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Abstract
Language identification is a well-known task for natural language documents. In this paper we explore search query language identification
which is usually the first task before any other query understanding. Without loss of generalization, we run our experiments on the Adobe
Stock search engine. Even though the domain is relatively generic because Adobe Stock queries cover a broad range of objects and
concepts, out-of-the-box language identifiers do not perform well due to the extremely short text found in queries. Unlike other well-
studied supervised approaches for this task, we examine a practical approach for the cold start problem for automatically getting large-scale
query-language pairs for training. We describe the process of creating weak-labeled training data and then human-annotated evaluation
data for the search query language identification task. The effectiveness of this technique is demonstrated by training a gradient boosting
model for language classification given a query. We out-perform the open domain text model baselines by a large margin.
Keywords: language detection, language identification, search queries, short text, weak labeling

1. Introduction
Language identification is key to accurately applying deeper
natural language processing in contexts where the language
of the text is not known. Relatedly, it can be used to clas-
sify texts by language and hence ensure that a set of texts
are all in the same language. In this paper we focus on
search queries1 for Adobe Stock. Adobe Stock allows users
to search over a set of images for purchase. The searches
can use keywords, images, or a combination thereof; for
language identification we are only concerned with the key-
words. These keywords reflect vocabulary used to describe
items in the world (e.g. dog, woman, coffee cup), abstract
concepts (e.g. happiness, success), and some domain spe-
cific vocabulary (e.g. icon, vector, background). We want to
know the language of the query in order to apply processes
like named entity recognition and dependency parsing to
improve query understanding and hence search result qual-
ity. In addition, we want to provide auto-complete sugges-
tions and related searches in the correct language, i.e. the
language of the user’s issued queries.
Language identification systems are generally trained on
well-edited text. They use a variety of signals includ-
ing: known words and especially known closed class words
(e.g. determiners, auxiliaries); character n-grams (often tri-
grams); punctuation and spaces, which can be viewed as a
subset of characters; upper vs. lower casing, which can be
viewed as a subset of characters. These general purpose
language identification models work well for longer texts
which have similar editing style. However, their perfor-
mance drops significantly on shorter texts such as search
queries and shorter tweets (Cavnar and Trenkle, 1994; Si-
bun and Reynar, 1996; Baldwin and Lui, 2010), as do many
NLP components (Baldwin et al., 2013).
There are two reasons for this. The first is simply that the
shorter text provides less signal, especially for discriminat-
ing between similar languages (e.g. between the Scandina-

1 Since these queries are written text, we do not explore methods
for language identification for short utterances (Fernando et al.,
2017; Bekker et al., 2016; Travadi et al., 2014).

vian languages). However, the degradation is often much
greater than expected. This is because of the second reason,
namely that short text is often missing many of the signals
that are seen in the training text (Baldwin et al., 2013; Wang
et al., 2014; Sun et al., 2016). In search queries, capitaliza-
tion is meaningless, there are frequent misspellings, punc-
tuation is missing or used differently, closed class words are
dropped, and spacing and punctuation often reflect the na-
tive language (keyboard) of the user and not the language of
the words they are using. For example, unlike in long text, in
our Adobe Stock search queries there are some prepositions
(e.g. boy on beach) but almost no determiners or auxiliaries,
and verbs are generally progressive participles (e.g.man sit-
ting at computer). This is similar to short text more gener-
ally and especially to web and e-commerce search queries.
Additionally, in tweets and certain search domains, special-
ized vocabulary (e.g. hashtags, model numbers, and brand
names) often have character n-grams that are more in line
with other languages.
For the application which we were interested in, we did
not need to identify transliterated languages, e.g. identify
Hindi when written in the Latin alphabet. There are types
of short text, including certain search query applications,
where transliterated text is common and being able to iden-
tify these is crucial. However, in our context the character
set used is an extremely strong indicator of the language.
Our domain has some code switched queries in which a
single query has multiple languages. This is particularly
noticeable for Japanese-English combinations. We leave
language identification for code switched queries (Zhang et
al., 2018) to future work.
The issue of having less signal due to the shorter text can
be partially overcome by limiting the languages to be de-
tected to the ones that are most likely in the application
and by further providing input on the likely language. The
likely language can be influenced by the language of the site
(e.g. if the search page is in Japanese, the query is likely
to be in Japanese), the location of the user when known,
and the most likely language overall (e.g. in our context
English queries are common on all the sites even when En-
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glish is not an official language of the country). In our
applications, we only want to identify languages where we
can use the language identification to improve the customer
experience, e.g. by applying the correct deeper natural lan-
guage processing or by limiting auto-complete suggestions
to the correct language. This means that identifying con-
structed languages like Esperanto and Klingon is not nec-
essary or useful. Identifying languages like Latvian and
Swahili, which are currently not supported on Adobe Stock,
is only useful for understanding what languages to consider
expanding the experience for. So, by default we want the
language identifier to focus on a handful (<20; currently 8)
languages, where English will be the overall default.
We tried two language identifiers out of the box.2 One of the
language detectors was trained on an extremely large num-
ber of languages, including differentiating different versions
of the same language (e.g. Chinese as spoken in China and
Taiwan, French as spoken in France and Canada) and con-
structed languages (e.g. Esperanto, Klingon). The short na-
ture of the queries given the large number of target languages
caused issues for accuracy and highlighted issues which,
upon closer inspection, affected other systems. Many lan-
guage identifiers use closed class words such as determiners
and prepositions and the character ngrams within them as
heavily weighted features. However, since queries are very
short and generally drop closed class words, these features
cannot be reliably applied.
This paper describes the process of automatically creating
a large-sized, weak-labeled training set and then manually
creating a smaller, human-annotated evaluation set used to
train and evaluate our search query language identification
model. The training data was created by taking a seed dic-
tionary of known language terms and finding their nearest-
neighbors in the query logs. We then found the nearest-
neighbors to that larger set of labeled query terms and used
a voting schema to determine their language. The result
is a ∼664K query set with weak labels for language. We
then trained a CatBoost language identification model. To
evaluate the model, we manually annotated ∼65K queries
through a crowd-sourcing task. To ensure accuracy, each
language was its own task with the instructions provided
only in that language and we mixed in queries from other
languages, focusing on English and on languages likely to
be confused with the target language.
Key contributions of this work include:

• Validation of the hypothesis that out-of-the-box, state-
of-the-art language identifiers do not work optimally
on short text such as search queries;

• Validation of the hypothesis that noisy, weakly labeled
training data, which is available at scalewith nomanual
annotations, result in a high-accuracy language identi-
fier for short text;

• A simple but effective two-stage label creation and
propagation strategy which takes advantage of off-the-
shelf components such as a seed word list, combined

2 We also applied some queries to Google translates auto-language
detection. We did not conduct a systematic evaluation with
respect to Google due to throttling limits on their side.

with in-domain embeddings model for nearest neigh-
bor queries;

• Test set creation via human annotation using model-
based bootstrapping and language interleaving.

Rest of the paper is organized as follows - we first describe
howwe trained our model by bootstrapping from a seed dic-
tionary and large list of naturally occurring search queries,
resulting in a large-scale, weakly-labeled training set (sec-
tion 2.). We then discuss the evaluation of the model and
hence indirectly the quality of the training data, including
the creation of a gold-standard human-annotated evaluation
set (section 3.). We end with next steps (section 4.).

2. Language Identification Model Training
Our goal was to train a multi-class prediction model for
seven languages and an “other” (i.e. unknown) language on
search queries: English, German, Japanese, French, Italian,
Spanish, Portuguese, and the other/unknown class.3

2.1. Training Data Creation: Weak Labeling
Our first task was to create training data. The goal was to
obtain a large number (hundreds of thousands) of naturally
occurring, in-domain search queries with labels as to their
language. Human labeling that many queries would have
been prohibitively expensive and time consuming. Instead,
we employed a weak labeling technique that allows us to
scale to such a large number of training samples automati-
cally.
We paid particular attention to how we sampled the queries
for the weak labeling (this section) and the evaluation (sec-
tion 3.1.) tasks for two reasons. First, the preponderance of
queries were in English due to significantly greater query
volume on the US site and to the use of English language
queries on other sites. Second, we wanted to ensure sam-
pling across frequent (head) and infrequent (tail) queries.

2.1.1. Seed Dictionary
We started with a seed dictionary of words whose language
is known. We then used this set of known-language words
to weakly label a large number of search queries from the
Adobe Stock query logswith theirmost-likely language. We
labeled the queries with the language in two steps: we first
created labels on queries close to the seed terms and then
propagated them to similar queries to get enough training
samples from a limited size seed dictionary.
The seed dictionary was compiled from the MUSE dictio-
naries (Conneau et al., 2018). The MUSE dictionaries were
originally compiled for creating multilingual word embed-
dings. The number of seedwords for the seven languageswe
are interested in are shown in the middle column of table 1.

2.1.2. Label Creation
The seed words were used to find a nearest neighbor set
of queries using a custom-trained in-domain KNN model
(see section 2.1.4.). The nearest neighbors to queries which
corresponded to the seed dictionary words were annotated

3 Our model also predicts Korean, but since Korean was identified
extremely accurately through its character set, we do not include
results on Korean here.
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with the seed word language if they were above a threshold.
In some cases the number of labeled queries is less than the
number of seeds (e.g. English, Portuguese) because many
of the seed words have no equivalent in the query logs. In
other cases the number of labeled queries is greater than
the number of seeds (e.g. German, Japanese) when more
than one query was close to the seed. This first step of the
training data creation process is called the Label Creation
task. The number of queries labeled in this initial label
creation task are shown in the last column of table 1.

Language Seeds Labeled Queries
English 92,843 (37.7%) 52,777 (28.1%)
German 27,892 (11.3%) 42,735 (22.7%)
Japanese 20,975 (8.5%) 25,652 (13.6%)
French 23,233 (9.4%) 23,054 (12.3%)
Italian 26,164 (10.6%) 14,949 (8.0%)
Spanish 34,425 (14.0%) 21,312 (11.3%)
Portuguese 21,023 (8.5%) 7,551 (4.0%)
Total 246,555 (100%) 188,030 (100%)

Table 1: Number and distribution of MUSE seed words and
their corresponding nearest neighbors in the query logs

2.1.3. Label Propagation
Once we had the initial labeled queries from the Label Cre-
ation task, the remaining queries were annotated similarly
by finding their nearest neighbors in the set of queries sam-
pled from the query logs. This query pool was chosen by
stratified sampling of queries over a 1-year period. The
stratified sampling ensured representation of head, torso,
and tail queries across languages. For each query, from its
nearest neighbor set, a subset of queries with cosine similar-
ity above a specified threshold were selected. If the number
of queries in that subset crossed a threshold length, a major-
ity vote was taken to annotate the query. This second round
of query labeling is referred to as the Label Propagation
task.
The process is shown schematically in figure 1 with the
Label Creation task feeding the Label Propagation task.

Se
ed

 D
ic

tio
na

ry
 Te

rm
s

Id
en

tif
y 

N
ea

re
st

 N
ei

gh
bo

rs

An
no

ta
te

  N
ea

re
st

 N
ei

gh
bo

rs

In
iti

al
 W

ea
k 

La
be

lle
d 

Q
ue

rie
s

Id
en

tif
y 

N
ea

re
st

 N
ei

gh
bo

rs

M
aj

or
ity

 V
ot

e 
La

be
l

Fi
na

l W
ea

k 
La

be
lle

d 
Q

ue
rie

s

Label Creation Label Propagation

Figure 1: Label creation and propagation process

The Label Creation and Label Propagation processes pro-
vided ∼664,000 annotated queries for training a model (ta-
ble 2). The length (i.e. number of words) of the queries
reflects that of the overall search queries, where 2-word

queries are by far the most frequent (for details see the bot-
tom rows of table 7). We used 90% of this data for model
training, with 5% reserved for tuning and 5% for evalua-
tion. This evaluation data was extremely noisy due to the
way in which it was constructed and so we also created a
human-annotated evaluation set (section 3.). We estimate
that the noise in this training data was over 10% for most
languages based on running our final trained model over the
evaluation portion of the training and comparing this to the
human-annotated results (see table 6).

Language Queries
English 124,472 (18.7%)
German 122,951 (18.5%)
Japanese 56,707 (8.5%)
French 62,787 (9.5%)
Italian 33,332 (5.0%)
Spanish 53,878 (8.1%)
Portuguese 12,400 (1.9%)
Other 197,744 (29.8%)
Total 664,271 (100%)

Table 2: Distribution of language labels in the training data

2.1.4. Query Embeddings & Nearest Neighbor Search
For training the in-domain (i.e. Adobe search query) KNN
model used to find the nearest neighbors in the labeling pro-
cess (sections 2.1.2. and 2.1.3.), we had to obtain optimal,
in-domain query embeddings. That is, we needed embed-
dings which reflected the Adobe Stock search queries as
opposed to general, off-the-shelf vocabulary such as that
found in Wikipedia.
We trained a fastText skipgram model (Bojanowski et al.,
2016) on ∼6 million Adobe Stock queries. This provided
embeddings optimized to the shorter context found in search
queries. Multiple fastText models were trained on a variety
of parameters. The optimalmodelwas found by a qualitative
(cosine) similarity analysis comparing the nearest neighbor
queries found by the different fastText parameters. Since
our label propagation job heavily relied on a fast nearest
neighbor search, we trained an approximate nearest neigh-
bor model using Faiss (Johnson et al., 2017). A separate
Faiss index was trained for each of the query embedding sets
obtained from the different fastText models. We explored
the following fastText parameters:

• Embedding dimensions: 100, 300

• Minimum character subword size (n): 1, 2, 3

• Maximum n: 4, 5, 6

Using lower min-n values led to higher quality, i.e. more
semantically similar, neighbors, especially for Japanese and
Korean. With higher min-n, Japanese and Korean had more
code-switched results (i.e. queries which contained both
Japanese and English words) and some queries even had
nearest neighbors entirely fromother languages such asRus-
sian. So, we chose a min-n of 1. Using a high max-n (e.g.
a max-n of 6) with a min-n of 1 led to irrelevant results for
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Latin script languages. So, we chose a max-n of 4. The
qualitative analysis of the various combinations of min-n
and max-n confirmed that the best result for converting the
textual queries to sentence vectors comes from a min-n of
1 and a max-n of 4.4 A similar analysis of values for the
feature dimension size showed no qualitative difference be-
tween using the smaller 100 dimension vectors or the larger
300 dimension ones. We hypothesize that this is due to the
short length of the queries (table 7). As a result, we chose
the more compact 100 dimension vectors.

2.2. Model Training
We trained three GBT models: Xgboost, CatBoost and
LightGBM.
Since even state-of-the-art language identifiers sometimes
predict languages which do not match the character set (e.g.
predicting Japanese for a text in Latin characters), in ad-
dition to the query vectors described in section 2.1.4., we
provided additional parameters to the model that represent
the fraction of character set per language. To create these,
for each language we determine the character set. For ex-
ample, for English the character set is the 26 letters of the
lower-cased alphabet and 10 digits.5 For each query, the per-
centage of the characters in the query from each language
is computed. For example, the Japanese query:

would have English-fraction: 0, German-fraction: 0, . . .
Japanese-fraction: 1.0.
Each query is converted to a feature vector of length 109,
comprising a 100 dimension fastText vector and 9 language-
fractions per language.
We trained the model only on Adobe Stock queries and sim-
ilarly evaluated against a test set of Adobe Stock queries.
Nothing in the techniques described here is domain or lan-
guage specific, although we discuss some anticipated chal-
lenges for language identification for Adobe help queries in
section 4.
Of the three systems we trained, CatBoost was the clear
winner. In the remainder of this paper, we only report
results for the CatBoost model.

3. Evaluation
In this section, we discuss the test set creation (section 3.1.),
introduce the baseline systems (section 3.2.), present the
results (section 3.3.), and provide error analysis (section
3.4.).

3.1. Query Language Test Set Creation
Since the training data generated by the Label Creation
and Label Propagation process consisted of weak labels, a
golden test set was created via a crowd sourced task.6 We

4 In future work, we plan to investigate the impact of contextual
embeddings as a solution to vector averaging based sentence
embeddings using word vectors.

5 Accented characters such as the é in café were not included in
English. Similarly for other languages the character set focused
on the core characters.

6 We used Figure8 (Figure Eight Inc., 2019) for this task in order
to have access to non-English speakers and improved quality
control.

created a test set for each language the system would pre-
dict (English, German, Japanese, French, Italian, Spanish,
Portuguese).
To create the query set to be labeled by the human an-
notators, raw queries are passed to the CatBoost model.
This generated language labels and prediction scores for
each query. Using the generated labels, we selected 10,000
queries for each predicted language for manual annotation.
Since these were predicted labels, the actual language dis-
tribution of each set varied.
We supplemented the 10,000 queries for each language with
1,000–2,000 queries from other languages to ensure that the
human judges were on task. English was mixed in with all
the languages since it is used on all locales and all the hu-
man annotators knew some English. Korean was mixed
in with Japanese to ensure the annotators were not simply
judging based on a non-Latin character set. Portuguese
and Spanish were mixed with each other since the language
identifiers frequently confused them. The language of these
mixed-in queries was determined by the labels predicted by
the model and so was not always accurate. Only queries
where the model probability was >.99 were selected. With
this threshold, initial inspection by Adobe-internal language
experts indicated that the labels were accurate enough to en-
sure a mix of languages despite the fact that there were some
errors. This was confirmed empirically by the subsequent
human labeling.
The targeted mix for each language test set is shown in
Table 3. All sets aimed for 10,000 queries in the targeted
language.

Target 10,000 Mixed-in Queries
Core Queries

English 90% English 10% unknown7
German 80% German 20% English
French 80% French 20% English
Japanese 80% Japanese 10% English

10% Korean
Spanish 80% Spanish 10% English

10% Portuguese
Portuguese 80% Portuguese 10% English

10% Spanish
Italian 80% Italian 20% English

Table 3: Language mix (targeted based on predicted labels)
used for the manual annotation task
To further ensure the quality of the human annotation,
we used Adobe-internal language experts to label ∼1000
queries for each language to use as test queries (“honey-
pots”) within the task. Running the task first internally
also served to fine-tune the annotation guidelines, espe-
cially around how to handle digits and nonsense queries.
To further ensure that only annotators who knew the lan-
guage in question did the task, we posted the instructions for
each language’s task only in that language. This way only
annotators who could read the language in question could
understand and complete the task.

7 Unknown comprises languages other than English that used Latin
script, including languages not among the seven identified by the
model.
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3.2. Baseline Systems
We compare our CatBoost model trained on the weak-label
data to three baseline systems. These comprise two publicly
availablemachine learnedmodels and one heuristicmethod.

• fastText (Joulin et al., 2016; Bojanowski et al., 2016;
Grave, 2017): based on subword features used in the
fastText classification models.

• langid.py (Lui and Baldwin, 2012): trained over a
naive Bayes classifier with a multinomial event model
(McCallum and Nigam, 1998), over a mixture of byte
n-grams (1 ≤n≤4), selecting features which are sen-
sitive to language but not domain (Lui and Baldwin,
2011).

• Heuristic: Assume the language of the locale (site url)
for the search (a variant of majority wins).

The two publicly available, off-the-shelf systems are trained
on standard text, not on query text. So, even though the
Adobe Stock queries use standard vocabulary, especially
nouns and adjectives, the fact that they are very short and
have relatively few determiners, prepositions, and other
closed class words predicts that these systems will not per-
formwell. The langid.py (Lui and Baldwin, 2012) language
detection model was chosen because it was reported to per-
form comparably to other language detection systems for
long text (i.e. LangDetect, TextCat, and CLD) and better
than systems which were specifically designed for short text
(Hammarstrom, 2007; Ceylan and Kim, 2009; Vatanen et
al., 2010; Carter et al., 2013). However, the short text they
were evaluating against was Twitter and tweets are signifi-
cantly longer than our search queries. The fastText (Joulin et
al., 2016; Grave, 2017) language detection model was cho-
sen because it reports to be more accurate and faster than
the langid.py model. It uses the subword features generally
used in fastText classification models and then compresses
themodel through feature selection andweight quantization.
In contrast to the off-the-shelf models, we expected that the
baseline of assuming the language of the query is the same
as the locale will be a difficult baseline to beat, especially in
English-speaking locales. In non-English-speaking locales,
English queries often occur. In fact, this mix of languages is
the main practical motivation for creating a query language
detector. In our query logs, which included queries issued
on sites which are not in one of the seven languages we are
interested in detecting, 91% of unique queries (types) occur
on only one site, but the more frequent queries appear on
many sites with the result that 39% of query impressions
(tokens) appear on only one site.8 In contrast, 1% of unique
queries appear on 5 ormore sites, which corresponds to 37%
of query impressions. To understand why locale in general
is not enough to determine query language, consider the
queries in table 4. The third column of the table indicates
how many sites the query was issued on, while the fourth
column indicates howmany of those sites had a locale which
matched the language of the query (e.g. a German query on
a German or Austrian site; an English query on a US, UK,
Canadian, or Australian site).

8 We are unable to reveal the raw numbers for proprietary reasons.

Query Language # Sites # Matching
Issued Locale-Lang.

niños Spanish 5 2
weihnachten German 10 2
teamwork English 11 2
team work English 9 4
social media English 15 4

Table 4: Example queries with how many sites they were
issued and how many of those sites matched the language
of the query

3.3. Results against the Gold Standard
Table 5 shows the comparison between our domain-specific
model, the two generic pre-trained models, and the simple
baseline of assuming that the query language is the same
as that of the locale. In all cases, the query-specific model
outperforms the pre-trained models in precision, recall, and
F1 score. The results of the fastText model are particularly
interesting in that precision was significantly higher than
recall for all languages except Japanese where the recall
was perfect (i.e. it identified all the Japanese queries as
Japanese) but the precision was very bad (i.e. it frequently
identified non-Japanese queries as Japanese).
When training our CatBoost model (section 2.2.) we did
not have a manually-annotated evaluation set available to
tune against. Instead, we split the weak labeled queries
(section 2.1.) into the standard train-test-eval set and used
the weak labels to determine the parameter settings. The
precision, recall, and F1 results for our model against the
weak labeled data are shown in table 6. These are much
worse than the results against the true, gold standard data in
table 5. This reflects the fact that the weak labeling process
is far from 100% accurate and hence the final model is doing
a better job of predicting language than the weak labeling
process. This hypothesis was confirmed by manually spot-
checking the weak label test data shown in table 6 when the
prediction was “incorrect” and confirming that the majority
of the time this was due to incorrect label propagation. It
is a strength of this approach that with sufficient quantities
of weakly labeled data, the entire model training process,
including parameter tuning, can be conducted on weakly
labeled data. The human-annotated data is only needed to
confirm the exact performance of the system and hence to
determine whether the system is accurate enough to use in
applications.
For the heuristic baseline, our hypothesis that using the
language of the site (i.e. locale) would be a hard baseline to
beat proved incorrect. For all seven languages, the CatBoost
model outperformed the heuristic, often by a significant
margin. Only Japanese was close with the heuristic F1 score
of 0.95 compared to the CatBoost F1 score of 0.99. This low
performance confirms the need for language identification
of queries since users are frequently issuing queries whose
language does not match that of the site they are on. For the
gold standard evaluation queries, ∼7% of the queries were
issued on sites where the language of the locale was not one
of the seven languages, e.g. the queries christmas business
and money family were issued on the Finnish site and the
queries soup milk herbs and metal cup on the Russian site.
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Language CatBoost Query langid.py (generic) fastText (generic) Heuristic (locale)
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

English 0.95 0.96 0.96 0.80 0.68 0.73 0.98 0.38 0.55 0.88 0.70 0.79
German 0.98 0.97 0.98 0.78 0.70 0.74 0.88 0.09 0.17 0.64 0.93 0.79
Japanese 1.00 0.99 0.99 1.00 0.80 0.89 0.31 1.00 0.47 0.93 0.97 0.95
Spanish 0.91 0.96 0.94 0.64 0.56 0.60 0.90 0.41 0.57 0.59 0.62 0.61
French 0.96 0.97 0.97 0.77 0.65 0.70 0.95 0.39 0.55 0.62 0.82 0.72
Italian 0.98 0.93 0.95 0.77 0.67 0.72 0.90 0.42 0.57 0.68 0.72 0.70

Portuguese 0.98 0.92 0.95 0.86 0.65 0.74 0.77 0.57 0.66 0.75 0.52 0.63

Table 5: Result comparison between custom-trained CatBoost query model, the generic langid.py and fastText pre-trained
models, and the heuristic baseline of using locale to predict language

Language Precision Recall F1
English 0.90 0.78 0.83
German 0.90 0.94 0.92
Japanese 0.96 0.97 0.97
Spanish 0.81 0.89 0.85
French 0.89 0.92 0.90
Italian 0.78 0.83 0.81

Portuguese 0.73 0.41 0.53

Table 6: Weak label evaluation set with CatBoost model

3.4. Error Analysis
In general, we expect languages which are closely related to
one another to be more likely to be confused with one an-
other. In addition, given that we use the language character
set as a feature, we expect vanishingly few errors where the
language is identified as one with the wrong character set.
These hypotheses are borne out by the confusion matrix in
figure 2.

Figure 2: Confusionmatrix for CatBoostmodel against gold
test data
Portuguese and Spanish are the hardest two languages to
distinguish from one another, with Portuguese queries gen-
erally being misidentified as Spanish. For example, letras
giz vetores (Spanish) was predicted to be Portuguese and ca-
cau seco (Portuguese) as Spanish. Japanese, in contrast, is
basically never misidentified since its character set is unique
among the languages. However, one counter example to this
is when the Latin alphabet characters used were associated
with Japanese double-wide characters, e.g.

(English) was predicted to be Japanese. In addition, al-
though predictions of Japanese were always correct (i.e.
high precision), some clearly Japanese queries were pre-
dicted as the unknown/other class, suggesting that our fea-
tures for language-fraction are not strong enough in some
cases (section 2.2.).
Queries which contain digits as well as words sometimes
fooled the model, e.g. 10 jahre kerzen (German) was pre-
dicted as English, 24 y 31 (Spanish) as Korean, 50 anni
compleanno (Italian) as English. As future work, the train-
ing data needs to be further supplemented with more mixed
digit-word queries or the digits need to be masked when
inferencing.
Interestingly, all the Latin alphabet languages are periodi-
cally misidentified as English. This appears to be due to
many borrowed English words being used, especially in this
search application. English phrases appear surprisingly fre-
quently in search queries on non-English language Adobe
Stock sites.
As expected, query length has an effect on accuracy, with
shorter queries having lower F1 scores. This was particu-
larly marked for identifying 1-word English queries. Fortu-
nately, and somewhat unintuitively, 1-word queries are less
popular than 2-word queries in Adobe Stock. In addition,
on English language sites, English is a good estimate for a
default. A breakdown of F1 score by query length for the
seven languages is shown in table 7.

F1 Score
Language 1 word 2 word 3 word 4+ word

English 0.73 0.94 0.98 0.99
German 0.96 0.98 0.98 0.99
Japanese 0.99 1.00 1.00 0.99
Spanish 0.85 0.94 0.96 0.95
French 0.90 0.96 0.98 0.98
Italian 0.89 0.95 0.97 0.96

Portuguese 0.89 0.94 0.97 0.97
# Queries 10,979 27,391 18,296 6.041
% Queries 17.5% 43.7% 29.2% 9.6%

Table 7: F1 Score by query length for each language. Note
the drop for English 1-word queries.

3.4.1. Error Analysis for the Pre-trained Models
For the pre-trained models, the most surprising issue arose
with languages which were predicted even though the char-
acter set used in thewords did notmatch that of the predicted
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language. This was particularly striking for predictions of
Chinese and Japanese. Upon closer inspection, two factors
heavily influenced the prediction of these languages even
though in the search query context they were irrelevant.
The first was that the space character used in Chinese,
Japanese, and Korean (CJK) is a different character than
that used for languages traditionally written with the Latin
alphabet. The presence of a single CJK space even when
combined with all non-CJK character words was enough to
fool the system. We hypothesize that search queries dis-
proportionally have this mix because users are switching
between languages, including cutting-and-pasting from the
web, and so end up with mixed space-word character sets
for mono-lingual queries.
The second factor was that Japanese queries sometimes
had a backspace as the initial character. This character
was not normally visible but even when combined with
all non-Japanese character words the system would predict
Japanese. We hypothesize that the Japanese (and possibly
many CJK) methods for entering characters can result in
these initial backspaces.
A third lesser factor was that one of the systems predicted
CJK when the query was in all upper case Latin letters
and one of those letters had a diacritic on it (e.g. MANOS
EN PUÑOS predicted as Korean, BRUNE COUPE CARRÉ
predicted as Japanese). Since capitalization has no signal
in search queries, unlike in edited longer text, having a
language identifier which is sensitive to capitalization is a
major drawback.

4. Conclusions and Future Work
Off-the-shelf language identification models are inaccurate
for domain-specific search queries, e.g. in our Adobe Stock
search domain, for several reasons: the queries are short
(1–5 words); they do not contain many closed class words;
we want to identify just seven languages (English, German,
Japanese, French, Italian, Spanish, Portuguese) with high
confidence. A key contribution of this paper is validation
of the hypothesis that noisy, weakly labeled training data,
which is available at scale and which requires no manual
annotation, results in a high-accuracy language identifier
for short text such as search queries. In order to train a
domain-specific language identification model, we boot-
strapped domain-specific training data in a two-step pro-
cess. We first used a seed dictionary from MUSE to find
nearest neighbor queries for the seven languages using a
KNN model trained on the Adobe Stock query domain. We
then propagated the labels from those queries to their near-
est neighbor queries from a stratified sample of 1 year of
in-domain queries. We trained a CatBoost model using 100
dimension fastText vectors and 9 language-fraction features.
We used crowd-sourcing to create a domain-specific eval-
uation set focused on the seven languages of interest. To
ensure the attention of the human annotators we included
10-20% of other language queries in each task and we sup-
plied task instructions only in the target language. Overall
f-score on the final model was 0.98 on the test set and infer-
ence latency is ∼3ms on our standard CPU machines used
for query processing, low enough for query-time production
use.

We have two areas for future research. The first is to modify
the system to allow language identification of queries with
Adobe product names. These do not occur frequently in
the Adobe Stock queries, but they are extremely frequent
in queries for other Adobe products. The same product
name (e.g. Photoshop, Premier Pro) is used regardless of the
language. When a query consists of only a product name,
its language is indeterminate; that is, the query premiere
pro could be English, German, Japanese, etc. When a
query consists of a product name and other words, those
words determine the language, e.g. reinstall photoshop is an
English query. The second area of future work is handling
code switched queries. We plan to build on (Zhang et al.,
2018)’s analysis of code switching in short text. As in
their scenario, in our Adobe search use cases only certain
language pairs are commonly code switched, e.g. English
and Japanese occur frequently together, and so the problem
can be simplified to detecting those switches.
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