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Abstract

Recent works on cross-lingual word embeddings have been mainly focused on linear-mapping-based approaches, where pre-trained word
embeddings are mapped into a shared vector space using a linear transformation. However, there is a limitation in such approaches—they
follow a key assumption: words with similar meanings share similar geometric arrangements between their monolingual word
embeddings, which suggest that there is a linear relationship between languages. However, such assumption may not hold for all
language pairs across all semantic concepts. We investigate whether non-linear mappings can better describe the relationship between
different languages by utilising kernel Canonical Correlation Analysis (KCCA). Experimental results on five language pairs show an
improvement over current state-of-art results in both supervised and self-learning scenarios, confirming that non-linear mapping is a
better way to describe the relationship between languages.
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1. Introduction those embeddings into a shared vector space based by min-

Cross-lingual representations have gained much interest re-
cently. It has been shown that cross-lingual word embed-
ding models succeed in many inherently cross-lingual Nat-
ural Language Processing (NLP) tasks such as machine
translation and cross-lingual entity linking (Artetxe et al.,
2018c)(Lample et al., 2018))(Tsai and Roth, 2016). Cross-
lingual word embedding models also allow to reason word
semantics in multi-context environments and helps to trans-
fer semantic knowledge from rich- to low-resource lan-
guages.

Linear-mapping-based cross-lingual word embeddings rely
on a basic assumption, first stated by Mikolov et al. (2013)),
that words with similar meanings have a similar geomet-
ric arrangement in the embedding vector space. However,
this assumption may be heavily violated for languages with
different cultural backgrounds. Therefore, we hypothesis
that non-linearity can better express the relationships be-
tween languages. Based on such hypothesis, we perform a
non-linear alignment between word embeddings of differ-
ent languages.

In this paper, we introduce a KCCA-based mapping ap-
proach, which can find non-linear relationships between
languages. Our experiments show that the addition of non-
linearity can improve cross-lingual word embeddings for a
number of language pairs. Our code and the new English-
Chinese dataset are released under open source licensem
We review prior work in Section 2. In Section 3, we intro-
duce our proposed approach. Section 4 presents our exper-
iments and analysis of the experimental results is given in
Section 5. Section 6 concludes our work.

2. Related Work

The mapping-based approach was first proposed by
Mikolov et al. (2013), who first train monolingual word
embeddings for two languages independently, and then map

"https://gitlab.com/zjw1990/kclwe

imising the Euclidean distance between embeddings repre-
senting the same word in the two languages. |Xing et al.
(2015) also followed this approach, but argued that word
embeddings should be normalised to unit length. |Artetxe
et al. (2016) further showed that the projection matri-
ces should be constrained to orthogonal. |Artetxe et al.
(2018b) proposed a general framework to unify existing
linear-mapping-based approaches and performed an empir-
ical comparison between existing methods.

An alternative approach is to maximise the correlation be-
tween words in different languages, which can be learnt
using Canonical Correlation Analysis (CCA). Faruqui and
Dyer (2014) were the first to apply CCA to construct cross-
lingual word representations from two sets of monolingual
ones and demonstrated that their use (instead of mono-
lingual representations) improved the performance of sev-
eral tasks. They attribute the improved performance to
the idea that shared representation is able to incorporate
lexico-semantic information from both languages. [Ammar
et al. (2016) extended this work to a multi-lingual scenario,
which is able to project word vectors from more than two
languages into a shared embedding space.

Artetxe et al. (2016) showed that Euclidean distance-based
approach and correlation-based approach are inherently the
same, except that CCA imposes a constraint of equal vari-
ance in each component of the new word representations.
They argue that this kind of constraint may have a nega-
tive impact on the performance, but their evaluation on the
word translation task, as well as, our own experiments do
not support this claim.

The only proposed approach, capable of mapping non-
linear relationships is that of [Lu et al. (2015), based
on Deep Canonical Correlation Analysis (DCCA). DCCA
have mainly two weaknesses. Firstly, DCCA utilises deep
neural networks with many parameters, which requires a
large amount of high-quality training data. Secondly, the
method also requires tuning a large number of hyperpa-
rameters, which in our experience can be dataset-specific
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and difficult to optimise. In contrast, our proposed KCCA-
based model only has a few hyperparameters to tune, which
makes our model simpler to use in practice. Also, it does
not require large amounts of training data. This is con-
firmed by the result our experiments: KCCA-based model
works better than DCCA.

3. Method
3.1. CCA and KCCA

First, we briefly introduce CCA. Given two multivariate
random variables (i.e. two random column vectors) a €
R% and b € R%, CCA aims to find basis vectors w, € R%
and wy, € R% such that the correlation, p, between projec-
tions onto these basis wja and wjb is mutually maximised:

W, wp = arg max p(w,a, wb) )
Wa ,Wh
where o' denotes the transpose operator. In the case where
each dimension of a and b is centred, i.e. E[ag] = ... =
Elaq,—1] = E[bo] = ... = E[bg,—1] = 0, this optimisation
can be expressed as:

w;Cabwb

2
VW] Caqwar/w] Crywy, )

Weq, Wy = argmax
Wa ,Wh

where C,;, C,4 and Cyp, denote covariance matrices. Since
scaling w, and wy, has no effect on equation|[T} this is equiv-
alent to maximising the numerator subject to an additional
constraint w;,Cyqwa = wiCpywy = 1. Such optimisation
can be formulated as the Lagrangian and solved through
Lagrangian relaxation.

The main limitation of CCA is its linearity. In contrast,
KCCA first projects the data into a higher-dimensional
space using a mapping function ¢:

¢:p=(p1,.--pa) = ¢(p) = (d1(p), - ..

3
that maps random variable p from the original space R? to a
new space R”; and then performs CCA in this new feature
space (Lai and Fyfe, 2000). Kernel methods are algorithms,
widely used in machine learning, that do not require one
to specify ¢ explicitly; instead, only a kernel function that
allows computing the inner product of two data points in
the new feature space needs to be specified:

k(p,p") = (¢(p), (")) 4)

Now, any machine learning algorithm that can be expressed
via inner products, can be computed in the new high-
dimensional feature space, without explicitly projecting the
data or even knowing the mapping function ¢.

In practice, we only have a sample of instances of the ran-
dom vectors a and b. Consider data matrices A € RV*P
and B € RNV*P, whose rows contain the sample vec-
tors in the new high-dimensional feature space. We can
rewrite equation [2|by expressing the covariance matrices in
terms of these data matrices (C,, = A"A, Cy, = BB,
Cup = A™B):

w; AT Bwy,
\/ngTAwa \/wZBTBwb

(&)

arg max
Wa ,Wh

,¢p(p)) (d < D)

We can express the basis w, and wj, as linear combinations
of the data points using coefficients « € RY and 8 € R

we, = AT (6)

Wy = BTB (7)

Then the dual representation of the problem can be formu-
lated by substituting Eq. [6][7]into Eq. [5}

a"AATBB'
arg max 8)
a8 VaTAATAATa/BTBBTBB™f

Let K, = AA" and K;, = BB be the kernel matrices
(Gram matrices), substituting these into Eq. [8] we get:

O[TKaKbﬁ
arg max
g(x,ﬁ Vo' K2ay/BTKE B

Hardoon et al. (2004) observed that KCCA frequently
suffers over-fitting, especially when dealing with high-
dimensional data and applied regularisation to reduce this:

©))

OzTKaKbﬁ
arg max

@8\ JarK2a+ k fwalPy/BTEEE + ks
(10
It follows that:

arg max O[TK{LK[)B
ga,ﬁ Va K2a + kaTK,an/BTKEB + kBTK B
1D
where k controls the amount of regularisation that is ap-
plied. Similarly to CCA, since this problem is not affected
by scaling of « and (3, it can be reformulated as a maximi-
sation of the numerator, subject to

(a"K2a + ka'K,a) =1 (12)

(BTK; B+ kBTKyB) =1 (13)

Through the Lagrangian formulation, this leads to a stan-
dard eigenproblem:

(Kq+ kD) 'Ky (Ky 4+ k1) Koo = XNa (14)

The eigenvalues of Eq[T4] are the canonical correlations
and the eigenvectors can be used to calculate the projec-
tions. This problem can be solved in different ways; how-
ever, we choose an effective algorithm (PGSO) proposed
by Hardoon et al. (2004). We reproduce their Matlab im-
plementatio in Python.

*https://davidroihardoon.com/codes

3584



3.2. KCCA based cross-lingual word embedding
model

Let X € RN+*ds and Y € R™v*49y be monolingual word
embeddings from vocabularies of the source and target lan-
guages. In such embedding matrices, rows represent words
and columns represent features of words. In the supervised
scenario, a set of word embeddings of translation pairs (i.e a
dictionary) is given: let z € R™"*%= contain a subset of em-
beddings from X and y € R™*% contain their translations
from Y, such that the same row in each matrix represents a
translation pair. Our proposed approach can be summarised
into three steps: pre-processing, KCCA-projection and re-
weighting based on canonical correlations.

3.2.1. Step 1: Pre-processing:

Before applying KCCA, source and target word embed-
dings are pre-processed with length normalisation and
mean centering. Length normalisation is applied sample-
wise, such that all embeddings have Euclidean unit length.
Mean centering makes all components have a zero mean.

3.2.2. Step 2: KCCA Projection:

This step contains 2 parts. First, learn projections using the
dictionary, then use those learnt projections to project the
vocabulary into the new space. Specifically:

Learn Mapping Given word embedding matrices = and
Yy, as defined above, we adopt the KCCA implementation
described in Section[3.1}

a, B, A= KCCA(z,y) (15)

where « and 3 are the coefficient vectors, described in Eq.
[6l [7), and X is the canonical correlations corresponding to
each of the projection directions. We use the Radial Basis
Function (RBF) kernel and tune the value of parameter y
through cross-validation.

Vocabulary Projection Given o and [ calculated by
KCCA, the vocabularies X and Y are projected into the
shared space:

X* = ¢(X) - w, (16)

Substituting w, with Eq. [6}

X* = §(X) - 6(a") - a (17)

Then the inner product ¢(X
the kernel trick:

)-¢(x") can be expressed using

K(X,27) = (¢(X) - ¢(27)) (18)

Substitute Eq[T7] with Eq[I8] the new representation of the
vocabulary X * then can be calculated as:

X"=KX,z2") « (19)

And similarly for Y*.

3.2.3. Step 3: Canonical Correlation Re-weighting:

The re-weighting process is described by |Artetxe et al.
(2018a). After projection, the components of the new em-
beddings are re-weighted based on their singular values,
which can be used to increase the strength of relations that
have best matched across languages. However, they failed
to make re-weighting work with CCA and did not use it
with CCA. We were able to successfully adapt the process
and apply it to KCCA. The components of the new embed-
dings are re-weighted based on their canonical correlations:

X* = X*)\¢ (20)

Y* = Y*AS (21)

where ( is a tune-able parameter with a default value of
1; however, different language pairs may require slightly
different value of this parameter to get optimal results and
ideally it should be tuned.

4. Experiments

In our experiments, we aim to investigate whether non-
linear mapping is better than linear mapping for produc-
ing cross-lingual word embeddings. We evaluate CCA-,
DCCA- and KCCA-mapped word embeddings on the word
translation task with different languages. Also, we compare
our result with other linear-mapping-based approaches.

4.1. Dataset and Task

We use four language pairs in our experiments: English-
Italian, English-German, English-Spanish and English-
Finnish. The English-Italian dataset is provided by Dinu
et al. (2015)) and extended to other three language pairs by
Artetxe et al. (2017). Each dataset includes 20k 300 dimen-
sional monolingual word embeddings trained by word2vec,
along with a bilingual dictionary split into training and test
sets. Such dictionaries are obtained from OPUS, including
5000 most frequent word pairs as the training set and 1500
randomly picked word pairs evenly distributed in 5 fre-
quency bins. In terms of monolingual word emebeddings,
the English training corpora consists of 2.8 billion words,
including ukWaC, Wikipedia and BNC. The Italian train-
ing corpora includes 1.8 billion words for itWaC. German
training corpora used SdeWac with 0.9 billion words, and
Finnish training corpora used Finnish WMT 2016 dataset
(Common Crawl). The Spanish word vectors are obtained
by training WMT News Crawl 07 - 12, consisting of 386
million words.

In order to confirm our hypothesis, we extend this dataset
to the eastern language family by adding Chinese-English
pair. We train the word embeddings on a 1.5 billion word
subset of the WMT 2018 Common Crawl corpora. Unlike
Western language families, Chinese tokenisation needs a
specific process to extract words from sentences. We adopt
the solution from an open project: J iebzﬂ We train the word
embeddings using the same configuration as |Dinu et al.
(2015). As for the dictionary, we take the English-Chinese
dictionary provided by |[Lample et al. (2018)), consisting of

3https://github.com/fxsjy/jieba
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Table 1: A comparison of KCCA-based mapping with linear methods in terms of translation accuracy(%).

Method  EN-IT EN-DE EN-ES EN-FI EN-ZH
CCA 42.11 37.55 28.20 2570 32.60
DCCA 4353  43.13 34.86 2528  45.34
Proposed 48.4 50.13 38.86 37.43  52.56

8728 training word pairs and 2230 test word pairs. How-
ever, we delete all of the out of vocabulary words in the
dictionary, leaving 8239 training word pairs and 1964 test
word pairs.

The evaluation of the benchmark is translation accuracy.
Specifically, both word embeddings in test dictionaries are
first projected using the learnt projection matrix. Then
given a word in the test dictionary from source language, a
retrieval approach is used to find the translation in the corre-
sponding target language. The translation accuracy reflects
the percentage of correct matches from source to target
words. In the evaluation task, we adopt Cross-domain Sim-
ilarity Local Scaling (CSLS) retrieval approach proposed
by Lample et al. (2018).

4.2. Experiment setup

For our proposed KCCA-based cross-lingual word embed-
ding model, we evaluated RBF and polynomial kernels and
chose RBF. For RBF kernel, v is tuned in the range [0, 1.5].
The weight for re-weighting is tuned in the range [0, 1] and
the regularisation term « is tuned in the range [0, 1].

For CCA, we tune the output dimension in the range from
150 to 300.

For DCCA, we employ the DCCA-based cross-lingual
word embedding model proposed by|Lu et al. (2015)). How-
ever, their published model uses count-based word repre-
sentations, so we tune a new parameter set. More con-
cretely, we use two neural networks with linear units and
ReLU activation function in hidden layers. The hidden
layer size is tuned in {128, 256, 512, 1024, 2048, 4096},
the depth of the neural network is tune in {1, 2, 3, 4}. Pa-
rameters are tuned separately for each language. As for op-
timisation, we use stochastic gradient descent (SGD). The
regularisation terms r,, and r, are tuned in the range [1e-9,
le-5]. All tuning was performed on the training set using
5-fold cross-validation.

4.3. Results

Table [T] shows that KCCA outperforms CCA, giving
6.29, 12.58, 10.66, 11.73 and 19.96 points improve-
ment in English-Italian, English-German, English-Spanish,
English-Finnish and English-Chinese datasets. Also, we
show that after a proper fine-tuning process, DCCA-based
non-linear mapping is better than CCA-based linear map-
ping approach. Judging from the improvement in the word
translation task, the use of non-linear transformation out-
performs linear transformation, confirming our hypothesis
of the presence of non-linear relationships between some
languages. It is also worth noting that KCCA outperforms
DCCA on all datasets with an improvement of 4.3, 7, 4,
12.15 and 7.22 points. In our opinion, this is because deep

neural networks can struggle to learn features from limited
training data, and kernel-based methods do not suffer from
data sparsity to the same extent.

Table [2] shows a comparison between our proposed ap-
proach with popular previous works, including supervised,
semi-supervised and fully unsupervised scenarios. It is
worth noting that the best result in a supervised setting
is provided by |Artetxe et al. (2018b), however, their re-
trieval approach is inverted softmax, which is a fair com-
parison with CSLS. Therefore, we reproduce their result
using CSLS and also report it in Table 2] It can be seen that
our proposed framework gets the best result among all su-
pervised settings. Also, other than a close result in English-
Italian dataset, our proposed approach achieved best results
in all language pairs compared with unsupervised setting
proposed by |Artetxe et al. (2018a)).

These results also leads to an interesting question, what
kind of words are correctly translated when non-linear (ker-
nel) approaches are used. We take EN-FI as an exam-
ple. From Figure [T we can see that CCA and KCCA cor-
rectly translate the same 320 English words (yellow points),
KCCA is able to correctly translate 213 words that CCA
fails to translate (orange points); however, CCA is able to
translate only 46 words that KCCA fails on (green points).
We believe the words that are correctly translated by KCCA
but incorrectly translated by CCA have a higher possibility
of exhibiting non-linear relationships; we denote the num-
ber of such words as IN. We consider word pairs that are
correctly translated by CCA to have a higher possibility
of sharing a linear relationship and we denote the count of
those word pairs as L. Then we define a ratio R:

R =

N
T (22)

as a measure to evaluate whether the relationship between
two languages is more linear or non-linear; Table[3|provides
the results.

Table[3|shows that Italian words have the highest possibility
to share linear relationships with English. Most German
and Spanish words could be mapped to English words with
linear projections but there is also a considerable number
of words could not be matched with such projections. Non-
linear relationships have a huge impact on Finnish-English
word pairs and Chinese-English word pairs.

In our opinion, this is because different languages have
different grammars, which leads to different contexts for
words with similar meanings in both languages, and the re-
sult confirms our hypothesis.
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Figure 1: The translation result on EN-IT, EN-DE, EN-ES, EN-FI, EN-ZH test sets. The x axis represents the indices of
English words. Yellow points indicates English words correctly translated by both CCA and KCCA. Orange points denote
words correctly translated by KCCA only. Green points denote English words correcly translated by CCA only. Blue points
denote incorrect translation by both CCA and KCCA. It can be observed that many more words are translated correctly by

KCCA-only than CCA-only.
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Table 2: A comparison of KCCA-based model with existing methods in terms of accuracy (%). All existing results are
obtained from original papers, except results marked with *, which were produced by us using authors’ original implemen-

tation.
Method EN-IT EN-DE EN-ES EN-FI EN-ZH
Mikolov et al. (2013) 34.93 35.00 27.73 2591
Faruqui and Dyer (2014)) 38.40 37.13 26.80 27.60  32.06%*
Artetxe et al. (2016) 39.27  41.87 31.40 30.62
Lu et al. (2015) 43.53 43.13 34.86 25.28
Smith et al. (2019) 44.53 43.33 35.13 29.42
Artetxe et al. (2018b)(Inverted softmax) 45.27 44.27 36.60 32.94
Artetxe et al. (2018b)(CSLS) 47.33*  4720%  38.20* 34.97*% 49.20*
Artetxe et al. (2018a) 48.53 4847 37.60 33.50
Proposed 48.33 50.13 38.86 3743  52.56

Table 3: A comparison of correct translations by CCA- and KCCA-based methods.

Method EN-IT EN-DE EN-ES EN-FI EN-ZH
CCA only correct 60 46 41 46 25
Both correct 572 517 382 320 395
KCCA only correct 154 235 200 213 282
Ratio, R 244% 41.7% 473% 582% 67.1%

5. Conclusion

In this study, we question whether non-linear relation-
ships exist between geometric arrangements of word vector
representations of different languages and posit that non-
linear mapping methods could produce better quality cross-
lingual representations. Our experiments confirm our hy-
pothesis and provide new state-of-art results.
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