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Abstract
We present word2word, a publicly available dataset and an open-source Python package for cross-lingual word translations extracted
from sentence-level parallel corpora. Our dataset provides top-k word translations in 3,564 (directed) language pairs across 62 languages
in OpenSubtitles2018 (Lison et al., 2018). To obtain this dataset, we use a count-based bilingual lexicon extraction model based on
the observation that not only source and target words but also source words themselves can be highly correlated. We illustrate that the
resulting bilingual lexicons have high coverage and attain competitive translation quality for several language pairs. We wrap our dataset
and model in an easy-to-use Python library, which supports downloading and retrieving top-k word translations in any of the supported

language pairs as well as computing top-k word translations for custom parallel corpora.

Keywords: bilingual lexicon, word translation, Python toolkit

1. Introduction

Bilingual lexicons (Fung, 1998) are valuable resources for
cross-lingual tasks, including low-resource machine trans-
lation (Ramesh and Sankaranarayanan, 2018; |Gu et al.,
2019) and cross-lingual word embeddings (Ruder et al.,
2017). However, it is often difficult to find a large enough
set of bilingual lexicons that is freely and readily available
across various language pairs (Levy et al., 2017). For exam-
ple, standard bilingual dictionaries like Wiktionary{ﬂ often
do not explicitly provide word correspondences but refers
or redirects to the query word’s dictionary form:

* Query: travaillé (French for ‘worked’)
Result: (verb) past principle of travailler ‘work’

e Query: & 21t} (Korean for ‘ate’)
Result: redirects to BT} ‘eat’

Not only does this make it tedious to find word-level cor-
respondences across many query words, this is particularly
problematic when we try to find word correspondences for
languages where some dictionary forms are rarely used in
ordinary discourse, such as the case of T} in the Korean
language.

While the task of bilingual lexicon extraction (BLE) has
been popular in both early and recent literature, span-
ning from count-based approaches (Fung, 1998} |Vuli¢ and
Moens, 2013; |Liu et al., 2013) to using cross-lingual word
embeddings (Ruder et al., 2017; Mikolov et al., 2013a;
Gouws et al., 2015 |Conneau et al., 2017;|Levy et al., 2017}
Artetxe et al., 2018, |Artetxe et al., 2019), few were focused
on building high-coverage bilingual lexicons across many
language pairs, possibly including non-Indo-European lan-
guages. In fact, many of the recent studies and their ac-
companying packages (Conneau et al., 2017; |Artetxe et al.,
2018}, (Glavas et al., 2019) aim at evaluating cross-lingual
word embeddings, so that they involve at most 10-100s of
language pairs and 1-5K words for each pair.

“Equal contribution.
Ihttps://en.wiktionary.org

# Languages 62
# Language Pairs 3,564
Avg. Lexicon Size 127,023
Avg. # Translations Per Word 8.8

Table 1: Overview of the word2word dataset.

Motivated by the lack of publicly available and high-
coverage bilingual lexicons across diverse languages, we
present word2word, a large collection of bilingual lexi-
cons for 3,564 language pairs across 62 languages that is
wrapped around an open-source and easy-to-use Python
interface. We extract top-k bilingual word correspon-
dences from all parallel corpora provided by OpenSubti-
tlesZOl (Lison et al., 2018), using a count-based model
that takes into account both monolingual and cross-lingual
co-occurrences. The package also provides interface for
obtaining bilingual lexicons for custom parallel corpora in
any other language pairs and domains not covered by Open-
Subtitles2018.

2. The word2word Dataset
2.1. Data Statistics

The word2word dataset spans across 3,564 directed lan-
guage pairs between 62 languages in the OpenSubti-
tles2018 dataset, a collection of translated movie subtitles
extracted from OpenSubtitles.or By design, our method-
ology covers 100% of words present in the source sen-
tences, making the lexicon size much larger than existing
bilingual dictionaries. The lexicon also contains up to top-
10 word translations in the target language. We provide an
overview of the entire dataset in Table[Il

In Table 2] we provide summary statistics for bilingual
lexicons between English and some of the major lan-
guages (both European and non-European). For each pair,
the lexicon size ranges from 76.2K (English-Russian) to

2http://opus.nlpl.eu/OpenSubtitlesfv2018.php
3http://www.opensubtitles.org/
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Language Pair Lexicon Size | # Unique Translations | Avg. # Translations Per Word | # Sentences Used
Arabic-English 335.5K 86.0K 9.7 29.8M
English-Arabic 97.6K 191.6K 9.5 29.8M
S.Chinese-English 214.0K 87.0K 9.5 11.2M
English-S.Chinese 101.6K 139.1K 9.4 11.2M
T.Chinese-English 201.7K 72.5K 9.5 4.8M
English-T.Chinese 85.8K 119.7K 9.2 4.8M
French-English 92.1K 59.1K 9.8 41.8M
English-French 72.1K 71.4K 9.7 41.8M
Italian-English 111.5K 63.9K 9.7 35.2M
German-English 127.0K 64.8K 9.7 22.5M
English-German 73.6K 95.9K 9.6 22.5M
English-Italian 75.4K 83.9K 9.6 352M
Japanese-English 83.3K 75.2K 9.2 2.1M
English-Japanese 102.1K 63.8K 9.3 2.1M
Korean-English 87.2K 75.8K 9.3 1.4M
English-Korean 105.5K 69.8K 9.1 1.4M
Russian-English 213.4K 68.7K 9.7 25.9M
English-Russian 76.2K 155.8K 9.5 25.9M
Spanish-English 107.1K 60.8K 9.8 61.4M
English-Spanish 73.9K 82.5K 9.7 61.4M
Thai-English 155.6K 84.2K 9.4 3.3M
English-Thai 109.2K 99.2K 9.2 3.3M
Vietnamese-English 96.6K 76.6K 9.0 3.5M
English-Vietnamese 96.4K 75.3K 9.3 3.5M

Table 2: Summary statistics for the word2word dataset between selected languages and English. Lexicon size refers to the
number of unique words in source language for which translations exist. S.Chinese and T.Chinese refer to simplified and

traditional Chinese, respectively.

335.5K (Arabic-English), demonstrating the broad cover-
age of words in the dataset. For each of these words, the
dataset includes an average of 9 or more highest-scored
translations according to our extraction approach described
in Section Lexicon size for all language pairs can be
found in Appendix [B]

2.2. Examples

In Table |3} we present samples of top-5 word translations
in the English<+French and English<>Korean bilingual lex-
icons. For each language pair, we randomly sample five
words from the top-10,000 frequent words in the source
lexicon and provide their top-5 word translations. This is to
show translations for words that are relatively more likely
used than others in typical discourse.

3. Methodology

3.1. Bilingual Lexicon Extraction

Bilingual lexicon extraction (BLE) is a classical natural lan-
guage task where the goal is to find word-level correspon-
dences from a (parallel) corpus. There are many differ-
ent approaches to BLE, such as word alignment methods
(Brown et al., 1993} [Vogel et al., 1996; Koehn et al., 2007)
and cross-lingual word representations (Ruder et al., 2017;
Mikolov et al., 2013a; |Liu et al., 2013 |(Gouws et al., 2015}
Conneau et al., 2017).

Among them, we focus on simple approaches that can
work well with various sizes of parallel corpora that are

present in OpenSubtitles2018, which ranges from 129 sen-
tence pairs in Armenian-Indonesian to 61M sentence pairs
in English-Spanish. In particular, we avoid methods that
require high-resource parallel corpora (e.g., neural machine
translation) or external corpora (e.g., unsupervised or semi-
supervised cross-lingual word embeddings). Also, since
bilingual word-to-word mappings are hardly one-to-one
(Fung, 1998} |Somers, 2001} Levy et al., 2017), we consider
methods that yield relevance scores between every source-
target word pair, such that we can extract not just one but
the top-k correspondences. For these reasons, we consider
approaches based on (monolingual and cross-lingual) co-
occurrence counts: co-occurrences, pointwise mutual in-
formation (PMI), and co-occurrences with controlled pre-
dictive effects (CPE).

3.1.1. Co-occurrences

The simplest baseline for our goal is to compute the co-
occurrences between each source word z and target word
y. For each source word x, we can score any target word y
based on the conditional probability p(y|z) x p(z,y):

_ply)  #(z,y)

o)~ g < Hew

where #(-) denotes the number of (co-)occurrence counts
of the word or word pair across the parallel corpus. The top-
k translations of source word x can be computed as the top-
k target words with respect to their co-occurrence counts
with z.
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Word Top-5 Translations
English French
exceptional | exceptionnel exceptionnelle exceptionnels exceptionnelles exception
whether plaise décider importe question savoir
committee comité éthique accueil commission central
clown clown clowns bouffon guignol cirque
spread |dispersez-vous propagation répandre propager répandu
French English
hobbs hobbs abigail garret jacob garrett
mélé mixed involved middle part murder
établir establish establishing set able connection
taule slammer joint locked jail prison
chaussettes socks sock stockings pairs underwear
English Korean
slaughtered Ak 5 A 23l A5
shadow 93 s gk A5 27
Charles bl e Az Charles Zxy AFE
concerns A7 9 S &3t g
reverse o H3A &3 ARz =g
Korean English
ol arm Thank thrilled killing NamWon
A}o] shark Shark sharks Tank Tiger
= rat rats mouse mice squeeze
7174 o] willing happy pleasure gladly willingly
o Some kind which any anything

Table 3: Randomly sampled words and their top-5 translations in the English<+French and English«+Korean word2word
bilingual lexicons. Top-5 translations are listed in the descending order of scores.

3.1.2. Pointwise Mutual Information

Another simple baseline is pointwise mutual information
(PMI), which further accounts for the monolingual fre-
quency of a candidate target word y:

o PE:Y)
PMI(z.9) = 108 oy o(y) @
~lo _#H@.y) x log #(x,y) —lo

Compared to the co-occurrence model in (T)), PMI can help
prevent stop words from obtaining high scores.

The use of PMI has been connected to the skip-gram with
negative sampling (SGNS) (Levy and Goldberg, 2014)
model of word2vec (Mikolov et al., 2013b). PMI can also
be interpreted as a conditional version of TF-IDF (Fung,
1998)).

3.1.3. Controlled Predictive Effects

While conditional probability and PMI are proportional to
cross-lingual co-occurrence counts, they can fail to distin-
guish exactly which source word in the sentence is the most
predictive of the corresponding target word in the translated
sentence. For example, given a English-French pair (the ap-
ple juice, la jus de pomme), these baseline methods cannot
isolate the effect of apple, as opposed to the and juice, on
pomme.

To deal with this issue, we add a correction term that av-
erages the probability of seeing y given a confounder x’

English French

A

0000

>
o

Figure 1: A schematic graphical model of English and
French words. Co-occurrence and PMI models focus on
the relationship from apple to pomme (A). CPE further con-
trols for the confounding effect of other collocates like the
(B) and juice (C).

in the source language, i.e. p(y|z’). This probability is
then weighted by the probability of actually seeing that con-
founder, i.e. p(z'|x). This correction can be explained in-
tuitively by the dashed arrows in the schematic graphical
model in Figure|[T}- it reflects the conditional independence
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Metric (%)‘ Method |en-es es-en|en-fr fr-en|en-de de-en|en-ru ru-en|en-zh zh-en|en-it it-en
# Sentence Pairs 61.4M 41.8M 22.5M 25.9M 4.8M 35.2M
Co-occurrence| 22.3 25.5|18.7 219|105 235 | 33 114 | 54 3.8 (249 24.1

P@1 PMI 7277 723739 72.1]62.1 719|328 55.0|24.8 33.1 |68.1 69.5
MUSE 81.7 83.3|823 824|74.0 724|517 637|427 37.5|66.2 58.7

CPE 82.4 79.5|83.6 80.7| 824 81.1|66.7 689 | 56.0 58.7 80.9 82.1

Co-occurrence| 67.8 71.4 |63.1 66.3| 63.7 65.5|523 51.8|46.0 363 |61.9 68.5

P@5 PMI 92.3 90.4 ({925 90.1| 905 88.1|74.1 79.5]|58.7 66.1 903 91.1
MUSE - - - - - - - - - - 1804 76.5

CPE 90.1 88.4(91.7 89.3|90.7 87.7|79.5 80.0 | 73.5 72.8 |89.8 89.9

Table 4: Precision (%) on 1,500 word translations (test split from MUSE) for language pairs evaluated in the MUSE paper.
P@1 and P@5 denote the precision of top-1 and top-5 predictions, respectively. The ISO 639-1 language codes are used
(en: English, es: Spanish, fr: French, de: German, ru: Russian, zh: traditional Chinese, it: Italian).

relationships between words that the baseline models do
not. We call the resulting approach as the method of con-
trolled predictive effects (CPE).

Formally, we define the corrected CPE score as follows:

CPE(y |z) =p(y|z) - > p(y |2 )p(a’ | z)
x'eX

z'eX

3

where X is the source vocabulary and CPE,|,,(z") denotes
the CPE term of any other source word z’ when predicting
y from z. Formally, this term is defined as

CPE,,(z") = p(y | #,2") —ply | 2')

This CPE term measures the effect of additionally seeing
x (apple) when predicting y (pomme), after controlling for
the effect of any other 2’ (the), which the model views as
a confounder. If CPE,|,(2') = 0, then z 1l y | ', mean-
ing that after observing a confounder x’, x is no longer re-
lated to y. The CPE term for each confounder z’ is then
marginalized over all possible confounders to give a fi-
nal score, weighted by the probability of seeing that con-
founder in a sentence with =. Note that CPE,,(z) = 0,
meaning that, after seeing © when predicting y, there is no
additional effect by seeing x (again).

In practice, summing the CPE scores over all words in the
source vocabulary can be inefficient. Because many of the
(unrelated) words in the vocabulary do not play a role in the
confounding, we select the top-m source words with the
highest co-occurrence counts and correct for their effects
only. We used m = 5,000 in our experiments and found
that using a larger m did not make a meaningful difference
on the quality of top-1 and top-5 correspondences.

@

3.1.4. Evaluation on MUSE Bilingual Dictionaries

We first evaluate the methods on the same ground-truth
bilingual dictionaries as MUSEﬂ a cross-lingual neural em-
bedding model. Each dictionary contains 1,500 words and
their translations obtained using an internal translation tool
from the authors. Although we consider MUSE’s perfor-
mance as a reference, we do note that it is difficult to make

4 .
https://github.com/facebookresearch/MUSE

a fair comparison against MUSE: the count-based meth-
ods use parallel corpora from OpenSubtitles2018, while
MUSE embeddings are instead learned from monolingual
Wikipedia data (for its unsupervised version) and an addi-
tional 5,000-word bilingual lexicon (for its supervised ver-
sion).

In Table ] we report the top-1 and top-5 precision scores
(P@1 and P@5, respectively) of the count-based meth-
ods and MUSE embeddings across twelveE] directed lan-
guage pairs that were used to evaluate MUSE in its paper
(Conneau et al., 2017): English-Spanish, English-French,
German-English, English-Russian, English-Chinese (tradi-
tional), and English-Italian, all in both directions. For
MUSE, we report its best reported performance (only top-1
precision is reported, except for en-it and it-en) among its
supervised and unsupervised variants.

Our main finding is that the CPE method consistently and
significantly outperforms the co-occurrence and PMI base-
lines at top-1 precision score. We also find that CPE out-
performs MUSE on most of the reported language pairs,
especially when the number of sentence pairs is compar-
atively small (e.g., 13-21% improvement between English
and Chinese, for which there are about 6% as many sen-
tence pairs as those between English and Spanish). In
terms of the top-5 precision score, the CPE method per-
forms comparatively well with the PMI method, which per-
forms better on some of the selected language pairs. Com-
pared to the CPE method, we suspect that the PMI method
overly favors rare words because it directly penalizes word
counts, so that the most likely correspondence (which isn’t
necessarily the least common) is pushed back to later ranks.
More examples can be found in Appendix

3.1.5. Evaluation on Non-European Languages

Next, we compare the performance of co-occurrence, PMI,
and CPE methods on language pairs between English and
some of the major non-European languages: Arabic, sim-
plified Chinese, Japanese, Korean, Thai, and Vietnamese.
As we detail in Section [3.2] these languages commonly
require special word segmentation techniques. Also, they

>The MUSE paper also presents the results on English-
Esperanto and Esperanto-English, but the ground-truth dictio-
nary is no longer available online. See https://github.com/
facebookresearch/MUSE/issues/34,
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Metric (%)‘ Method |en-ar ar-en|en-zh zh-en|en-ja ja-en|en-ko ko-en|en-th th-en|en-vi vi-en
# Sentence Pairs 29.8M 11.2M 2.1M 1.4M 3.3M 3.5M

Co-occurrence| 23.3 1.1 | 21 04 | 50 03 (229 04 | 06 05|40 2.1

P@1 PMI 133 20.7| 85 20.6 335 167|140 149|183 134|205 165
CPE 303 279|483 343|493 404 | 39.1 38.1 |48.1 31.0|30.0 37.7

Co-occurrence| 46.9 35.2 | 50.5 27.1 |30.7 29.1 | 36.6 269 |55.6 244|393 283

P@5 PMI 57.0 61.6 | 787 65.3 | 640 605|488 577|645 52.7|50.1 60.4
CPE 58.1 505|809 60.1]66.8 664|549 60.0 |69.3 53.1|489 62.2

Table 5: Precision (%) on 2,000 word translations between six non-European languages and English (source words ran-
domly sampled from OpenSubtitles2018; gold labels taken from Google Translate). P@1 and P@5 denote the precision of
top-1 and top-5 predictions, respectively. The ISO 639-1 language codes are used (ar: Arabic, zh: simplified Chinese, ja:

Japanese, ko: Korean, th: Thai, vi: Vietnamese).

Language Python Tokenizer Module Reference

Arabic pyarabic.araby (Zerrouki, 2010)

Chinese (Simplified) |Mykytea (Neubig et al., 2011)

Chinese (Traditional) | jieba n/a

Japanese Mykytea (Neubig et al., 2011)

Korean konlpy.tag.Mecab (Park and Cho, 2014)

Thai pythainlp n/a

Vietnamese pyvi n/a

Others nltk.tokenize.TokTokTokenizer |(Bird et al., 2009; Dehdari, 2014)

Table 6: List of Python tokenizer modules used for each language.

typically have relatively smaller amounts of sentences
paired with English, making it more challenging for the
models to achieve high precision.

Unfortunately, we learned in our early experiments that the
MUSE test set translations are far from being perfect for
these non-European languages. For example, in English-
Vietnamese, we found that 80% of the 1,500 word pairs in
the test set had the same word twice as a pair (e.g. crimson-
crimson, Suzuki-Suzuki, Randall-Randall). Thus, for the
non-European languages, we instead evaluate on transla-
tions using Google Translateﬂ a proprietar web software
for machine translation. To construct this test set, we first
sample 2,000 words from the monolingual word distribu-
tion of that language pair’s OpenSubtitles2018 parallel cor-
pus. We use temperature-based smoothing (7" = 1.25) for
the distribution to include more low-frequency words in the
test set and also filter out words that include characters not
from its alphabet (e.g., Charles in Korean). Then, for each
of the 2,000 sampled words, we retrieve “common” and
“uncommon” translation from Google Translate and treat
them as ground truth labels.

The results are summarized in Table [5| Here, we see more
evidence that the CPE method performs significantly better
than both the co-occurrence and the PMI methods in top-

6https ://translate.google.com/

"We note that, because Google Translate is proprietary and not
open-source, its results may change depending on the time of ac-
cess. Our evaluations use Google Translate results accessed on
July 19, 2019.

8For word translations, Google Translate categorizes its trans-
lations to three categories: common, uncommon, and rare transla-
tions.

1 precision as well as top-5 precision. The performance
gap tends to be larger both when the language’s words are
not whitespace-separated (e.g., Chinese and Japanese) and
when there are a relatively small number of paired sen-
tences (e.g., Korean and Thai). Based on the results from
Tables 4 and 5] we employ the CPE method to produce the
word2word dataset.

3.2. Word Segmentation

Since many of the 62 languages we consider are sensitive
to word segmentation, we use language-specific tokeniza-
tion tools when necessary. Specifically, we use publicly
available tokenization packages for morphologically com-
plex languages, i.e., Arabic (Attia, 2007) and Korean, and
languages in which words are not separated by spaces, i.e.,
Chinese, Japanese, Thai, and Vietnameseﬂ For all other
languages, we use the tok-tok tokenizer (Dehdari, 2014)
implemented in NLTK (Bird et al., 2009). Table [6| summa-
rizes the tokenization packages we used in the word2word
dataset and their references.

4. The word2word Python Interface

As part of releasing the dataset and making it easily acces-
sible and reproducible, we also introduce the word2word
Python package. The open-source package provides an
easy-to-use interface for both downloading and accessing
bilingual lexicons for any of the 3,564 language pairs and
building a custom bilingual lexicon on other language pairs
for which there is a parallel corpus. Our source code is
available on PyPi as https://pypi.org/project/
word2word/L.

?Spaces in Vietnamese delimit syllables.
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4.1. Implementation

The word2word package is built entirely using Python 3.
The package includes scripts for downloading and pre-
processing parallel corpora from OpenSubtitles2018, in-
cluding word segmentation, and for computing the CPE
scores for all available word tokens within each parallel
corpus. After processing, the package stores the bilingual
lexicon as a Python pickle file, typically sized a few
megabytes per language pair. The pickle file contains
a Python dictionary that maps each source word to a list
of top-10 word correspondences in O(1) time. This allows
bilingual lexicons to be portable and accessible.

4.2. Usage

The Python interface provides a simple API to download
and access the word2word dataset. As demonstrated in Fig-
ure 2] word translations for any query word can be retrieved
as a list with a few lines of Python code.

from word2word import Word2word

en2fr = Word2word('en',
print (en2fr ('apple'))
# ['pomme', 'pommes',
# ‘'tartes', 'fleurs']

'fr‘)

'pommier"',

Figure 2: The word2word Python interface for retrieving
word translations.

4.3. Building a Custom Bilingual Lexicon

The word2word package also allows training a custom
bilingual lexicon using a different parallel corpus. This
can be useful in cases where there are larger and/or higher-
quality parallel corpora available for the language pair of
interest or when utilizing word translations for a particu-
lar domain (e.g., government, law, and medical). This pro-
cess can also be done using a few lines of Python code, as
demonstrated in Figure [3] For an OpenSubtitles2018 cor-
pus of a million parallel sentences, building a bilingual lex-
icon takes approximately 10 minutes using 8 CPUs.

from word2word import Word2word

my_en2fr = Word2word.make (
'en', 'fr', 'data/pubmed.en-fr'
)
# ...building...done!
print (my_en2fr ('mitochondrial'))
# ['mitochondriale', 'mitochondriales',
# 'mitochondrial', 'cytopathies',
# 'mitochondriaux']

Figure 3: The word2word Python interface for building a
custom bilingual lexicon. Once built, the lexicon can be
accessed in the same way as done in Figure[2]

5. Conclusion

In this paper, we present the word2word dataset, a pub-
licly available collection of bilingual lexicons for 3,564

language pairs that are extracted from OpenSubtitles2018.
The bilingual lexicons have high coverage (up to hundreds
of thousands words) for many language pairs and provide
word translations of similar or better quality compared to
those from a state-of-the-art embedding model. We also re-
lease the word2word Python package, with which the user
can easily access the dataset or build a custom lexicon for
different parallel corpora. We hope that the dataset and
its Python interface can facilitate research on improving
cross-lingual models, including machine translation mod-
els (Ramesh and Sankaranarayanan, 2018} |Gu et al., 2019)
and cross-lingual word embeddings (Conneau et al., 2017
Ruder et al., 2017).
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A Sample Translations from Different
Extraction Methods

In Table[7} we compare the BLE methods described in Sec-
tion 3.1 from illustrative examples of their extracted bilin-
gual lexicons for English to Spanish and English to Simpli-
fied Chinese. These examples show that the CPE approach
provides the correct correspondence as its top-1 transla-
tion in both languages, while the PMI approach seems to
excessively favor rarer words among the co-occurrences.
As illustrated in the English-Chinese example, this can be
particularly problematic with languages such as Chinese,
where word segmentation is highly nontrivial. The co-
occurrence method prefers stop words that are frequent
over the entire document, rather than the corresponding
words.

Al. Co-occurrences

The baseline co-occurrence model performs poorly in both
experiments (Tables 4] and [5). As exemplified in Table
we find that the top-5 predictions in many cases are primar-
ily stop words, such as la (the), de (of), and que (that) in
Spanish and Y (of), i (you), and F (I, me) in Chinese,
because they frequently occur in any sentence, regardless
of context.

A2. Comparing PMI and CPE

Comparing translations using PMI and CPE, we find in Ta-
ble [7]that PMI favors less frequent words excessively. This
results in two kinds of error cases: (a) when PMI overem-
phasizes rare words in the target vocabulary, e.g. solar-
izacion for library in en-es, and (b) when PMI misses cor-
rect words in the target language that are relatively fre-
quently used, e.g. bien for good in en-es. Another con-
sequence is that PMI prefers less common variants of the
same word, in particular conjugations and past/future tenses
as well as typos, when two forms of the same word have
comparable counts (e.g. obligados preferred over obligado
in Spanish for the English obliged).

Because of the second reason, we also find that word2word
tends to be more robust to tokenization issues, which are
common in non-whitespace-separated languages like Chi-
nese. For example, since the tokenizer failed to separate 5K
FF M (open mouth), which in general occurs far less fre-
quently than § (mouth), PMI favors 5K M over the more
frequent M as its first choice.

B Full Dataset Statistics

In Table@ we list the sizes of all 3,564 bilingual lexicons in
the word2word dataset. By size, we refer to the number of
source words for which translations exist. For each source
word, we extract up to 10 (9+ on average) most likely trans-
lations according to the CPE method described in[3.1.3]
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English| Methods Top-5 Translations in Spanish Top-5 Translations in Simplified Chinese
Co-occurrence de la que el y ] B T b E34
its PMI propia sus su tierra  poder B BURF K oORE £
CPE su sus propia tierra  cada B s El=! K ik
Co-occurrence que de no bien es i 0] R F R

good PMI buenas noches  buenos buena buen |12 W% IHHE BLET B#E

CPE bien buena  buenas buen bueno| ¥ ] AEE MR BEAF

Co-occurrence la boca de que no Y R F* wE T

mouth PMI boca cerrada pico  mantén abre | FKFME WEE  KEEE KW BEE

CPE boca cerrada abre  palabras labios L WE O OBEBE AL AR
Co-occurrence la biblioteca de en que B FiE Y F* 7 R

library PMI solarizacién biblioteca soltindola library librerfa| & EHE EEE MPE BF
CPE biblioteca la libreria  piiblica tarjetas| EIHIE  F5E B HEHEE =%

Table 7: Selected word2word translations of English words into Spanish and simplified Chinese. Top-5 predictions are
listed in the decreasing order of the model’s scores. Boldfaced target words indicate correct translations.
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