language identification confidence scores.
Language labels and confidence scores can be added to sen-
tence XML files with opus langid script.

opus express is a script built on opus read that can ex-
tract ready-to-use training, development, and test sets for a
language pair from one or more OPUS corpora. The pro-
cedure first fills the specified quota of sentences for the test
set, then continues with the same for the development set,
and dumps the rest into the training set. The script can op-
tionally pre-shuffle the data before splitting, or conversely,
mark and preserve document boundaries across the splits
for document-level models. opus express also includes
an option to utilise attribute scores such as overlap values
as extracted by opus read in its quality-awareness tog-
gle, which prioritises higher-confidence sentence pairs sur-
passing a configurable threshold to be sorted into the test
and development sets.

opus cat is used for reading monolingual corpora from
OPUS or single files within those corpora. The files can be
printed out in XML format or they can be converted into
plain text. opus cat is useful for manually inspecting the
domain or the quality of a single corpus because it is able to
read files directly from the ZIP archives in OPUS corpora.

opus get is a script for downloading parallel corpus files
from OPUS. Before downloading, corpora can be searched
and listed by their name, source language and target lan-
guage. For example, one can download files for a specific
language pair in a single corpus, all language pair files in

https://github.com/Helsinki-NLP/OpusTools
https://github.com/Helsinki-NLP/OpusTools

3784

Raw XML format:

<?xml version="1.0" encoding="utf-8"?>
<document>
<CHAPTER ID="1">

<P id="1">
<s id="1">Resumption of the session</s>

</P>
<SPEAKER ID="1" NAME="President">
<P id="2">

<s id="2">I declare resumed the session of the European Parliament adjourned on Thursday, 14 June 2001.</s>
</P>

Tokenized (annotated) XML format:

<?xml version="1.0" encoding="utf-8"?>
<document><CHAPTER ID="1"><P id="1">
<s id="1">
<chunk type="NP" id="c-1">
<w hun="NN" tree="NN" lem="resumption" pos="NN" id="w1.1">Resumption</w>
</chunk>
<chunk type="PP" id="c-2">
<w hun="IN" tree="IN" lem="of" pos="IN" id="w1.2">of</w>
</chunk>
<chunk type="NP" id="c-3">
<w hun="DT" tree="DT" lem="the" pos="DT" id="w1.3">the</w>
<w hun="NN" tree="NN" lem="session" pos="NN" id="w1.4">session</w>
</chunk>
</s>

UD Parsed XML format:

<?xml version="1.0" encoding="utf-8"?>
<document>
<CHAPTER ID="1">
<P id="1">
<s id="1">
<w xpos="NOUN" head="0" feats="Number=Sing" upos="NOUN" lemma="Resumption" id="1.1" deprel="root">Resumption</w>
<w xpos="ADP" head="1.4" upos="ADP" lemma="of" id="1.2" deprel="case">of</w>
<w xpos="DET" head="1.4" feats="Definite=Def|PronType=Art" upos="DET" lemma="the" id="1.3" deprel="det">the</w>
<w xpos="NOUN" head="1.1" feats="Number=Sing" upos="NOUN" misc="SpaceAfter=No" lemma="session" id="1.4"

deprel="nmod">session</w>
</s>

Figure 2: Examples of XML encoded data in OPUS. Various kinds of annotations can be added without destroying the
sentence alignment, which is stored as standoff annotation of links between sentence ID’s.

opus_read
- read parallel
 corpora from OPUS
- basic filtering

opus_read
- read parallel
 corpora from OPUS
- basic filtering

opus_langid
 - detect languages
 - enable filtering
 by language ids

opus_langid
 - detect languages
 - enable filtering
 by language ids

opus_get
- download files
 from OPUS

opus_get
- download files
 from OPUS

opus_cat
- read monolingual
 corpora from OPUS

opus_cat
- read monolingual
 corpora from OPUS

opus_express
- create test, dev
 and train sets
 from OPUS data

opus_express
- create test, dev
 and train sets
 from OPUS data

Figure 3: The five Python based OpusTools scripts. Each
of the scripts can be used individually. opus express
is build on opus read and opus read uses opus get
to download OPUS files. opus langid has to be ap-
plied to sentence files to enable language id filtering for
opus read.

a single corpus or all files for a specific language in the
whole OPUS. opus read uses opus get for automati-
cally downloading the requested corpus files.

opus langid is used for adding language identification la-
bels and confidence scores for each sentence in a given
XML sentence file. Language identification is carried out

with two off-the-shelf tools: pycld23, the Python bindings
for Compact Language Detector 24 and langid.py (Lui
and Baldwin, 2012). opus langid has to be applied
to sentence XML files before opus read can filter sen-
tence pairs by their language labels. Figure 4 shows an
example of a sentence file that has been processed with
opus langid.

3.2. The OpusTools Python Library
In addition to being command-line scripts, opus read,
opus cat, opus get and opus langid are associated
with Python modules that can be imported and used within
one’s own scripts. The modules provide the same function-
ality as the command-line tools and also more detailed data
managing control by the use of submodules and functions.
All Python code is written in Python 3.

OpusRead module can be initialised with parameters
that correspond with the flags given to opus read and
is used for downloading and converting corpus files from
OPUS. Internally, OpusRead uses XML parsing mod-
ules from the parse sublibrary included in the Opus-
Tools Python package. The sublibrary contains modules
for parsing XCES alignment files and sentences files. The

3https://github.com/aboSamoor/pycld2
4https://github.com/CLD2Owners/cld2

https://github.com/aboSamoor/pycld2
https://github.com/CLD2Owners/cld2

3785

<?xml version="1.0" encoding="utf-8"?>
<text>
<p id="1">
<s cld2="en" cld2conf="0.99" id="s1.1" langid="en" langidconf="1.0">
Statement of Government Policy by the Prime Minister, Mr Ingvar Carlsson, at the Opening of the Swedish
Parliament on Tuesday, 4 October, 1988.
</s>
</p>

<p id="2">
<s cld2="en" cld2conf="0.98" id="s2.1" langid="en" langidconf="1.0">
Your Majesties, Your Royal Highnesses, Mr Speaker, Members of the Swedish Parliament.
</s>
</p>

Figure 4: Example of a sentence file, where language labels and confidence scores have been added to sentence tags.

AlignmentParser module parses a given XCES link
file and initialises SentenceParser modules for pars-
ing the sentences files. AlignmentParser outputs sin-
gle sentence pair segments, while SentenceParser out-
puts single sentences from either side of the alignment.
LinksAlignmentParser can be used in the case that
only the XCES links are needed and sentence file parsing
can be skipped. For sentence parsing, there is also an alter-
native module ExhaustiveSentenceParser, which
is more robust than SentenceParser but slightly slower
when parsing only a small portion of a large corpus. Each
of the modules in parse sublibrary can be individually im-
ported into a Python script and used to extract single sen-
tences, sentence pairs or XCES links.

OpusCat is the Python module used by the opus cat
script and both have the same functionality of reading
monolingual sentence files from OPUS. OpusCat utilises
a modified version of the SentenceParser module:
when reading single sentence files, the sentence parsing
process does not need to follow an order specified in an
alignment file, and the SentenceParser in OpusCat
simply outputs each sentence in a file. Both OpusCat and
SentenceParser can be imported as Python modules
to have detailed control over reading monolingual files.

OpusGet module powers the opus get script with cor-
pora downloading capabilities. By importing the module
in Python code, one is able to receive detailed information
about OPUS corpora within Python data structures. This
information includes number of alignment pairs, number of
documents, number of tokens and size in kilobytes among
other items.

OpusLangid module has the same functionality as
the opus langid script: adding language labels
and language identification confidence scores to XML
sentence files. Additionally, OpusLangid contains
LanguageIdAdder class, which can be used for ob-
taining language labels and identification confidence scores
from both pycld2 and langid.py for a plain text sentence
with single function call.

3.3. The OpusTools Perl Module
A complementary package of OPUS tools is provided as a
Perl module available with a permissive MIT license.5 It

5https://github.com/Helsinki-NLP/
OpusTools-perl

includes command-line tools that are handy especially for
the creation of new data sets but also in general for quickly
accessing data in different formats. Some of the functional-
ity is now superseded by the implementations in the Python
library described above, and we will here focus on the tools
that support additional use cases. Those tools mainly fall
into the following three categories:

Conversion tools: Tools that can be used to import and
export data in different file formats and data markup.
The main purpose is to import new data sets in OPUS
and to create data files that are released with different
formats.

Alignment tools: Sentence and word alignment can be
used in various ways and these tools provide some
convenient operations on top of aligned bitexts.

Other processing tools: This category includes tools for
annotation and indexing.

In the first category, we have import tools such as
moses2opus, tmx2opus and xml2opus. Ex-
port scripts include opus2moses, tmx2moses,
opus2text and opus2multi.

xml2opus is a simple script that adds sentence bound-
aries to arbitrary XML data. Sentence boundary detection
is done using the tools released with the Europarl paral-
lel corpus (Koehn, 2005) and packaged in the Perl mod-
ule Lingua::Sentence. Additional tools based on UD
treebank classifiers will be integrated in the future. Inline
tags that add markup within sentences are not supported at
the moment.

moses2opus reads aligned plain text files as commonly
used in machine translation with aligned sentences on
the same line.6 The tool converts the data into sim-
ple standalone XML for the corpus data and the XCES
Align format for standoff sentence alignment as it is used
within OPUS. Currently, only bilingual input is supported.
Plain text files do not contain sentence boundaries but
still may contain sentence alignments that are not one-to-
one. Therefore, moses2opus adds sentence markup us-
ing Lingua::Sentence and adjusts the standoff sen-
tence alignment accordingly. The script also supports split-
ting bitexts into smaller parts. Empty lines in source and

6The name comes from the Moses package that popularised
the format.

https://github.com/Helsinki-NLP/OpusTools-perl
https://github.com/Helsinki-NLP/OpusTools-perl

3786

target language can be used to indicate document bound-
aries. Furthermore, a corpus can be split into equally sized
portions using a length threshold for the maximum number
of translation units included in one part.

tmx2opus converts translation memories in TMX format
into OPUS XML. The tool adds sentence boundaries in the
same way as moses2opus does. It also allows to pipe
several TMX files through the conversion tool and it is able
to merge information in case of overlapping sentences that
are covered in several translation units. This is handy when
processing data that comes as different bitexts but covering
the same content. Hence, only unique sentences are stored
in the resulting OPUS XML for each language even though
they appear in different translation units with alignments to
various languages. tmx2opus can also process transla-
tion memories with more than two languages in a transla-
tion unit, and it will produce bilingual sentence alignment
files for all language pairs, as they are necessary in OPUS.
Furthermore, it is also possible to split data into smaller
portions similar to what moses2opus does. Properties
from TMX files can also be copied to the converted data
in order to keep additional meta data. The application of
tmx2opus for the creation of the imported ParaCrawl cor-
pus in OPUS is described in Section 4..
Export scripts mainly perform data conversion in the op-
posite direction. opus2moses and opus2text convert
OPUS XML data to plain text and they are mostly obsolete
and superseded by the implementation of the Python pack-
age introduced earlier. tmx2moses is a convenient script
to extract aligned sentences from arbitrary TMX files and it
is not restricted to OPUS data.

opus2multi is a tool that can create multiparallel data sets
from OPUS corpora. In OPUS, all data sets are aligned
bilingually but in some cases one would like to have an
alignment that spans more than two languages. For this,
opus2multi can help to join bilingual sentence align-
ments and to extract links across a larger number of lan-
guages. The tool operates on standoff sentence alignment
files and makes use of a pivot language to construct trans-
lation units across all given languages. For this, it ex-
pands partially overlapping sentence alignments until all
languages are covered without further conflicts in the re-
sulting translation unit (i.e. no remaining overlaps with
other units). The result of that process is sentence align-
ment files that are (for convenience) printed bilingually
using the XCES Align format, which can then be further
processed using OpusTools to extract the actual alignment
pairs. There is also an option to control the maximum size
of a translation unit (in number of sentences in one lan-
guage) as the size can grow without limits in the expansion
process. An experimental feature of including intralingual
links for further transitive mapping is also included. This
is handy for data sets like OpenSubtitles in which alterna-
tive subtitle files may be used for linking between different
languages.

Alignment tools in the OpusTools package help to pro-
cess sentence alignments in their standoff annotation for-
mat. opus-swap-align simply swaps the alignment
direction. OPUS only provides alignments in one direc-

tion (as they are symmetric anyway) but sometimes it is
convenient to have access to the links in the other di-
rection as well. opus-merge-align combines sen-
tence alignment files and deletes duplicates if there are any.
opus-split-align splits sentence alignment files into
separate files with one per alignment group, i.e. aligned
document. Finally, opus-pivoting makes it possible
to create transitive sentence alignment between two lan-
guages using a pivot language and links to the pivot lan-
guage. This is convenient for corpora that come with bi-
texts that do not cover all language pairs but only align to
a specific language like English. Assuming that there is
substantial overlap between the bitexts, let us say A→P
and B→P, opus-pivoting extracts links between sen-
tences in A and B, creating a new bitext A→B. Sec-
tion 4. illustrates the use by the example of the cre-
ation of MultiParaCrawl. Finally, another alignment tool,
opus-pt2dice, extracts rough probabilistic bilingual
dictionaries from phrase-translation-tables created from
word alignment and using SMT tools coming out of the
Moses toolbox. Those dictionaries use some heuristics
to filter the data and the tool also creates additional Dice
scores as a symmetrised alignment value out of the con-
ditional translation probabilities included in the original
phrase tables, which is useful for bilingual lexicon extrac-
tion (Smadja et al., 1996).

Other tools: The last tool category contains addi-
tional data processing tools such as opus-udpipe and
opus-index. The former implements a wrapper around
UDPipe (Straka and Straková, 2017) to annotate OPUS
data and to store the result in OPUS-conforming XML.
OpusTools can use pre-trained models coming from LIN-
DAT.7 Last but not least, opus-index is a tool for
indexing OPUS corpora using the Corpus Work Bench
(CWB) (Evert and Hardie, 2011). It creates all import files
and runs the encoder if available to create multiparallel cor-
pora to be queried using the CWB search engine.

4. ParaCrawl and MultiParaCrawl
In this section, we would like to showcase the import of
the ParaCrawl data to demonstrate the use of OpusTools.
The ParaCrawl corpus8 has been extracted by crawling the
Web and applying a complex document and sentence align-
ment pipeline based on the Bitextor package (Esplà-Gomis,
2009). The current release v5.0 covers 24 European lan-
guages and the project provides automatically cleaned bi-
texts for languages aligned to English. The size ranges from
100,000 translation units (Maltese-English) to over 50 mil-
lion units (French-English) and the data files are distributed
in plain text or TMX format. While there are a few bonus
language pairs that also include two bitexts not including
English, the majority of the collection is bilingually aligned
with English content.
The goal of the integration of ParaCrawl in OPUS is to
make the data available via the native OPUS format and
to also exhaustively cover all language pairs included in the
collection. For those purposes, the previously introduced

7https://lindat.mff.cuni.cz
8https://paracrawl.eu

https://lindat.mff.cuni.cz
https://paracrawl.eu

3787

Figure 5: Statistics from the MultiParaCrawl corpus - a multilingual extension of ParaCrawl via pivot alignment through
English. The upper-right triangle gives the size in terms of sentence alignments in plain text format, and the lower-left
triangle shows the size of the extracted TMX files in terms of unique translation units per language pair.

tools tmx2opus and opus-pivoting become handy.
tmx2opus is not only useful for extracting the alignments
from the original TMX source, but it also provides the func-
tionality to add sentence boundary markup and to reduce
redundancy between the different bitexts. Using the unique
option of tmx2opus reduces the size of the English por-
tion of the corpus (i.e. 252 million separately aligned En-
glish sentences in 23 bitexts) to less than 60% of the origi-
nal data. At the same time, the uniqueness feature also en-
ables to build a multiparallel corpus by pivoting on the links
to English in the newly created unique set of sentences. For
that, opus-pivoting can be used as explained earlier.
Using this procedure, 253 additional bitexts could be cre-
ated with sizes up to 10 million sentence-aligned translation
units. Figure 5 summarises the non-English bitexts in Mul-
tiParaCrawl.

5. Parallel Corpus Diagnostics
Our diagnostic routine for the OPUS collection uses
the opus read command line utility (described in Sec-
tion 3.1.) to retrieve aligned plain text data for a partic-
ular language pair in a given corpus. In order to do this,
opus read parses the native XML-formatted data to gen-
erate the requested subset of data, and then performs a con-
version to plain text format. During this process, the di-
agnostic routine listens for any errors that might arise, and
logs them to compile a diagnostic report for later analysis.
We perform this procedure systematically for every pair of
languages available under each of the OPUS corpora.9

For our diagnostics, we exploit the full granularity provided
by OPUS by gathering separate readings for different cor-
pora that compose bitexts, and also keeping regional vari-
ants of languages separate rather than conflating them. To
carry out this kind of exhaustive analysis, we ran a total
87,948 CPU array jobs in parallel, with runtimes varying

9We did not perform diagnostics on the two most recent addi-
tions to OPUS: infopankki and MultiParaCrawl.

between 1 second and 5.2 hours, and each job using be-
tween 4 and 128 GBs of memory. In total, the entire diag-
nostic analysis took approximately 1000 hours of computa-
tion, averaging 18.2 hours per corpus. While the granular-
ity of our analysis will be internally useful for pinpointing
anomalies in OPUS to facilitate repairs, we also collate our
data to generate corpus-wide figures, which we report and
discuss in this section.

5.1. Error Analysis
The “diagnoses” logged in our report lists the causes of
each retrieval error, which provides us with a means to
reliably locate and fix them. Collating all diagnoses, the
results reveal that while 37 of the corpora are completely
error-free, data retrieval stalled for at least one language
pair for the remaining 18 corpora. The abundance of re-
trieval errors in these corpora vary from a tiny fraction to
the entire corpus (shown in Figure 8). The vast major-
ity of these errors stem from ill-formed XML data with
invalid tokens (96.2%) or mismatched tags (3.5%). Our
partial checks so far suggest that these can be attributed to
minor conversion errors such as unescaped special charac-
ters and XML entities occurring in the original data prior
to the import to OPUS. Another very small portion of the
errors (0.3%) indicates missing data files in the main file
system where OPUS is hosted, which likely indicates copy
errors, and remains to be investigated further.

5.2. Corpus-Wide Statistics
In addition to cataloguing the data retrieval issues, our
diagnostic procedure also calculates some basic quantita-
tive statistics, such as the reported computational costs for
data retrieval, and various measurements on the data re-
trieved per corpus, language, and language pair. Our cor-
responding statistical analyses did not reveal noteworthy
trends or outliers for the most part, except for some mea-
sures that hinted at the relative variances and noise lev-
els in data across corpora. In Figures 6 and 7, we report

3788

distributions of two measures over the set of available lan-
guage pairs for each corpus: the average number of sen-
tence pairs (or, more accurately, translation units), and the

100

100

101

101

102

102

103

103

104

104

105

105

106

106

107

107

108

108

Number of parallel sentence pairs

wikimedia
Ubuntu
Tatoeba

EUbookshop
KDEdoc

RF
QED

GNOME
GlobalVoices

Books
ada83

TildeMODEL
WMT-News

sardware
Bianet

bible-uedin
SPC

EUconst
Tanzil
JW300

WikiSource
KDE4

News-Commentary
XhosaNavy
OfisPublik

MontenegrinSubs
UN

OpenOffice
TedTalks

ECB
hrenWaC
Wikipedia
TED2013

memat
SETIMES

SciELO
OpenSubtitles

JRC-Acquis
TEP

Europarl
EhuHac
Elhuyar

EMEA
CAPES
fiskmo

ParaCrawl
Finlex

DGT
MultiUN

DOGC
giga-fren

Figure 6: Distribution of the number of retrievable parallel
sentence pairs over the set of available language pairs for
each corpus.

average sentence length in characters, respectively. Both
measures were visualised using box-and-whisker plots to
emphasise distributional differences, where the endpoints

100

100

101

101

102

102

103

103

Average sentence length (characters)

Ubuntu
GNOME

KDE4
Tatoeba

OpenSubtitles
TEP

MontenegrinSubs
sardware

OpenOffice
KDEdoc

QED
fiskmo
EMEA
DOGC
memat

TedTalks
JW300

OfisPublik
RF

EUconst
Finlex

TED2013
XhosaNavy

Elhuyar
GlobalVoices

EhuHac
EUbookshop

Wikipedia
Books
ada83

JRC-Acquis
DGT

Tanzil
WikiSource

TildeMODEL
Bianet

bible-uedin
WMT-News

SETIMES
SPC

ParaCrawl
ECB

hrenWaC
Europarl

News-Commentary
MultiUN
giga-fren

SciELO
CAPES

wikimedia
UN

Figure 7: Distribution of average sentence lengths (in char-
acters) over sets of available language pairs for each corpus.

3789

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
at

a
re

tr
ie

v
al

 e
rr

o
rs

Figure 8: Percentages of language pairs in OPUS corpora
for which data retrieval with OPUS tools returns errors.
Error-free corpora were omitted from graph.

show the lowest and highest values10, and the two halves of
the box represent the second and third quartiles of values,
separated by the median.
One of the most striking details from Figure 6 is the con-
trast between variances. More than a third of the corpora
show very little to no variance across language pairs, which
implies fully multiparallel data, while others like JW300
and OpenSubtitles conversely demonstrate very high vari-
ance, where the difference in the sizes of available data may
span several orders of magnitude. Looking specifically at
the first quartiles, some corpora such as QED and Tatoeba
seem to have a significant portion of language pairs contain-
ing very few translation units, possibly indicating high lan-
guage detection or sentence alignment noise. In Figure 7,
the first quartile appears to have a similar relative range for
some corpora, meaning that sentences contain only a few
characters on average for some of the available language
pairs. It is likely not a coincidence that these cases mostly
correspond to corpora that were compiled from naturally
noisy data. Furthermore, the smallest and largest median
values in Figure 7 point to exceptionally short and excep-
tionally long “typical” sentences in the corresponding cor-
pora, which may indicate a strong contrast in text segmen-
tation, or distinctly different data domains. For example,
the three corpora with the lowest medians include transla-
tions of computer software, while documents from United
Nations yield the highest median length.

6. Conclusions and Future Work
In this paper, we introduce OpusTools, an open-source
package of libraries and command-line tools for efficient
and convenient access to parallel corpora in the extensive
OPUS data collection. The package implements tools for
downloading, converting, filtering and processing paral-
lel data sets and makes it easy to access compressed and
archived files from the collection. It also provides a python
library for programmatic access to the data making it easy
to incorporate data processing in the development of other

10Uncapped endpoints indicate extrema beyond the limits of the
x-axis.

tools. Furthermore, we present tools for data conversion
and alignment that can be applied when preparing new data
sets from various sources. We demonstrate their use with
the example of the recently added MultiParaCrawl corpus
that extends the original data set with pivot-based align-
ments between all language pairs contributing to the grow-
ing coverage of the OPUS database.
Though keeping a collection as large as OPUS perfectly
robust is quite challenging, troubleshooting will be easier
and faster with the diagnostics fully charted out. All in all,
while data retrieval errors comprise clear action points, the
statistical analyses rather seem to suggest a notable qualita-
tive and quantitative diversity among OPUS corpora, with
trends seemingly within expectations, and edge cases that
can be attributed to noise in the original data. Our intention
is to resolve all issues around data retrieval, so that using
OPUS tools will be a smooth experience for all users, and
also to streamline our routine as a diagnostic tool, which
would become a standard part of the process of expanding
OPUS with new corpora.

Acknowledgments
This work is part of the FoTran project, funded
by the European Research Council (ERC) un-
der the European Union’s Horizon 2020 re-
search and innovation programme (grant agree-

ment № 771113), as well as the MeMAD project, funded
by the European Union’s Horizon 2020 Research and Inno-
vation Programme (grant agreement № 780069).

7. Bibliographical References
Evert, S. and Hardie, A. (2011). Twenty-first century cor-

pus workbench: Updating a query architecture for the
new millennium. In Proceedings of the Corpus Linguis-
tics 2011 conference, University of Birmingham, UK.

Smadja, F., McKeown, K. R., and Hatzivassiloglou,
V. (1996). Translating collocations for bilingual lexi-
cons: A statistical approach. Computational Linguistics,
22(1):1–38.

8. Language Resource References
Esplà-Gomis, Miquel. (2009). Bitextor: a Free/Open-

source Software to Harvest Translation Memories from
Multilingual Websites.

Koehn, Philipp. (2005). Europarl: A Parallel Corpus for
Statistical Machine Translation. AAMT.

Lui, Marco and Baldwin, Timothy. (2012). langid.py:
An Off-the-shelf Language Identification Tool. Associa-
tion for Computational Linguistics.

Straka, Milan and Straková, Jana. (2017). Tokenizing, POS
Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe.
Association for Computational Linguistics.

Tiedemann, Jörg. (2012). Parallel Data, Tools and Inter-
faces in OPUS. European Language Resources Associa-
tion (ELRA).

	Introduction
	Characteristics of OPUS
	The OpusTools Package
	Command-Line Tools
	The OpusTools Python Library
	The OpusTools Perl Module

	ParaCrawl and MultiParaCrawl
	Parallel Corpus Diagnostics
	Error Analysis
	Corpus-Wide Statistics

	Conclusions and Future Work
	Bibliographical References
	Language Resource References

