Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 3128-3135
Marseille, 11-16 May 2020
(© European Language Resources Association (ELRA), licensed under CC-BY-NC

LexiDB: Patterns & Methods for Corpus Linguistic Database Management

Matthew Coole, Paul Rayson, John Mariani
Lancaster University
Lancaster, UK
{m.coole, p.rayson, j.mariani} @lancaster.ac.uk

Abstract
LexiDB is a tool for storing, managing and querying corpus data. In contrast to other database management systems (DBMSs), it
is designed specifically for text corpora. It improves on other corpus management systems (CMSs) because data can be added and
deleted from corpora on the fly with the ability to add live data to existing corpora. LexiDB sits between these two categories of
DBMSs and CMSs, more specialised to language data than a general-purpose DBMS but more flexible than a traditional static corpus
management system. Previous work has demonstrated the scalability of LexiDB in response to the growing need to be able to scale out
for ever-growing corpus datasets. Here, we present the patterns and methods developed in LexiDB for storage, retrieval and querying of
multi-level annotated corpus data. These techniques are evaluated and compared to an existing CMS (Corpus Workbench CWB - CQP)
and indexer (Lucene). We find that LexiDB consistently outperforms existing tools for corpus queries. This is particularly apparent with

large corpora and when handling queries with large result sets.
Keywords: corpus, database

1. Introduction

Recent years have seen a development of many new inno-
vative DBMSs (Database Management Systems) that have
moved away from the traditional relational database model.
The No-SQL movement, in particular, has concerned it-
self largely with a system’s ability to scale out to handle
increasingly large datasets. Language data in the worlds
of corpus and computational linguistics, digital humanities
and lexicography has also seen the scale of what is consid-
ered a ‘large’ corpus grow from one million words in LOB
(Johansson et al., 1986), and one hundred million words
British National Corpus (Leech, 1992) to billions and tens
of billions of words TenTen (Jakubicek et al., 2013), COW
(Schifer and Bildhauer, 2012), Hansard', EEBO-TCP? over
the last forty years. However, specialist corpus storage and
retrieval tools have lagged behind the developments made
by more generic DBMSs. In addition, modern DBMSs do
not provide the necessary query functionality to satisfy the
types of queries used by corpus linguists. Moreover, ex-
isting database models do not provide efficient storage and
retrieval for consecutive words in running text, sequential
queries and contextual sorting that are central to the require-
ments for textual corpora. These issues present a problem
for linguists, humanists and others wishing to work with ex-
treme scale corpus datasets using the corpus methodology.
Conventional solutions to storage and querying of corpus
datasets (such as relational DBMSs and index tools such as
Lucene?) have worked in the past for smaller-scale datasets.
However, they have always relied upon an application layer
built on top of a DBMS to translate specialist corpus queries
into a query for a more generic data model such as Brigham
Young’s system (Davies, 2005). As a result, many corpus
linguistic searches require multiple queries to the underlying
data. With smaller datasets this is feasible but with billions
of records, such practises fail to provide responsive systems.

! http://www.gla.ac.uk/schools/critical/research/
fundedresearchprojects/parliamentarydiscourse/
2 http://www.textcreationpartnership.org/tcp-eebo/

3 https://lucene.apache.org/

Clearly, the underlying data model and indexing system
used needs to be tailored to provide the ability to perform
linguistic queries in a scalable way.

The novel database design and system that we propose,
LexiDB, provides a means of storing and querying extreme-
scale corpus data that can not only fulfil specialist linguistic
queries but can also be scaled out effectively to handle ex-
tremely large corpus datasets consisting of billions of words.
Unlike existing solutions, its data model is tailored for text
corpora and as such can provide a better means of access
and partitioning of data to allow for reduced parsing time
(time taken to insert and index a whole corpus) and the abil-
ity to dynamically scale-out. LexiDB uses a specialised text
storage system which maps tokens to integer values. This
allows for text to be stored in a way that allows for faster
index lookups and faster lexical sorting of query results.
Previous work (Coole et al., 2015) in this area has demon-
strated that existing DBMSs do not support the ability to
handle extreme-scale corpora. This work demonstrated the
difficulty that both Cassandra and MongoDB had in ful-
filling simple concordance line queries without multiple
database queries. It also illustrated issues with data inser-
tions with no ability to perform a truly parallel insertion even
with a clustered setup. This means insertion or parsing of
extremely large corpora of the order of multiple billions of
words such as UK Hansard on a four-machine cluster takes
over eight hours.

Although this previous work demonstrated existing DBMSs
ability to scale up to higher data volumes, it also showed
their inability to support both text indexing and data access
tailored for corpus queries. Furthermore, existing DBMSs
were shown to lack the degree of parallelism required for
parsing in extreme-scale corpus datasets en mass with a de-
sign philosophy that appears more geared towards building
a large database over time.

2. Related Work

The language stored in text corpora can be analysed using
various techniques. Here, we focus on the methodology

3128



used mainly in corpus linguistics (McEnery and Hardie,
2012), digital humanities (Gregory and Paterson, 2019),
and to some extent lexicography (Corréard, 2002).

A common technique used in these fields is concordance
analysis. This focuses on a particular keyword or phrase
and examines the surrounding patterns of language to learn
about a word’s meaning or grammatical patterning. Concor-
dance lines are built from the words that occur immediately
adjacent to the keyword, thus giving the linguist an idea of
the typical context in which a keyword is used. This is more
commonly known outside of linguistics as a KWIC (key-
word in context) search. A linguist can draw conclusions
about patterns found around the queried term such as in a
study conducted on the portrayal of Muslims in the British
Press (Baker et al., 2012). The validity of such conclusions
regarding the use of language is of course predicated upon
having a sufficient number of concordance lines to examine
and a representative corpus. Very common words can be ex-
amined in relatively small corpora. For less frequent words
or phrases, it may be necessary to build larger and larger cor-
pora to gather sufficient data for a meaningful concordance
analysis. Along with the rise in availability of web-derived
corpus data, this has led to the ever-increasing size of cor-
pora and an ever greater need for tools and systems capable
of handling them.

Collocations are another feature in corpora that are of inter-
est to linguists. These are potential discontinuous sequences
of two or more words that occur together with higher fre-
quency. Thus they may represent a significant linguistic
feature or pattern in a language variety. N-grams are also
used to search for patterns alongside collocations. These
are usually a consecutive sequence of a given number (n) of
words that occur frequently together in a corpus. A complete
set of bi-grams (2-grams) for a corpus would contain every
pair of words that occur next to each other. Storing n-grams
along with their frequency is typical. This allows linguists
to examine how likely they are to occur and to study their
variation across different genres or text types. No more than
five-word patterns (5-grams) are usually stored. Browsing
or searching of n-grams allows linguists to look for many
different types of lexical, grammatical or semantic features
of interest.

Various tools exist which implement the five main methods
in corpus linguistics: concordances, collocation, frequency
lists, keywords and n-grams. AntConc (Anthony, 2004) is
one of the most popular tools to query corpora in this way
as it allows users to do so from the raw files. AntConc
struggles to process larger corpora (i.e. billions of words),
as does Wmatrix (Rayson, 2008), a web-based corpus an-
notation and comparison tool. IntelliText* provides a web
interface to a selection of pre-loaded corpora that have al-
ready been indexed. The system allows access to some
large corpora such as the British National Corpus (BNC).
This system suffers similar pitfalls (slow retrieval and/or
inability to retrieve) when searching large corpora for par-
ticularly common words but is very efficient in the general
case; to remedy this, limits on the number of results returned
are applied.

* http://corpus.leeds.ac.uk/

Brigham Young University’s system (BYU)® provides an
interface built on a relational database (Davies, 2005) that
gives access to several extreme-scale corpora such as the
corpus of Global Web-Based English (GloWbE) and the
Wikipedia corpus (both 1.9 billion words in size). BYU’s
interface provides a means to generate concordance lines or
KWICs as well as a means to sort them in several meaningful
ways such as lexically on one word left of the search term.
As with IntelliText, BYU also limits the number of returned
results to avoid the issues associated with huge result sets
in extremely large corpora — a common pattern with corpus
systems.

Systems based on the IMS Open Corpus Workbench such as
CQPweb (Hardie, 2012) currently have a hard upper limit
(2.1 billion tokens) on the size of corpora that they can
index. Other systems, such as Corpuscle® are targetted at
corpora of the order of one billion words. SketchEngine and
the open-source cut-down version incorporating Manatee
(corpus management tool) and Bonito (graphical interface)
(Rychly, 2007) has an apparent maximum allowed corpus
size of 23! — 2 according to the Manatee change log but no
benchmarks are available for indexing or retrieval speed.
Varying different requirements of corpus linguists and the
various tools, both general-purpose and bespoke, has led to
some corpus management platforms such as Korap (Diewald
et al., 2016) being developed. Korap contains various com-
ponents including a front-end and API interface, manage-
ment component and a back end data system with an index-
ing structure built on Lucene. Whilst this type of structure
may be daunting for casual users to get to grips with Ko-
rap does address a key issue in being able to use its Koral
component to translate queries in various corpus query lan-
guages such as CQL (Evert, 2005) and Annis QL (Chiarcos
et al., 2008) into its own query language for execution. This
provides a means of easy entry for linguists familiar with
supported query languages.

Many different approaches have been taken to attempt to
resolve the problems associated with extreme-scale cor-
pora and the difficulty in fulfilling corpus queries that they
present. The Ziggurat (Evert and Hardie, 2015) design at-
tempts to resolve issues relating to multi-layered corpora and
the more complex queries that may be employed by linguists
with such corpora, but distribution is not part of the design.
Chubak et al (Chubak and Rafiei, 2010) attempt to resolve
issues of scalability by storing more data within the index i.e.
context data about surrounding terms building on the work
of Cafarella (Cafarella and Etzioni, 2005). This approach
could be extended but requires additional data to be stored
in the index, which will always be a limiting factor. Schnei-
der (Schneider, 2012) proposes linking an object-relational
DBMS to a MapReduce style system with a 4-billion-word
test corpus. However, his experiments are only carried out
on a single computer with single or multi-processor options,
rather than fully distributed. Several techniques have been
applied towards satisfying the data needs of large corpora
but few have managed to address the fundamental scalability
problem.

5 http://corpus.byu.edu/
® http://uni.no/en/uni-computing/clu/corpuscle/

3129



3. System

LexiDB is designed to be a distributed corpus database; the
core principle is to promote parallelism in the insertion and
querying of corpus data. The system makes use of parallel
programming techniques to facilitate the ability to scale out
across an ever-increasing number of nodes as the volume of
data in the corpus scales up.

Many corpus systems currently exist that are as function-
ally capable as LexiDB’s prototype, e.g. with an existing
user-interface. However, none are known to be capable of
scaling out in the same manner. Furthermore, it is not the
intention of LexiDB to replace these systems or to duplicate
their functionality directly but rather to provide a potential
data layer upon which future corpus tools and software can
be built allowing them to be scalable for extremely large
corpora.

The distribution model used by LexiDB is peer-to-peer (p2p)
with no one node being a single point of failure. This archi-
tecture is appropriate for the currently intended deployment
environments i.e. less than 10 nodes. For larger deploy-
ment more sophisticated network topologies based on p2p
principles of decentralization (utilised by Gnutella (Frankel
and Pepper, 1999) and Cassandra’ to some extent) or other
techniques such as DHTs (Distributed Hash Tables), may
be used to minimise network traffic and to allow for even
greater scalability of the design. The current design ensures
all nodes within the network are aware of all other nodes
and can distribute queries accordingly. As a result certain
queries may be redundantly run on nodes with no data per-
taining to them, but given the expense of most queries to
run on each node this will have very little effect on the
responsiveness of the system.

The distribution aspect of LexiDB has been previously dis-
cussed in greater depth and evaluated in previous work
(Coole et al., 2016). This demonstrated how well corpus
data can be scaled out with consistent returns on efficiency
for both inserting and querying data as the number of nodes
in the cluster grows. What follows is a discussion of the
underlying data storage patterns and querying methods that
are used by LexiDB and how the system as a whole fits
together, allowing it to handle language data and corpus
queries. LexiDB can support both annotated corpus lay-
ers and persistent metadata. Metadata can be anything but
typical examples are; author, publication date, origin etc.

3.1. Data Block Partitioning

To maintain a greater level of flexibility and manageability,
data is broken down within each node into data blocks. Each
data block contains, as a default, 1 million words or records.
The size of each block can be tailored, and increasing the
limit may allow for faster querying but may slow parse time.
All blocks are independently managed and as a result, can
easily be migrated between nodes allowing for additional
nodes to be added and the system to quickly redistribute the
data without the need to fully rebuild any blocks or block-
level indexes. Breaking the data down in this way allows the
initial parse of data in a corpus to be performed far quicker
than processing the data as a single chunk.

7 http://cassandra.apache.org/

3.2. Numeric Data Representation

The basic principle of how data within LexiDB is stored is
that all words are converted to a numeric representation. The
numeric representations should be ordered alphabetically
according to the word they represent. Each word type will
share the same numeric representation. Each word type
from the phrase is placed into an alphabetically ordered
dictionary. Once all words are in the dictionary, they are
assigned ascending numeric values. The original values of
the phrase are replaced by the values from the dictionary
and stored. For quick reverse retrieval when performing
queries this dictionary is also stored. Storing all words in
this way allows for several advantages including the ability
to sort large sets of words far quicker as well as affording a
small level of compression.

Since each block is computed separately at parse time, each
block has a unique numeric representation for particular
words. This presents a problem when dealing with data that
is retrieved across different blocks. Once all blocks of a
corpus have been computed, their dictionaries become the
input files for the same process i.e. all dictionaries are taken
and numeric representations of the words they contain are
created and stored at a node level. A mapping file is then
constructed for each block which will map its block-level
numeric representation of a word to a node-level numeric
representation of a word.

3.3. Index Structure

LexiDB uses a block-level indexing structure. Within each
block, all stored numeric values are indexed. The index
file is compressed using PFOR-delta® scheme as a postings
list of the positions where each value occurs. The postings
list for each numeric value are stored contiguously, to look
up values a second index map file is created that stores the
position within the main index file where the postings list
for each numeric value begins. Once the numeric value
for the word being queried is retrieved the index looks up
that value in the index map which gives the position that
the index entries for that value begin in the main index
file (the number of index entries is computed by checking
where the next set of values begin i.e. checking the next
value in the index map). From here all index entries can be
retrieved from the main index file and then the values can
be retrieved. Typically when retrieving a record a context is
used so for each index entry n records before and after will
also be retrieved.

3.4. Distribution

LexiDB uses a distributed hash table (DHT) to allow it to
be deployed across multiple nodes. The hash for each data
block is computed from the ingested data itself. Previous
work (Coole et al., 2016) has demonstrated the scalability of
this approach. The chord algorithm (Stoica et al., 2003) is
the basis for the DHT implementation and is used to evenly
distribute data blocks between nodes in a distributed setup.
When querying each data block is individually queried with
the processing performed by the node where the block is
primarily stored and the results alone returned (as opposed

8 https://github.com/lemire/JavaFastPFOR

3130



to retrieving the entire data block from the DHT and then
processing). This method allows for a dynamic cluster con-
figuration to be achieved with the ability to add and remove
nodes whilst ensuring a degree of parallelism when query-
ing the system.

3.5. Query syntax

The query syntax of LexiDB combines a basic regular
expression syntax and JSON (javascript object notation).
JSON objects replace characters within the regular expres-
sion syntax and represent QBE (query by example) database
objects. Each QBE object contains a series of key-value
pairs, where the keys should correspond to column names
in the database and the value can be expressed as string
values or regular expressions themselves.

{ "posl' . "JJ" } * { "pOS" . "NNl"}

The above example using the CLAWS7° tagset values on
a POS (part-of-speech) column. This would represent a
search for zero or more adjectives (JJ), followed by a singular
noun (NNT1).

This style of query syntax is similar to CWB/CQP’s query
language, but it does not seek to extend and/or simplify
but rather combine existing languages (regex & JSON) in
a meaningful way to create an expressive basis for defining
corpus queries.

From a practical standpoint the problem of resolving such
queries within a database structure described above can be
split into two distinct parts; resolving QBE objects and
resolving token stream regular expressions. What follows
are two algorithms for solving these problems as well as
a discussion of the implementation considerations around
how these algorithms work within LexiDB.

3.6. Resolving QBE objects

To resolve token stream regular expressions of the form
described above, first QBE objects within this must be re-
solved. These QBE object will take key-value pairs where
the values may be regular expressions themselves to be
matched against a dictionary or lexicon of values for that
key/database column. The Corpuscle (Meurer, 2012) sys-
tem made use of suffix arrays to do this. This approach can
be taken a stage further when combined with the approach
presented by Baeza-Yates (Baeza-Yates and Gonnet, 1996)
in resolving against a patricia-trie against binary DFAs (de-
terministic finite-state automata). Generalizing towards a
radix-trie allows for a lexicon to be searched against a reg-
ular expression when it is expressed as a DFA. This also
allows for a practical approach that can facilitate the use
of many existing regex libraries without the need for a be-
spoke regex engine. LexiDB makes use of the dk.brics DFA
library (Mgller, 2017).

Preamble: Take any regular expression that can be converted
to an equivalent DFA, represented as M = (Q, 3, d, qo, F).
Take a dictionary of token types € and compile them into a
depth reduced radix trie T' = (ro R, F/, L) where R is the set
of all nodes in the trie numbered in a breadth-first traversal

? http://ucrel.lancs.ac.uk/claws7tags.html

o NN N T R W N -

—
L —

oS00

b

()
q3

Figure 1: DFA representing ~ [abla.*$

baa$
a

bb

&)

@/@\

Figure 2: Radix trie representing e

8
a :

i.e. 7g is the root node; 7o, r1...7,, F is a set of all edges in
the trie expressed as a tuple (7, I, ;) where I is the input
sequence from node r; to r; and L represents a set of leaf
nodes L C R and corresponds to the set of token types in
the dictionary e.

input : ADFA M = (Q,%, 9, qo, F)
Radix trie T = (o, R, E, L)
output A set of integer pairs h

h<+0
k< {(q0,70)}
while £ # 0 do
(¢i,71) = k.pop()
for e inr; do
if 6(q;,e)eF then
‘ d(gi,e) Uh
else if §(g;,e)e@ then
‘ (6(gire), R(ri,e)) Uk
end

end
Algorithm 1: Algorithm for resolving a DFA over a radix
trie

3.7. Resolving token stream expressions

Once QBE objects within a token stream regular expression
have been resolved to specific positions within the corpus
it is necessary to resolve the regular expression as a whole
to find a set of final positions that match the phrase being
searched for. Algorithm 2 attempts to do this in a way that
is agnostic of any such regular expression engine, as such
as with resolving regular expressions within QBE object
LexiDB does not have its own regular expression engine but

3131



o 0 N R W N =

e
nm R W N =D

uses dk.brics.automaton'® which can be easily swapped for
another library if other regular expression language features
become a requirement in the future (the only stipulation
on the library used is that it uses DFAs to resolve regular
expressions).

Preamble: Take any query () made up of a set of QBE
objects ay...a,, and regular expression operators. Con-
vert these QBE object to pairing of character representa-
tion (a9 — ’a’, a; — ’b’ etc.) and resolved index lookup
positions within a corpus ("a’ = 0,12,15...). Map these char-
acters onto their respective index positions in a sparse 2D
matrix C representing the entire corpus. Replace the QBE
object in the original expression with their character mapped
representations and constructa DFA; M = (Q, X, 4, qo, F).

input : ADFA M = (Q,%,6,qo, F)
Sparse 2D matrix C of length [
output A set of integer pairs i

he
fori < Otoldo
S < [(qo, D)1
while S # () do
(qn, k) <S.pop()
for j « 0to Ck].length do
if (... C[k][j]) then
| S.push(6(gn. C[K][]). k + 1)
end
if 9(¢,, C[k][j]) in F then
| h.add((, k + 1)
end

end
end

end
Algorithm 2: Algorithm for resolving QBE based regular
expressions over a token stream

Consider the token stream regular expression gp*q; where
the index lookup results of resolving the QBE objects
are ¢qg = 0,1,5,6 and ¢¢ = 1,4,5 in some cor-
pus of length 7. The token stream regex can be con-
verted to a typical character regex a*b and the sparse
2D matrix representation of this corpus can be built as
such [[al, [a,b], [1, [1, [b], [a,b], [a]]. Pass-
ing this through algorithm 2 would produce h =
[(0,1),(1,1), (4,4), (5,5)].

Further adaptations and performance improvements can be
made to this algorithm in practice. The two specific opti-
mizations to consider are a maximum hit length and a greedy
matching option (both of which are configurable options in
LexiDB).

A greedy match ensures that only the longest possible match
is retrieved and no potential sub-sequences that could match
on the regular expression are matched. This would typically
be seen as a duplicate match by a corpus linguist and as such
greedy match is the default option within LexiDB.

A maximum match length is a two faceted performance im-
provement. On one hand, it allows LexiDB to avoid the

Yhttps://www.brics.dk/automaton/

potential for a state explosion whilst parsing the DFA and
ensures a mechanism is available to bail-out if necessary.
Secondly, it facilitates taking advantage of the typical spar-
sity of the 2D character matrix representing the corpus,
meaning the algorithm only needs to execute from positions
in the matrix within a proximity of an entry in the matrix,
since even if the regular expression begins with wildcards
i.e. dot and Kleene star operators, the maximum match
length would be exceeded anyway outside this range. Con-
versely, this means that any token stream regular expression
must contain at least one QBE object and not wildcards
alone. LexiDB’s default maximum match length is 20 to-
kens.

In practice, this maximum match length can act as a nec-
essary overlap for breaking down the corpus representation
into chunks to be parallelised when processed by LexiDB.
Since all data is read from the disk when resolving the QBE
expressions and the resultant matches are retrieved subse-
quently when the positions have been found via Algorithm
2 this can scale to as many processors/cores as are available
and should reduce the execution time by the same order.
This again is another configurable option within LexiDB.

4. Evaluation
4.1. Setup

To evaluate the performance of lexiDB we compared the
query response time of searching for the most common uni,
bi & trigrams on part-of-speech (C5) tags in the British Na-
tional Corpus. The performance was compared to the query
response time of CWB - CQP. Further to this, the indexing
lookup times were compared to the index lookup times of
Lucene (since many other search systems and corpus tools
use this as an indexer e.g. Korap, ElasticSearch).

All benchmarks were conducted on the same workbench,
specs: i7, 16GB RAM, 256GB SSD (271 MB/s read speeds
measured by bonni++!"). The top 20 unigrams, bigrams
and trigrams were queried on each of the supported systems
10 times and the average response times are plotted below.
In the case of lexiDB, the query cache was disabled so each
result would not be retrieved from the cache after each run,
rather than performing the query again. The corpus used
in all tests was the BNC (British National Corpus) with
annotation layers; POS, lemma & CS5 tags.

For each of the test systems, the original XML format of the
BNC needed to be converted to a format that was supported.
LexiDB supports the use of standard TSV files and can
support any kind of text data not just typical corpus data
annotation layers. CWB requires files to be presented in a
single VRT (vertical) file format - this format looks similar
to TSV but with no headers and structural data about texts
placed all within the same file. Lucene can index various
file formats but the simplest way to index is to use text
files. This creates a problem for linguistic data marked up
with several levels of annotation. To overcome this each of
the annotation layers from the original XML was used to
generate a text file for that annotation (i.e. one for token,
POS, c5 etc.) and then each of these files were indexed as
a field within Lucene. This meant although all annotations

Uhttps://sourceforge net/projects/bonnie/

3132



could be queried on, only one could be accessed in a single
query.

4.2. Results

cwb H Blexidb H B lucene
103 |
—
[72]
g
N—
[}
g
=
>
P
[}
=
o
10% |
S Z £ 8 S 9 &S S UVUEZ S ZAAQOKRSY
ZEEE32E25E8¢8zzE55582¢8¢2¢
c5 tag

Figure 3: Simple querying for Part-of-Speech (c5 tagset)

As can be seen from figure 3, the LexiDB and CWB query
times for searching for single tags (c5) were proportional to
the number of occurrences of the tag within the corpus. In
this case, ‘NN1° being the most popular tag searched for and
‘DPS‘ the least. One would expect this trend to continue
with lower frequency items such as low-frequency words or
more fine-grained tags (obviously most POS tags will be
fairly high frequency within any corpus). LexiDBs query
response times in this instance were on average 535% faster
than CWB/CQP.

Lucene demonstrated very constant query times for single-
term queries (as well as bi and trigrams), but this is due
to how Lucene returns a set of hit documents as opposed
to retrieving sets of concordances lines. Although Lucene
could be used for such linguistic type queries it is necessary
to build an additional application layer on top of Lucene
to achieve this. This would inevitably end up resulting in
greater overhead and slower query response times.

Figure 4 shows the effect of searching for phrases. Using
the most popular POS bigrams within the BNC we can see
that the results are no longer affected by the raw frequency
of the results but rather by the frequencies of the items
involved in the lookup. An interesting observation here is
that CWB/CQP is slowed more when querying for a phrase
where the first item is higher frequency. By comparison,
LexiDB is slowed more so when the sum of the frequencies
of the items in the phrase is high. We can see that as with
unigrams Lucene’s response times are fairly constant. This
can also be observed when looking at trigrams in figure 5.
Whilst it can be shown from these common POS bigram
search results that CWB/CQP is comfortably outperformed
by LexiDB which is in turn comfortably outperformed by
Lucene, it should be noted that as Lucene is only presenting
a set of documents and not a set of hits themselves. CQP
and LexiDB are both performing a full query evaluation and
retrieval of concordance lines and presenting them to the

cwb i Blexidb © B lucene
~~
EI
3103.0,,
=
72}
g
N—
Q
g
3
5 103
5 |
g 10
o
- Z S - 285 8 z &5 d s S - UOS zZ gy
£2252£E:£22555250:222¢8¢0
S = & o faniian} Z 8 @ = Z & ] z =
EZ 23522852832 :58828¢£2E8¢¢%
¢S5 bigram
Figure 4: Common POS bigram search
cwb I B lexidb I B lucene
103.8,,
—
en
o)
=
=
g
~ 1036 1
o 10
g
g
>
=
[}
=
0103.4,
- o K z zZz © € 2 & - & & S o oz Z &
f2E22 22222282222 z22¢
S o T = = S o oo N - =
S3IZEZEZECZSZ::2E2E%¢
FEEESEEZEEEZZ2E¢8¢%3 %3
¢S5 trigram

Figure 5: Common POS bigram search

user. Lucene, by contrast, is only performing a lookup of a
phrase query and presenting the set of documents the phrase
occurs. Additional steps beyond this would need to be taken
to present the results to any end-user in a meaningful way. It
should also be noted that in this experimental setup Lucene
is only capable of searching a single annotation layer at a
time. CQP and LexiDB would see similar query response
times query across multiple annotation layers. It is worth
noting that LexiDB can be scaled out into a cluster setup (as
demonstrated in previous papers) to improve performance
as needed.

5. Conclusion

In this paper, we have presented two key algorithms criti-
cal to the furthering of scalable corpus database manage-
ment systems. These methods have built upon existing ap-
proaches and are highly tailored towards the requirements

3133



of corpus linguistics, digital humanities and lexicography.
Our evaluation has shown that the implementation of these
methods in LexiDB has proven to be effective in providing
better performance than existing CMSs and a level of per-
formance comparable to state-of-the-art indexing systems
but with greater capability. Previous work has also demon-
strated how the design presented here is scalable and will
allow for corpus linguists to utilise ever-larger corpora in
the future.

Future work for LexiDB and more generally around the area
of corpus databases may include work on examining highly
specialised user-interfaces to corpus data systems, both in
the form of APIs and graphical user interfaces. This is
an area only loosely explored by other systems with highly
specific requirements to individual research projects with no
general-purpose approaches taken and little consideration
for typical HCI methods.

Beyond this exploration of pre-processed n-gram lists as an
efficient mechanism for finding and calculating collocation
metrics, a typical requirement of corpus linguists, will be
explored to examine what trade-off can be made between
the additional storage needs of n-grams versus the increased
performance compared to calculate collocations on the fly
as in the current version of LexiDB.

LexiDB is fully open source'? and all evaluation scripts'?
used in this paper are freely available.

6. Acknowledgements

This research is funded at Lancaster University by an EP-
SRC Doctoral Training Grant. Our research has benefit-
ted from discussions within the Corpus Database Project
(CDP) team including Laurence Anthony (Waseda Univer-
sity, Japan), Stephen Wattam and John Vidler (Lancaster
University, UK).

7. Bibliographical References

Anthony, L. (2004). Antconc: A learner and classroom
friendly, multi-platform corpus analysis toolkit. Proceed-
ings of IWLeL, pages 7—-13.

Baeza-Yates, R. A. and Gonnet, G. H. (1996). Fast text
searching for regular expressions or automaton searching
on tries. Journal of the ACM (JACM), 43(6):915-936.

Baker, P., Gabrielatos, C., and McEnery, T. (2012). Sketch-
ing Muslims: A corpus driven analysis of representations
around the word ‘Muslim’ in the British press 1998-2009.
Applied Linguistics, 34(3):255-278.

Cafarella, M. J. and Etzioni, O. (2005). A search engine
for natural language applications. In Proceedings of the
14th international conference on World Wide Web, pages
442-452. ACM.

Chiarcos, C., Dipper, S., Gotze, M., Leser, U., Liideling, A.,
Ritz, J., and Stede, M. (2008). A flexible framework for
integrating annotations from different tools and tagsets.
Traitement Automatique des Langues, 49(2):271-293.

Chubak, P. and Rafiei, D. (2010). Index structures for ef-
ficiently searching natural language text. In Proceedings

Phttps://github.com/matthewcoole/lexidb
Bhttps://github.com/matthewcoole/lrec_2020_paper

of the 19th ACM international conference on Information
and knowledge management, pages 689-698. ACM.

Coole, M., Rayson, P., and Mariani, J. (2015). Scaling out
for extreme scale corpus data. In 2015 IEEE International
Conference on Big Data, pages 1643-1649. IEEE.

Coole, M., Rayson, P., and Mariani, J. (2016). lexidb: A
scalable corpus database management system. In 2016
IEEE International Conference on Big Data (Big Data),
pages 3880-3884. IEEE.

Marie-Hélene Corréard, editor. (2002). Lexicography and
natural language processing: a Festschrift in honour of
BTS Atkins. Euralex.

Davies, M. (2005). The advantage of using relational
databases for large corpora: Speed, advanced queries,
and unlimited annotation. International Journal of Cor-
pus Linguistics, 10(3):307-334.

Diewald, N., Hanl, M., Margaretha, E., Bingel, J., Kupietz,
M., Banski, P., and Witt, A. (2016). Korap architecture—
diving in the deep sea of corpus data.

Evert, S. and Hardie, A. (2015). Ziggurat: A new data
model and indexing format for large annotated text cor-
pora. Challenges in the Management of Large Corpora
(CMLC-3), pages 21-27.

Evert, S. (2005). The cqp query language tutorial. IMS
Stuttgart. CWB version, 2:b90.

Frankel, J. and Pepper, T. (1999). Gnutella. Web Site-www.
gnutella. com.

Gregory, 1. and Paterson, L. (2019). English language and
history: Geographical representations of poverty in his-
torical newspapers. In Svenja Adolphs and Dawn Knight
(Eds.), The Routledge Handbook of English Language
and Digital Humanities, Routledge Handbooks in En-
glish Language Studies. Routledge, 1.

Hardie, A. (2012). CQPweb — combining power, flexibil-
ity and usability in a corpus analysis tool. International
Journal of Corpus Linguistics, 17(3):380-409.

Jakubicek, M., Kilgarriff, A., Kovéf, V., Rychly, P., and
Suchomel, V. (2013). The TenTen corpus family. In 7th
Corpus Linguistics Conference, pages 125-127.

Johansson, S., Atwell, E., Garside, R., and Leech, G.
(1986). The tagged LOB corpus: User’s manual.

Leech, G. (1992). 100 million words of English: the British
National Corpus (BNC). Language Research, 28(1):1—
13.

McEnery, T. and Hardie, A. (2012). Corpus Linguis-
tics: Method, theory and practice. Cambridge University
Press.

Meurer, P. (2012). Corpuscle—a new corpus management
platform for annotated corpora. Exploring Newspaper
Language: Using the Web to Create and Investigate a
Large Corpus of Modern Norwegian, 49:31.

Mgller, A. (2017). dk.brics.automaton — finite-
state automata and regular expressions for Java.
http://www.brics.dk/automaton/.

Rayson, P. (2008). From key words to key semantic
domains. International Journal of Corpus Linguistics,
13(4):519-549.

Rychly, P. (2007). Manatee/Bonito - amodular corpus man-
ager. In 1st Workshop on Recent Advances in Slavonic

3134



Natural Language Processing, pages 65-70. Masaryk
University, Brno.

Schifer, R. and Bildhauer, F. (2012). Building large cor-
pora from the web using a new efficient tool chain. In
Nicoletta Calzolari, et al., editors, LREC, pages 486—493.
European Language Resources Association (ELRA).

Schneider, R. (2012). Evaluating DBMS-based access
strategies to very large multi-layer corpora. In Challenges
in the management of large corpora (CMLC) workshop at
Language Resources and Evaluation Conference (LREC).
European Language Resources Association (ELRA).

Stoica, 1., Morris, R., Liben-Nowell, D., Karger, D. R.,
Kaashoek, M. F., Dabek, F., and Balakrishnan, H. (2003).
Chord: a scalable peer-to-peer lookup protocol for inter-
net applications. IEEE/ACM Transactions on Networking
(TON), 11(1):17-32.

3135



