
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 3475–3483
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

3475

CLFD: A Novel Vectorization Technique
and Its Application in Fake News Detection

Michail Mersinias1, Stergos Afantenos2, Georgios Chalkiadakis1
1ECE, Technical University of Crete, Chania, Greece

2IRIT, Universite Paul Sabatier, Toulouse, France
mmersinias@isc.tuc.gr, stergos.afantenos@irit.fr, gehalk@intelligence.tuc.gr

Abstract
In recent years, fake news detection has been an emerging research area. In this paper, we put forward a novel statistical approach for
the generation of feature vectors to describe a document. Our so-called class label frequency distance (clfd), is shown experimentally
to provide an effective way for boosting the performance of machine learning methods. Specifically, our experiments, carried out in the
fake news detection domain, verify that efficient traditional machine learning methods that use our vectorization approach, consistently
outperform deep learning methods that use word embeddings for small and medium sized datasets, while the results are comparable for
large datasets. In addition, we demonstrate that a novel hybrid method that utilizes both a clfd-boosted logistic regression classifier and
a deep learning one, clearly outperforms deep learning methods even in large datasets.

Keywords: machine learning, document classification, fake news detection

1. Introduction
The frequency and impact of fake news has substantially
increased in the 21st century, due to the easy access to un-
filtered information that is available to the public, mainly
anonymously across the Web. It has been shown that
fake news spreads faster than credible news (Vosoughi et
al., 2018) while at the same time, fake news generation
is greater than news fact checking (Rimer-Boston, 2017).
According to a March 2018 Eurobarometer survey (Euro-
barometer, 2018), fake news constitutes a threat to democ-
racy for 83% of the EU population. Many governments
have signed fake news laws which make it a crime to spread
fake news online (Ikagai Law, 2018). This means that there
is a growing demand for automatically detecting and stop-
ping the spread of fake news, as its quick and effective de-
tection can have a positive social impact. However, the
complex nature of fake news makes its detection a chal-
lenging task.
There has been a considerable amount of work on fake
news detection in the past few years. Existing research falls
broadly within the realm of linguistic analysis, which uses
natural language processing and machine learning meth-
ods; or that of network analysis, which utilizes knowledge
network graphs (Conroy et al., 2015). We follow the first
approach and treat fake news detection as a binary text clas-
sification task. Considering a fake news detection system,
a constant flow of news articles has to be classified as ei-
ther credible or fake. More generally, a dataset is com-
posed of a number of news articles, or documents, each of
which contains a certain number of features. The features
always included are the title and the body text of the news
article. Other features such as the author may sometimes
be included. Therefore, two types of fake news detection
systems may be created depending on the assumption we
make about the features included in the classification. In
content-based fake news detection systems, the data pro-
vided only contains the title and the body text of each news
article; while in multi-criteria fake news detection systems,

the data provided contains the title and the body text of each
news article as well as other characteristics such as the au-
thor, the country of origin, the profiles of the readers, the
date, and more.

In practice, fake news is often created anonymously and
spread by other sources, therefore there is little to no infor-
mation about the source, the original author or the coun-
try of origin. Moreover, making use of profile information
contained in a social media platform might raise concerns
over the privacy of its users or be unavailable in the first
place. Another practical issue is the lack of large quantities
of training data, as large datasets are difficult to build and
annotate or are proprietary. Furthermore, due to the need
of early detection, classification time efficiency is another
important factor.

To combat some of the issues identified above, in our work
we take a content-based fake news detection approach, so
that classification can be performed on textual features that
are always available. Our contributions can be summa-
rized as follows. First, we propose clfd, a novel approach
for the construction of numerical feature vectors to de-
scribe a document. We perform a systematic comparison
of three clfd variants, and demonstrate experimentally that
our text vectorization approach can boost the performance
of traditional machine learning methods, that are also time-
efficient when compared to deep learning methods. Impor-
tantly, we show that methods employing clfd exhibit clas-
sification performance that is superior to that of deep neu-
ral networks in small and medium sized datasets (as those
more readily available in practice), while being comparable
in larger ones. At the same time, our clfd-based approach
produces results that are consistently better than those re-
ported in recent work concerning those exact same small
and medium-sized datasets. Finally, we develop a hybrid
method which combines a clfd-based and a deep learning-
based method into an effective classifier that outperforms
“pure” deep learning methods even in large datasets.

3476

2. Background and Related work
The goal of a fake news detection system such as ours is
to classify news articles into credible or fake by making
use of machine learning classification methods. Since most
such methods have been designed to learn from numerical
data, as a step that precedes classification, it is necessary
to acquire a numerical representation of documents which
is equivalent to their string representation. This process is
known as text vectorization (Patterson and Gibson, 2017).
Each term in a document is regarded as a feature, and is
assigned a numerical representation based on certain at-
tributes such as its frequency of occurrence, or the context
around it. The result is a feature vector for each document.
Common vectorization techniques (Manning et al., 2010)
include term frequency (tf) and term frequency - inverse
document frequency (tf-idf). Term frequency vectorization
creates document vectors where each term t is assigned a
weight wt which corresponds to its number of occurrences
in the respective document d. A variant of tf, called binary
term frequency (b-tf), is a vectorization method where wt

corresponds to the existence (value “1”) or absence (“0”)
of t in d. On the other hand, tf-idf vectorization creates
document feature vectors where wt is not only based on the
number of occurrences of t in d (tf component), but also
on the number of documents nd in the corpus that include t
(idf component). Finally, a well-known vectorization tech-
nique for deep learning methods is the use of word embed-
dings which associate each term with a numerical vector
that encodes information about its co-occurrence with other
terms in the vocabulary.
Related work regarding content-based fake news detec-
tion systems has been to date relatively limited. A com-
parison of several deep learning methods (Bajaj, 2017)
has shown that recurrent neural networks and specifically
LSTMs, Bidirectional LSTMs (Bi-lstm), and GRUs, which
use pre-trained GloVE word embeddings (Pennington et
al., 2014) as input, are suitable for identifying fake news
as they achieved the highest F1-score (81%). Another
content-based fake news detection system found in the liter-
ature (Roy et al., 2018), combines the representation results
from different methods into a single classification method.
More specifically, a multilayer perceptron is used so the
representation results of a convolutional (CNN) and a Bi-
lstm neural network are combined into an effective classi-
fier for fake news detection. Other content-based systems
are based on syntactic and semantic analysis (Rashkin et
al., 2017; Badaskar et al., 2008; Pérez-Rosas et al., 2017)
and show interesting results as well.
A recent content-based fake news detection system (Bali
et al., 2019) utilizes traditional machine learning meth-
ods, such as Gradient Boosting (Bishop, 2006), in order
to achieve a compromise between classification time and
high performance. In our fake news detection system, we
make use of the two datasets used in (Bali et al., 2019),
and demonstrate that we increase the performance of tradi-
tional machine learning methods through our novel vector-
ization approach. In this way, we retain the classification
time advantage of traditional machine learning methods,
while achieving very high performance: one that is on par
or higher than that of deep learning methods, and signif-

icantly higher than the aforementioned state-of-the-art for
those datasets.

3. Our approach
We propose a novel statistical approach which leads to fea-
ture vectors that can be used for the effective numerical rep-
resentation of documents. While the traditional vectoriza-
tion methods, such as tf or tf-idf, treat each term as part
of a document, this vectorization technique assigns weights
to each term based on the frequency it has within different
class labels. We call this approach class label frequency
distance or clfd. In what follows, we introduce our novel
clfd technique and discuss its benefits; present its specifica-
tion to fake news detection; and present machine learning
algorithms that employ it or are used as baselines.

3.1. Mathematical Framework
We first provide a brief explanation of clfd before provid-
ing the details. Consider a corpus of documents D. Our
approach works by determining the relative frequency of a
term in a specific set of documentsDi ∈ D which belong to
a class label i within a set C of possible class labels, com-
pared to the frequency of that term in the set of documents
{D−Di}which belong to all other class labels. Intuitively,
this calculation determines how relevant a given term is to
a particular class label, relatively to its relevance to the rest
of the class labels. We call this class label frequency ratio
(clfr), and it is the main component of clfd. After calcu-
lating the clfr weight of a term t for each class label i, we
calculate the maximum distance between those clfr weights
by subtracting the smallest clfr value from the largest one.
The result is the clfd weight for t, which signifies how likely
it is that t belongs to a specific class label.
The formal procedure for determining clfd is the following.
Given a corpus of documentsD, a term t, and a set of docu-
mentsDi ∈ D for each class label i, we first calculate three
class label term frequency (cltf) vectors as follows:

Algorithm 1: CLTF vectors calculation
Data: corpus, class labels
Result: Generation of terms, occ, and total vectors

1 for document d in corpus do
2 for class label i in class labels do
3 if d belongs to i then
4 for term t in d do
5 terms(t,i) = t;
6 occ(t,i) += tf(t,d);
7 total(i) += tf(t,d);
8 end
9 end

10 end
11 end

In the above algorithm, tf(t, d) represents the number of
occurrences of a term t in a document d. For each class la-
bel i, the vector terms contains the vocabulary and the vec-
tor occ the respective number of occurrences of each term
t contained in terms. Finally, for each class label i, total(i)

3477

represents the total number of occurrences of all terms con-
tained in the corresponding set of documents Di.
Now that we have the three cltf vectors for each set of doc-
uments Di that belong to class label i, we can calculate a
clfr weight vector for each class label i, as follows:

clfr i(t) = loge
(1 + occ(t, i)) · total(̂i)
(1 + occ(t, î)) · total(i)

+ 1,∀t (1)

In Equation 1, occ(t,i) represents the number of occurrences
of term t in Di, while occ(t,̂i) represents the number of
occurrences of term t in {D − Di}. Furthermore, total(i)
contains the total number of occurrences of all terms which
appear inDi, while total(̂i) contains the total number of oc-
currences of all terms which appear in {D−Di}. The clfr i

vectors are used to calculate the clfd weights as follows:

clfd(t) = maxi∈C(clfr
i(t))−mini∈C(clfr

i(t)),∀t (2)

In Equation 2, the clfd weight for a term t is the maximum
difference among its clfr values. The algorithm for the gen-
eration of the (corpus-wide) clfd weight vector is provided
immediately below:

Algorithm 2: CLFD calculation
Data: corpus, vocabulary, class labels
Result: Generation of clfd vector

1 terms, occ, total = cltf(corpus, class labels);
2 for term t in vocabulary do
3 for class label i in class labels do
4 clfr i(t) computed as in Eq.1;
5 end
6 clfd(t) computed as in Eq.2;
7 end

In the above algorithm, we first calculate the cltf vectors
occ and total, as in Algorithm 1, which represent, for each
class label i, the number of occurrences of a term t in Di

and the total number of occurrences of all terms which ap-
pear in Di respectively. The clfri vectors contain the clfr
weights of each term t for every class label, calculated ac-
cording to Equation 1. Furthermore, clfd represents the
maximum distance between those clfr weights, and is cal-
culated according to Equation 2. Then, the final clfd vector
for a document d is the result of taking the Hadamard prod-
uct between the computed clfd vector and one generated by
a term frequency-based vectorizer such as b-tf, tf or tf-idf :

clfdd(t)← clfd(t) ◦ tf-based vectorizer(t, d),∀t (3)

This step is required in order to remove from a document’s
clfd vector the values that correspond to terms not appear-
ing in that specific document, as a tf-based vectorizer calcu-
lates document-related numerical statistics, and would have
assigned 0 values to such terms. All tf-based vectorizers
create vectors of size equal to vocabulary size v, and Alg.
2 computes a clfd vector of size v, thus a simple element-
wise multiplication is required in order to generate the final
feature vectors for each document.

3.2. Method Discussion
The clfd technique provides a sophisticated weighting
scheme with certain advantages compared to existing vec-
torization methods. This is because treating a term t as part
of a set of documentsDi which belong to a class label i pro-
vides better insights for classification than simply treating t
as part of a single document or the entire corpus.
The clfd weights represent the importance or relevance of
every term for classification. If the clfd value of a term t is
high, then that term is very likely to be related to documents
associated with a specific class label. If the clfd value of a
term t is low, then that term is not likely to occur in any
documents associated with a specific class label. In case
the clfd value is zero, then the term t is equally likely to
occur in documents associated with any class label.
Compared to term frequency (tf) vectorization, clfd con-
tains a natural filter to stopword noise due to the class label
frequency ratio (clfr) component. Therefore, the perfor-
mance of clfd is practically not affected by the quality or
even the absence of data preprocessing: a term which has
an equal number of occurrences between all class labels
will have a clfd weight value of zero and it is practically
removed. If a term has a significantly higher number of
occurrences in documents which belong to a specific class
label, and thus a high clfd weight, then it should not nec-
essarily be considered a stopword for this domain in the
first place, regardless of its frequency of occurrence in the
English language.
Consider now tf-idf vectorization: in tf-idf, terms that are
very common in certain domains, such as the term “like” in
a sentiment analysis task, will have a low weight value due
to the idf component. However, in the clfd approach, the
term “like” will have a very high clfr value for the positive
class label and a very low clfr value for the negative class
label, thereby making the final clfd weight and relevance of
the term “like”, high.
Therefore, we can conclude that our vectorization approach
provides important advantages over traditional vectoriza-
tion methods. As such, it is conceivable that it can be used
to boost the performance of machine learning algorithms, a
fact verified experimentally in the fake news detection do-
main, as we detail later in this paper.

3.3. Application to fake news detection
While our clfd approach can find application in several
practical machine learning or natural language processing
tasks, we use it here for fake news detection. As this is
a binary classification problem, there are only two possible
class labels: credible news (c) and fake news (f). Therefore,
for the two classes i={c, f}, Equation 1 becomes:

clfr c(t) = loge
(1 + occ(t, c)) · total(f)
(1 + occ(t, f)) · total(c)

+ 1,∀t (4)

clfrf (t) = loge
(1 + occ(t, f)) · total(c)
(1 + occ(t, c)) · total(f)

+ 1,∀t (5)

Furthermore, the resulting clfr vectors will now correspond
to class labels c and f only. Therefore, Equation 2 can be

3478

specified for these two classes i={c, f} by simply calculat-
ing the absolute value of the subtraction between the two
aforementioned clfr weights as follows:

clfd(t) = |clfr c(t)− clfrf (t)|,∀t (6)

Now that we defined the equations for the generation of clfd
weights for our binary text classification task, we provide
an example to describe the process in detail. Consider four
documents, the first and the third belonging in the class of
credible news (c) and the second and the fourth belonging
in the class of fake news (f).

Documents
1 Congress approved the controversial bill
2 The congress is filled with lies, lies and deceit
3 The movie received plenty of controversial reviews
4 This movie was made by aliens to brainwash us

Table 1: Corpus

The first step is to generate the cltf vectors for each class
label i = {c, f} as described in Algorithm 1. Data pre-
processing such as stopword removal and lemmatizing has
been applied (Manning and Schütze, 1999). In this exam-
ple, the generated cltf vectors, terms, occ and total, are as
shown below:

Terms (c) Occ (c) Terms (f) Occ (f)
1 congress 1 congress 1
2 approve 1 fill 1
3 controversial 2 lies 2
4 bill 1 deceit 1
5 movie 1 movie 1
6 receive 1 make 1
7 plenty 1 alien 1
8 review 1 brainwash 1

Total - 9 - 9

Table 2: Class label term frequency (cltf) vectors

The next step is to calculate the clfr weights according to
Equations 4 and 5. The resulting clfr weight vectors are:

Vocabulary Credible (c) Fake (f)
1 congress 0.69 0.69
2 approve 1.10 0.41
3 controversial 1.39 0.29
4 bill 1.10 0.41
5 movie 0.69 0.69
6 receive 1.10 0.41
7 plenty 1.10 0.41
8 review 1.10 0.41
9 fill 0.41 1.10

10 lies 0.29 1.39
11 deceit 0.41 1.10
12 make 0.41 1.10
13 alien 0.41 1.10
14 brainwash 0.41 1.10

Table 3: Class label frequency ratio (clfr) vectors

Finally, we calculate the clfd weights according to Equa-
tion 6. The resulting clfd weight vector is as follows:

Vocabulary clfd weight
1 congress 0.00
2 approve 0.69
3 controversial 1.10
4 bill 0.69
5 movie 0.00
6 receive 0.69
7 plenty 0.69
8 review 0.69
9 fill 0.69

10 lies 1.10
11 deceit 0.69
12 make 0.69
13 alien 0.69
14 brainwash 0.69

Table 4: Class label frequency distance (clfd) vector

Clfd Variants The final step is to multiply the clfd weight
vector calculated above, with a vector generated by a vec-
torizer of our choice as in Equation 3, in order to apply the
clfd weighting scheme to each document. Our choices in
this work were (i) a b-tf vectorizer, (ii) a tf vectorizer, and
(iii) a tf-idf vectorizer. This gives rise to three respective
clfd variants: b-clfd, tf-clfd, and tfidf-clfd.

Analysis In the clfd weight vector of Table 4, we observe
that our clfd vectorization approach generates a vector of
feature importance that is distinct to those that b-tf, tf or
tf-idf vectorizers had produced. Specifically, we present
the following example for the corpus of Table 1. Consider
document 3:

Vocabulary tf weight tf-clfd weight
1 movie 1.00 0.00
2 receive 1.00 0.69
3 plenty 1.00 0.69
4 controversial 1.00 1.10
5 review 1.00 0.69

Table 5: Clfd example - Comparison of tf and tf-clfd

In Table 5, we notice that a tf vectorizer considers all terms
to have an equal importance in document 3. For instance,
the term “movie” and the term “controversial” are consid-
ered equally important as they both have a weight of 1.00.
However, a tf-clfd approach considers the term “controver-
sial” very important (weight 1.10), the rest of the terms less
important (weight 0.69) and the term “movie” non-existent
(weight 0.00).
Therefore, we notice that the term “controversial” has been
assigned by clfd a high weight as it appears in one more
“credible” document (document 1) in the collection. In-
deed, “controversial” is a rather elaborate and polarizing
word, more likely to appear in credible news articles. On
the other hand, a neutral term such as the term “movie” has
a zero clfd weight. As such, clfd weights could potentially
be used as hints in order to identify the set of terms which
have led us to classify a document as credible or fake.
Thus, clfd can arguably be viewed as a tool that could
help provide explainability of machine learning outcomes,
a very important concern in the further analysis of news ar-
ticles. More specifically, its feature importance vector (clfd

3479

weights) can help provide useful information which can be
used as elements of a system in an explainable AI approach
that will provide the reasons behind the classification deci-
sion. This is in contrast to the use of deep neural network
approaches for classification tasks, where explainability is
a big challenge.

3.4. Machine learning methods
Since we treat fake news detection as a binary text classifi-
cation task, we can either use a linear model, or a non-linear
model with a deep learning architecture. In our work, we
use both linear and non-linear approaches.
Specifically, we incorporated clfd into four traditional ma-
chine learning methods, two probabilistic (Logistic Regres-
sion, Naive Bayes) and two ensemble (Random Forest, Gra-
dient Boosting) ones (Bishop, 2006), and evaluated them
against each other and against four deep learning methods.
The latter used word embeddings as input, with pre-
padding of zeroes and no limit regarding the input length or
the vocabulary size, in order to achieve maximum perfor-
mance. Each deep architecture begins with an embedding
layer followed by a dropout layer to reduce overfitting (Sri-
vastava et al., 2014). Then, they differentiate as follows:

1. Long short-term memory neural network (lstm): This
architecture continues with an lstm layer and its out-
put is passed into a dense layer with a rectified linear
unit (ReLU) activation function. The classification is
done in a final dense layer with a sigmoid activation
function.

2. Bidirectional long short-term memory neural network
(Bi-lstm): The architecture continues with a Bi-lstm
layer and its output is passed into a dense layer with
a rectified linear unit (ReLU) activation function. Fi-
nally, the classification is performed in a dense layer
with a sigmoid activation function.

3. Combined convolutional and long short-term memory
neural network (cnn+lstm): This architecture contin-
ues with three repetitions of the combination of an 1-
dimensional convolutional layer and an 1-dimensional
max pooling layer. The resulting output is passed into
an lstm layer followed by a dense layer with a recti-
fied linear unit (ReLU) activation function. The clas-
sification is done in a final dense layer with a sigmoid
activation function.

4. Multiple long short-term memory layers (mult.lstm):
This architecture continues with a first lstm layer and
its output is passed, through a repeat vector layer, into
a second lstm layer. The output of the second lstm
layer is passed into a dense layer with a rectified lin-
ear unit (ReLU) activation function. Finally, the clas-
sification is performed in a dense layer with a sigmoid
activation function.

A novel clfd-based Hybrid method Finally, prompted
by the observed performance of the methods above during
our experimental evaluation, we developed an algorithm

which combines the representation results of two classi-
fiers: (i) the traditional machine learning method of Lo-
gistic Regression utilizing b-clfd feature vectors (l), and
(ii) the deep learning method of cnn+lstm (c). As men-
tioned above, a dropout layer (0.2) is utilized in order to
reduce overfitting. The parameters of the convolutional
layers were as follows: filters=128, kernel size=3, activa-
tion=’relu’. The subsequent dense layer has 128 units and
a ReLU activation function, while the final dense layer has
a single unit and a sigmoid activation function. Finally, the
Adam optimization algorithm (Kingma and Ba, 2014) was
used for the training of the neural network.
We first calculate the classification probabilities of these
two machine learning methods for each class label i. Our
novel hybrid method combines these probability vectors
by calculating the weighted average probability hi of each
news article d to belong to class label i, as follows:

hi = α · li + (1− α) · ci (7)

where li and ci denote the probability assigned to d belong-
ing to class label i by the l (i.e., the b-clfd) and c (i.e., the
cnn+lstm) methods respectively; and where α represents
the weight for li. In our binary text classification task of
fake news detection, we only have two h values for each
d document, hc and hf , which represent the probability of
d belonging to the class label of credible or fake news re-
spectively. Since hc + hf = 1, we classify d into credible
news if hc > 0.5 or into fake news if hf > 0.5. Notice that
the hybrid method’s application to non-binary classification
problems is entirely straightforward.

4. Experimental Evaluation
In this section, we experimentally evaluate both our vec-
torization and machine learning methods, on three datasets
which differ in size, class balance and data homogeneity.
Each dataset was split into training (75%) and test (25%)
sets. This setting was used in all models which incorporated
a neural architecture; in these cases overfitting was avoided
using dropout. For linear models the effects of potential
overfitting were reduced using 5-fold cross validation. For
the statistical significance of our results, we calculated con-
fidence intervals (p < 0.05).
For the experiments, we have built a fake news detection
system in the Python programming language, utilizing li-
braries such as NumPy, Pandas, RegEx, NLTK, scikit-learn
and Keras. The experiments were conducted on Google
Colab, a free online Jupyter Notebook environment. It pro-
vides 12.72 GB of RAM, 48.97 GB of disk space, and,
importantly, a Tesla K80 GPU which increases computa-
tional effectiveness. The metrics used for evaluation were
accuracy, precision, recall and F-1 score (Sokolova and La-
palme, 2009).

4.1. Evaluation Corpora
Label Dataset 1 Dataset 2 Dataset 3
Fake 3164 10369 24396

Credible 3171 10349 13614
Total 6335 20718 38010

Table 5: Structure of the datasets

3480

Our first dataset (Dataset 1) was George Mcintyre’s dataset
(McIntire, 2017) which contains 6335 news articles, evenly
distributed between the two classes. The main attribute of
this dataset is its homogeneity, as the 2016 US election
news is the common topic of all articles.
Our second dataset (Dataset 2) was a Kaggle dataset (Kag-
gle, 2017) which contains 20718 news articles, evenly dis-
tributed between the two classes. This open sourced dataset
has been reviewed by the Kaggle community and con-
tains credible and fake news articles taken from the Web.
Compared to the first dataset, apart from the difference in
size, this dataset provides news articles about various topics
which will show how our algorithms and methods work in
non-homogeneous data.
Our third dataset (Dataset 3) contains 38010 news articles,
and is the union of the previous two datasets and another
Kaggle dataset of 13000 fake news articles (Risdal, 2016).
Adding such a number of fake news articles had the effect
of making this dataset large and imbalanced, as it now con-
tains a greater quantity of fake than credible news. Dataset
3 is also even more heterogeneous, as it is composed of
three datasets which not only have news articles about vari-
ous topics, but are also taken from various different sources.

4.2. Evaluation of vectorization techniques

Dataset 1
Logistic Random Naive Gradient

Regression Forest Bayes Boosting
tf 92.73 88.64 89.02 91.37

tf-idf 92.13 89.37 82.15 91.74
b-clfd 94.61 88.59 90.63 91.18
tf-clfd 94.16 88.8 90.27 91.37

tfidf-clfd 92.69 89.5 90.38 91.74
Dataset 2

Logistic Random Naive Gradient
Regression Forest Bayes Boosting

tf 95.51 92.29 88.82 94.46
tf-idf 95.08 92.78 81.78 94.41
b-clfd 97.41 91.9 90.58 94.23
tf-clfd 96.79 92.45 86.75 94.46

tfidf-clfd 95.66 92.81 90.8 94.41
Dataset 3

Logistic Random Naive Gradient
Regression Forest Bayes Boosting

tf 96.59 95.18 94.34 92.36
tf-idf 95.07 95.06 95.82 92.42
b-clfd 97.17 95.2 94.44 92.17
tf-clfd 96.89 95.21 94.2 92.35

tfidf-clfd 94.87 95.1 95.65 92.42

Table 6: F-1 score of vectorization methods

Regarding the comparison of vectorization techniques for
traditional machine learning methods, we observe certain
patterns in the results. We notice in Table 6 that the ensem-
ble machine learning methods, Random Forest and Gra-
dient Boosting, do not show any significant difference in
their performance with varying vectorization approaches.

However, the probabilistic machine learning methods, Lo-
gistic Regression and Naive Bayes, achieve a higher perfor-
mance by using clfd-based feature vectors. In fact, our b-
clfd vectorization approach consistently increases the per-
formance of Logistic Regression in Dataset 1, Dataset 2 and
Dataset 3 by at least 1.88%, 1.9% and 0.58% respectively.
The only exception is the performance of Naive Bayes in
Dataset 3 which is slightly higher (0.17%) with tf-idf fea-
ture vectors. Therefore, there is a consistent high ranking
for machine learning methods that utilize our clfd vector-
ization approach, as it allows them to achieve comparable
or higher results in all datasets. The same pattern of results
also appears in other metrics such as accuracy, precision
and recall. The best performing traditional machine learn-
ing method is Logistic Regression with b-clfd vectorization,
as it consistently provides the highest results, outperform-
ing the other methods in F-1 score in Datasets 1, 2 and 3 by
at least 2.87%, 2.95% and 1.35% respectively.
Finally, we report that the performance of clfd-based meth-
ods is not affected by the quality or absence of data pre-
processing. As an example, consider Logistic Regression
(LR) for Dataset 1. Without preprocessing, LR with b-clfd
provides results that are actually better than its results with
preprocessing (Table 6), with an F-1 score of 95.71%, while
the F-1 scores of LR with tf and LR with tf-idf are reduced
to 91.73% and 91.75% respectively.

4.3. Performance against deep learning and
state-of-the-art

Dataset 1
Accuracy Precision Recall F-1 score

Bali 2019 87.3 89 87 89
lstm 90.9 92.4 88.96 90.65

Bi-lstm 92.09 92.25 91.76 92
cnn+lstm 92.22 90.33 94.41 92.33
Mult.lstm 92.62 90.51 95.08 92.74
LR+bclfd 94.53 94.6 94.64 94.61

Dataset 2
Accuracy Precision Recall F-1 score

Bali 2019 91.05 93 94 94
lstm 94.54 96.43 91.74 94.02

Bi-lstm 95 95.45 93.8 94.62
cnn+lstm 96.55 97.11 95.48 96.29
Mult.lstm 94.68 95.86 92.64 94.22
LR+bclfd 97.52 97.17 97.65 97.41

Dataset 3
Accuracy Precision Recall F-1 score

lstm 96.24 96.61 97.63 97.12
Bi-lstm 95.64 96.69 96.36 96.63

cnn+lstm 96.78 97.26 97.78 97.52
Mult.lstm 95.96 97.2 96.54 96.87
LR+bclfd 96.21 95.22 99.29 97.17

Table 7: Comparison of machine learning methods

Regarding the deep learning methods’ performance, we see
in Table 7 that cnn+lstm outperforms the other deep learn-
ing methods for Datasets 2 and 3, while its performance is

3481

comparable to that of mult.lstm for Dataset 1. In Dataset 1,
lstm and Bi-lstm have the highest precision score among
deep learning methods, but are otherwise performing at
least slightly worse than cnn+lstm in all other cases (re-
gardless of evaluation metric or dataset). We thus consider
cnn+lstm as the best performing deep learning method.
However, we notice in Table 7 that deep learning meth-
ods are outperformed in many occasions. In Dataset 1,
Logistic Regression with b-clfd vectorization consistently
achieves the highest performance. It outperforms all deep
learning methods in accuracy, precision and F-1 score by at
least 1.91%, 2.2% and 1.87% respectively. The mult.lstm
achieves a slightly (0.44%) higher recall score. In Dataset
2, Logistic Regression with b-clfd consistently achieves the
highest results across all metrics. It outperforms deep learn-
ing methods in accuracy, precision, recall and F-1 scores
by at least 0.97%, 0.06%, 2.17% and 1.12% respectively.
In Dataset 3, the results of deep learning methods and
those of Logistic Regression with b-clfd are comparable.
The best performing deep learning method, cnn+lstm, pro-
vides higher accuracy, precision and F-1 scores by 0.57%,
2.04% and 0.35% respectively. However, Logistic Regres-
sion with b-clfd feature vectors outperforms all other deep
learning methods in those metrics. Furthermore, it achieves
the highest overall recall score (at least 1.51% higher than
others). Therefore, Logistic Regression with b-clfd vector-
ization achieves clearly higher results than deep learning
methods in Datasets 1 and 2, while the results are compa-
rable for Dataset 3.
Furthermore, for Datasets 1 and 2, our clfd vectorization
approach allows Logistic Regression to outperform existing
state-of-the-art work (Bali et al., 2019), which also utilizes
traditional machine learning methods, by a significant mar-
gin. More specifically, for Dataset 1, it outperforms state-
of-the-art results by 7.23% in accuracy, 5.6% in precision,
7.64% in recall and 5.61% in F-1 score. For Dataset 2, it
outperforms state-of-the-art results by 6.47% in accuracy,
4.17% in precision, 3.65% in recall and 3.41% in F-1 score.

4.4. Evaluation of the Hybrid method
In this section, we discuss in detail the performance of our
novel hybrid method. To begin, it is obvious from Equa-
tion 7 that hybrid is a generic method that allows for much
flexibility and fine-tuning regarding the α parameter, which
represents the weight of the clfd-boosted Logistic Regres-
sion component. Given this, in the following table we
present an assessment of the performance of hybrid when
trying a rather exhaustive list of different α weight values.

α Dataset 1 Dataset 2 Dataset 3
0.1 92.45 96.49 97.69
0.2 92.7 96.7 97.81
0.3 93.09 96.92 97.87
0.4 93.49 97.29 98.11
0.5 93.95 97.79 98.4
0.6 94.76 97.89 98.34
0.7 95.25 97.7 98.28
0.8 95.33 97.6 98.18
0.9 94.99 97.49 98.00

Table 8: F-1 score of hybrid with different α weights

It is interesting to note that increasing α, and therefore pro-
gressively making the clfd-boosted Logistic Regression the
strongest component of hybrid, results in an increase in
the method’s performance. However, this phenomenon oc-
curs up to a certain threshold which is 0.8, 0.6 and 0.5 for
datasets 1, 2 and 3 respectively. After these dataset-specific
thresholds are reached, increasing the α weight results in a
slight drop in performance.
We can also report that for all weight values of α which
make the clfd-boosted Logistic Regression the strongest
component (i.e., for all α > 0.5 values), hybrid outper-
forms both traditional and deep learning methods across all
datasets.
Summing up our observations from Table 8, we can infer
that an α value of approximately 0.7 provides a consistently
good (consistently close to the best observed) performance
across all our specific datasets. Therefore this is the value
of α considered henceforth in this and the next section (for
instance, this is the value of α used for the results in the
figures below).

Figure 1: F-1 score for Dataset 1 (95% confidence)

Figure 2: F-1 score for Dataset 2 (95% confidence)

Figure 3: F-1 score for Dataset 3 (95% confidence)

Now, in Figures 1, 2 and 3 we present the mean F-1 scores
of hybrid and the best traditional and deep learning tech-
niques for the three datasets, along with error bars which
correspond to 95% confidence intervals. We can see that
hybrid consistently outperforms the other methods in terms
of mean F-1 score, while Logistic Regression with b-clfd

3482

feature vectors has the lowest variance. In Datasets 1 and 2,
Logistic Regression with b-clfd feature vectors provides re-
sults that are significantly higher than those of the best deep
learning method, while they are comparable to those of hy-
brid. In Dataset 3, Logistic Regression with b-clfd feature
vectors and deep learning methods provide results which
are comparable to each other. However, in Dataset 3, hy-
brid provides results that are clearly superior to those of
other methods, across all metrics. Specifically, we report
that hybrid consistently outperforms deep learning meth-
ods in accuracy, precision, recall and F-1 score by at least
1.13%, 0.49%, 1.27% and 0.88% respectively.

4.5. Time Complexity
Dataset 1 Dataset 2 Dataset 3

LR+bclfd 6.91 28.53 54.67
cnn+lstm 110.17 273.63 1295.32
Hybrid 112.22 292.88 1330.92

Table 9: Time comparison (sec)

Finally, in Table 9 we compare the best performing machine
learning methods in terms of classification time required af-
ter data preprocessing. Note that this does not include the
time required for the training of deep learning methods. We
observe that Logistic Regression with b-clfd feature vectors
is approximately 16, 10 and 24 times more time efficient
than the other methods for Datasets 1, 2 and 3 respectively.
The other two methods are comparable, with hybrid requir-
ing approximately 5% more time than cnn+lstm. Time scal-
ability is also shown in Figure 4, where the significant clas-
sification time advantage of Logistic Regression with b-clfd
is clearly demonstrated.

Figure 4: Time Scalability

4.6. Discussion of results
We demonstrated that our novel vectorization approach,
clfd, is a simple and effective way for boosting the per-
formance of certain machine learning methods. The ex-
perimental results show that a clfd-based vectorization ap-
proach consistently provides comparable or better results
than other vectorization techniques, such as tf or tf-idf, for
traditional machine learning methods. In addition, the ex-
perimental results also show that the Logistic Regression
method can outperform deep learning methods if b-clfd fea-
ture vectors are used. More specifically, it provides con-
sistently higher results than all deep learning methods for
small and medium sized datasets (Datasets 1 and 2), while
there is no significant difference in performance for large

datasets (Dataset 3). However, compared to the deep learn-
ing methods, Logistic Regression with b-clfd feature vec-
tors requires only a fraction of the cost paid for classifica-
tion time. This can be of particular interest to online news
agencies, as it can be used for the quick and effective clas-
sification of news articles in an online fashion. Moreover,
for large datasets (Dataset 3), the hybrid method success-
fully combines a cnn+lstm neural network with Logistic
Regression which utilizes b-clfd feature vectors, to achieve
the highest performance and significantly outperform deep
learning methods across all metrics.

5. Conclusions and Future Work
In this work we proposed a novel text vectorization tech-
nique, clfd; discussed its advantages with respect to “clas-
sic” vectorization approaches; and showed that its employ-
ment by machine learning methods can lead to the devel-
opment of a content-based fake news detection system that
achieves high performance and requires a minimal amount
of classification time. In particular, we showed that clfd
can turn Logistic Regression into a method that is a winner
for small and medium-sized datasets; a method the clas-
sification performance of which is comparable to that of
deep neural networks in large datasets, while it retains the
advantage of minimal classification time. Moreover, when
used as a component of our novel hybrid method, its perfor-
mance clearly surpasses that of “pure” deep learning meth-
ods across all metrics, even for large datasets.
As a natural next step, we intend to evaluate our approach
in other domains of interest. In ongoing work, we have al-
ready applied clfd in a sentiment analysis setting, with pre-
liminary results that confirm the technique’s effectiveness.
Future work also includes improving the hybrid method
further, via equipping it with a more sophisticated weight-
ing scheme. Moreover, additional machine learning meth-
ods can be added to its existing pool of methods, to increase
its diversity and potentially its power. More advanced deep
learning architectures, such as hierarchical attention net-
works (Yang et al., 2016), can also be considered. Finally,
another interesting research direction is assessing the ways
and extent to which the articles’ titles can aid classification
(Horne and Adali, 2017).

6. Bibliographical References
Badaskar, S., Agarwal, S., and Arora, S. (2008). Identify-

ing real or fake articles: Towards better language model-
ing. In Proceedings of the Third International Joint Con-
ference on Natural Language Processing: Volume-II.

Bajaj, S. (2017). The pope has a new baby! fake news
detection using deep learning. Technical report, Stanford
Univ.

Bali, A. P. S., Fernandes, M., Choubey, S., and Goel,
M. (2019). Comparative performance of machine learn-
ing algorithms for fake news detection. In International
Conference on Advances in Computing and Data Sci-
ences, pages 420–430. Springer.

Bishop, C. M. (2006). Pattern recognition and machine
learning. Springer.

Conroy, N. J., Rubin, V. L., and Chen, Y. (2015). Au-
tomatic deception detection: Methods for finding fake

3483

news. Proceedings of the Association for Information
Science and Technology, 52(1):1–4.

Eurobarometer. (2018). Final results of the Euro-
barometer on fake news and online disinformation.
Available at: https://ec.europa.eu/digital-single-
market/en/news/final-results-eurobarometer-fake-
news-and-online-disinformation. [Online; accessed
25-April-2019].

Horne, B. D. and Adali, S. (2017). This just in: Fake news
packs a lot in title, uses simpler, repetitive content in text
body, more similar to satire than real news. In Eleventh
International AAAI Conference on Web and Social Me-
dia.

Ikagai Law. (2018). The ”fake news” problem:
What are governments doing about it? Available
at: https://www.ikigailaw.com/the fake news problem.
[Online; accessed 26-February-2019].

Kaggle. (2017). Fake News. Available at:
https://www.kaggle.com/c/fake-news/data. [Online;
accessed 20-January-2019].

Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Manning, C. and Schütze, H. (1999). Foundations of sta-
tistical natural language processing. MIT press.

Manning, C., Raghavan, P., and Schütze, H. (2010). Intro-
duction to information retrieval. Natural Language En-
gineering, 16(1):100–103.

McIntire, G. (2017). Fake news dataset. Available
at: https://github.com/docketrun/Detecting-Fake-News-
with-Scikit-Learn/tree/master/data. [Online; accessed
17-November-2018].

Patterson, J. and Gibson, A. (2017). Deep learning: A
practitioner’s approach. O’Reilly Media, Inc.

Pennington, J., Socher, R., and Manning, C. (2014).
Glove: Global vectors for word representation. In Pro-
ceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 1532–
1543.

Pérez-Rosas, V., Kleinberg, B., Lefevre, A., and Mihal-
cea, R. (2017). Automatic detection of fake news. arXiv
preprint arXiv:1708.07104.

Rashkin, H., Choi, E., Jang, J. Y., Volkova, S., and Choi, Y.
(2017). Truth of varying shades: Analyzing language in
fake news and political fact-checking. In Proceedings of
the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 2931–2937.

Rimer-Boston, S. (2017). Is fact-checking
’fake news’ a waste of time? Available at:
https://www.futurity.org/fact-checking-fake-news-
1475152/. [Online; accessed 26-February-2019].

Risdal, M. (2016). Getting Real about Fake News. Avail-
able at: https://www.kaggle.com/mrisdal/fake-news.
[Online; accessed 20-January-2019].

Roy, A., Basak, K., Ekbal, A., and Bhattacharyya,
P. (2018). A deep ensemble framework for fake
news detection and classification. arXiv preprint
arXiv:1811.04670.

Sokolova, M. and Lapalme, G. (2009). A systematic anal-

ysis of performance measures for classification tasks. In-
formation processing & management, 45(4):427–437.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: a simple way to
prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958.

Vosoughi, S., Roy, D., and Aral, S. (2018). The spread
of true and false news online. Science, 359(6380):1146–
1151.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., and Hovy,
E. (2016). Hierarchical attention networks for docu-
ment classification. In Proceedings of the 2016 confer-
ence of the North American chapter of the association for
computational linguistics: human language technolo-
gies, pages 1480–1489.

	Introduction
	Background and Related work
	Our approach
	Mathematical Framework
	Method Discussion
	Application to fake news detection
	Machine learning methods

	Experimental Evaluation
	Evaluation Corpora
	Evaluation of vectorization techniques
	Performance against deep learning and state-of-the-art
	Evaluation of the Hybrid method
	Time Complexity
	Discussion of results

	Conclusions and Future Work
	Bibliographical References

