word2word: A Collection of Bilingual Lexicons for 3,564 Language Pairs

Yo Joong Choe^{*}, Kyubyong Park^{*}, Dongwoo Kim^{*}

Kakao Brain

20, Pangyoyeok-ro 241, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea {yj.choe, kyubyong.park, dongwoo.kim}@kakaobrain.com

Abstract

We present *word2word*, a publicly available dataset and an open-source Python package for cross-lingual word translations extracted from sentence-level parallel corpora. Our dataset provides top-k word translations in 3,564 (directed) language pairs across 62 languages in OpenSubtitles2018 (Lison et al., 2018). To obtain this dataset, we use a count-based bilingual lexicon extraction model based on the observation that not only source and target words but also source words themselves can be highly correlated. We illustrate that the resulting bilingual lexicons have high coverage and attain competitive translation quality for several language pairs. We wrap our dataset and model in an easy-to-use Python library, which supports downloading and retrieving top-k word translations in any of the supported language pairs as well as computing top-k word translations for custom parallel corpora.

Keywords: bilingual lexicon, word translation, Python toolkit

1. Introduction

Bilingual lexicons (Fung, 1998) are valuable resources for cross-lingual tasks, including low-resource machine translation (Ramesh and Sankaranarayanan, 2018; Gū et al., 2019) and cross-lingual word embeddings (Ruder et al., 2017). However, it is often difficult to find a large enough set of bilingual lexicons that is freely and readily available across various language pairs (Levy et al., 2017). For example, standard bilingual dictionaries like Wiktionary¹ often do not explicitly provide word correspondences but refers or redirects to the query word's dictionary form:

- **Query:** *travaillé* (French for 'worked') **Result:** (verb) past principle of *travailler* 'work'
- Query: 먹었다 (Korean for 'ate') Result: redirects to 먹다 'eat'

Not only does this make it tedious to find word-level correspondences across many query words, this is particularly problematic when we try to find word correspondences for languages where some dictionary forms are rarely used in ordinary discourse, such as the case of 먹다 in the Korean language.

While the task of bilingual lexicon extraction (BLE) has been popular in both early and recent literature, spanning from count-based approaches (Fung, 1998; Vulić and Moens, 2013; Liu et al., 2013) to using cross-lingual word embeddings (Ruder et al., 2017; Mikolov et al., 2013a; Gouws et al., 2015; Conneau et al., 2017; Levy et al., 2017; Artetxe et al., 2018; Artetxe et al., 2019), few were focused on building high-coverage bilingual lexicons across many language pairs, possibly including non-Indo-European languages. In fact, many of the recent studies and their accompanying packages (Conneau et al., 2017; Artetxe et al., 2018; Glavaš et al., 2019) aim at evaluating cross-lingual word embeddings, so that they involve at most 10-100s of language pairs and 1-5K words for each pair.

# Languages	62
# Language Pairs	3,564
Avg. Lexicon Size	127,023
Avg. # Translations Per Word	8.8

Table 1: Overview of the word2word dataset.

Motivated by the lack of publicly available and highcoverage bilingual lexicons across diverse languages, we present *word2word*, a large collection of bilingual lexicons for 3,564 language pairs across 62 languages that is wrapped around an open-source and easy-to-use Python interface. We extract top-*k* bilingual word correspondences from all parallel corpora provided by OpenSubtitles2018² (Lison et al., 2018), using a count-based model that takes into account both monolingual and cross-lingual co-occurrences. The package also provides interface for obtaining bilingual lexicons for custom parallel corpora in any other language pairs and domains not covered by Open-Subtitles2018.

2. The word2word Dataset

2.1. Data Statistics

The *word2word* dataset spans across 3,564 directed language pairs between 62 languages in the OpenSubtitles2018 dataset, a collection of translated movie subtitles extracted from OpenSubtitles.org³. By design, our methodology covers 100% of words present in the source sentences, making the lexicon size much larger than existing bilingual dictionaries. The lexicon also contains up to top-10 word translations in the target language. We provide an overview of the entire dataset in Table 1.

In Table 2, we provide summary statistics for bilingual lexicons between English and some of the major languages (both European and non-European). For each pair, the lexicon size ranges from 76.2K (English-Russian) to

^{*}Equal contribution.

¹https://en.wiktionary.org

²http://opus.nlpl.eu/OpenSubtitles-v2018.php ³http://www.opensubtitles.org/

Language Pair	Lexicon Size	# Unique Translations	Avg. # Translations Per Word	# Sentences Used
Arabic-English	335.5K	86.0K	9.7	29.8M
English-Arabic	97.6K	191.6K	9.5	29.8M
S.Chinese-English	214.0K	87.0K	9.5	11.2M
English-S.Chinese	101.6K	139.1K	9.4	11.2M
T.Chinese-English	201.7K	72.5K	9.5	4.8M
English-T.Chinese	85.8K	119.7K	9.2	4.8M
French-English	92.1K	59.1K	9.8	41.8M
English-French	72.1K	71.4K	9.7	41.8M
Italian-English	111.5K	63.9K	9.7	35.2M
German-English	127.0K	64.8K	9.7	22.5M
English-German	73.6K	95.9K	9.6	22.5M
English-Italian	75.4K	83.9K	9.6	35.2M
Japanese-English	83.3K	75.2K	9.2	2.1M
English-Japanese	102.1K	63.8K	9.3	2.1M
Korean-English	87.2K	75.8K	9.3	1.4M
English-Korean	105.5K	69.8K	9.1	1.4M
Russian-English	213.4K	68.7K	9.7	25.9M
English-Russian	76.2K	155.8K	9.5	25.9M
Spanish-English	107.1K	60.8K	9.8	61.4M
English-Spanish	73.9K	82.5K	9.7	61.4M
Thai-English	155.6K	84.2K	9.4	3.3M
English-Thai	109.2K	99.2K	9.2	3.3M
Vietnamese-English	96.6K	76.6K	9.0	3.5M
English-Vietnamese	96.4K	75.3K	9.3	3.5M

Table 2: Summary statistics for the *word2word* dataset between selected languages and English. Lexicon size refers to the number of unique words in source language for which translations exist. S.Chinese and T.Chinese refer to simplified and traditional Chinese, respectively.

335.5K (Arabic-English), demonstrating the broad coverage of words in the dataset. For each of these words, the dataset includes an average of 9 or more highest-scored translations according to our extraction approach described in Section 3.1. Lexicon size for all language pairs can be found in Appendix B.

2.2. Examples

In Table 3, we present samples of top-5 word translations in the English \leftrightarrow French and English \leftrightarrow Korean bilingual lexicons. For each language pair, we randomly sample five words from the top-10,000 frequent words in the source lexicon and provide their top-5 word translations. This is to show translations for words that are relatively more likely used than others in typical discourse.

3. Methodology

3.1. Bilingual Lexicon Extraction

Bilingual lexicon extraction (BLE) is a classical natural language task where the goal is to find word-level correspondences from a (parallel) corpus. There are many different approaches to BLE, such as word alignment methods (Brown et al., 1993; Vogel et al., 1996; Koehn et al., 2007) and cross-lingual word representations (Ruder et al., 2017; Mikolov et al., 2013a; Liu et al., 2013; Gouws et al., 2015; Conneau et al., 2017).

Among them, we focus on simple approaches that can work well with various sizes of parallel corpora that are

present in OpenSubtitles2018, which ranges from 129 sentence pairs in Armenian-Indonesian to 61M sentence pairs in English-Spanish. In particular, we avoid methods that require high-resource parallel corpora (e.g., neural machine translation) or external corpora (e.g., unsupervised or semisupervised cross-lingual word embeddings). Also, since bilingual word-to-word mappings are hardly one-to-one (Fung, 1998; Somers, 2001; Levy et al., 2017), we consider methods that yield relevance scores between every sourcetarget word pair, such that we can extract not just one but the top-k correspondences. For these reasons, we consider approaches based on (monolingual and cross-lingual) cooccurrence counts: co-occurrences, pointwise mutual information (PMI), and co-occurrences with controlled predictive effects (CPE).

3.1.1. Co-occurrences

The simplest baseline for our goal is to compute the cooccurrences between each source word x and target word y. For each source word x, we can score any target word ybased on the conditional probability $p(y|x) \propto p(x, y)$:

$$p(y|x) = \frac{p(x,y)}{p(x)} \approx \frac{\#(x,y)}{\#(x)} \propto \#(x,y)$$
(1)

where $\#(\cdot)$ denotes the number of (co-)occurrence counts of the word or word pair across the parallel corpus. The topk translations of source word x can be computed as the topk target words with respect to their co-occurrence counts with x.

Word		Тор	-5 Translation	S	
English			French		
exceptional	exceptionnel	exceptionnelle	exceptionnels	exceptionnelles	exception
whether	plaise	décider	importe	question	savoir
committee	comité	éthique	accueil	commission	central
clown	clown	clowns	bouffon	guignol	cirque
spread	dispersez-vous	propagation	répandre	propager	répandu
French			English		
hobbs	hobbs	abigail	garret	jacob	garrett
mêlé	mixed	involved	middle	part	murder
établir	establish	establishing	set	able	connection
taule	slammer	joint	locked	jail	prison
chaussettes	socks	sock	stockings	pairs	underwear
English			Korean		
slaughtered	학살	도륙	도살	당했	살육
shadow	그림자	그늘	알맞	어둠	존재
Charles	찰스	제프리	Charles	조프리	램퍼트
concerns	걱정	우려	염려	관한	판단력
reverse	역	뒤집	후진	거꾸로	되돌리
Korean			English		
아유	arm	Thank	thrilled	killing	NamWon
상어	shark	Shark	sharks	Tank	Tiger
쥐	rat	rats	mouse	mice	squeeze
기꺼이	willing	happy	pleasure	gladly	willingly
어떤	Some	kind	which	any	anything

Table 3: Randomly sampled words and their top-5 translations in the English \leftrightarrow French and English \leftrightarrow Korean *word2word* bilingual lexicons. Top-5 translations are listed in the descending order of scores.

3.1.2. Pointwise Mutual Information

Another simple baseline is pointwise mutual information (PMI), which further accounts for the monolingual frequency of a candidate target word y:

$$\mathsf{PMI}(x,y) = \log \frac{p(x,y)}{p(x)p(y)}$$
(2)
$$\approx \log \frac{\#(x,y)}{\#(x)\#(y)} \propto \log \#(x,y) - \log \#(y)$$

Compared to the co-occurrence model in (1), PMI can help prevent stop words from obtaining high scores.

The use of PMI has been connected to the skip-gram with negative sampling (SGNS) (Levy and Goldberg, 2014) model of *word2vec* (Mikolov et al., 2013b). PMI can also be interpreted as a conditional version of TF-IDF (Fung, 1998).

3.1.3. Controlled Predictive Effects

While conditional probability and PMI are proportional to cross-lingual co-occurrence counts, they can fail to distinguish exactly which source word in the sentence is the most predictive of the corresponding target word in the translated sentence. For example, given a English-French pair (*the apple juice, la jus de pomme*), these baseline methods cannot isolate the effect of *apple*, as opposed to *the* and *juice*, on *pomme*.

To deal with this issue, we add a correction term that averages the probability of seeing y given a confounder x'

Figure 1: A schematic graphical model of English and French words. Co-occurrence and PMI models focus on the relationship from *apple* to *pomme* (\mathbf{A}). CPE further controls for the confounding effect of other collocates like *the* (\mathbf{B}) and *juice* (\mathbf{C}).

in the source language, i.e. p(y|x'). This probability is then weighted by the probability of actually seeing that confounder, i.e. p(x'|x). This correction can be explained intuitively by the dashed arrows in the schematic graphical model in Figure 1– it reflects the conditional independence

Metric (%)	Method	en-es	es-en	en-fr	fr-en	en-de	de-en	en-ru	ru-en	en-zh	zh-en	en-it	it-en	
# Sente	# Sentence Pairs		61.4M		41.8M		22.5M		25.9M		4.8M		35.2M	
	Co-occurrence	22.3	25.5	18.7	21.9	10.5	23.5	3.3	11.4	5.4	3.8	24.9	24.1	
P@1	PMI	72.7	72.3	73.9	72.1	62.1	71.9	32.8	55.0	24.8	33.1	68.1	69.5	
rwi	MUSE	81.7	83.3	82.3	82.4	74.0	72.4	51.7	63.7	42.7	37.5	66.2	58.7	
	CPE	82.4	79.5	83.6	80.7	82.4	81.1	66.7	68.9	56.0	58.7	80.9	82.1	
	Co-occurrence	67.8	71.4	63.1	66.3	63.7	65.5	52.3	51.8	46.0	36.3	61.9	68.5	
P@5	PMI	92.3	90.4	92.5	90.1	90.5	88.1	74.1	79.5	58.7	66.1	90.3	91.1	
res	MUSE	-	-	-	-	-	-	-	-	-	-	80.4	76.5	
	CPE	90.1	88.4	91.7	89.3	90.7	87.7	79.5	80.0	73.5	72.8	89.8	89.9	

Table 4: Precision (%) on 1,500 word translations (test split from MUSE) for language pairs evaluated in the MUSE paper. P@1 and P@5 denote the precision of top-1 and top-5 predictions, respectively. The ISO 639-1 language codes are used (en: English, es: Spanish, fr: French, de: German, ru: Russian, zh: traditional Chinese, it: Italian).

relationships between words that the baseline models do not. We call the resulting approach as the method of controlled predictive effects (CPE).

Formally, we define the corrected CPE score as follows:

$$CPE(y \mid x) = p(y \mid x) - \sum_{x' \in \mathcal{X}} p(y \mid x')p(x' \mid x)$$
$$= \sum_{x' \in \mathcal{X}} CPE_{y|x}(x')p(x' \mid x)$$
(3)

where \mathcal{X} is the source vocabulary and $CPE_{y|x}(x')$ denotes the CPE term of any other source word x' when predicting y from x. Formally, this term is defined as

$$\mathsf{CPE}_{y|x}(x') = p(y \mid x, x') - p(y \mid x') \tag{4}$$

This CPE term measures the effect of additionally seeing x (apple) when predicting y (pomme), after controlling for the effect of any other x' (the), which the model views as a confounder. If $CPE_{y|x}(x') = 0$, then $x \perp y \mid x'$, meaning that after observing a confounder x', x is no longer related to y. The CPE term for each confounder x' is then marginalized over all possible confounders to give a final score, weighted by the probability of seeing that confounder in a sentence with x. Note that $CPE_{y|x}(x) = 0$, meaning that, after seeing x when predicting y, there is no additional effect by seeing x (again).

In practice, summing the CPE scores over all words in the source vocabulary can be inefficient. Because many of the (unrelated) words in the vocabulary do not play a role in the confounding, we select the top-m source words with the highest co-occurrence counts and correct for their effects only. We used m = 5,000 in our experiments and found that using a larger m did not make a meaningful difference on the quality of top-1 and top-5 correspondences.

3.1.4. Evaluation on MUSE Bilingual Dictionaries

We first evaluate the methods on the same ground-truth bilingual dictionaries as MUSE⁴, a cross-lingual neural embedding model. Each dictionary contains 1,500 words and their translations obtained using an internal translation tool from the authors. Although we consider MUSE's performance as a reference, we do note that it is difficult to make a fair comparison against MUSE: the count-based methods use parallel corpora from OpenSubtitles2018, while MUSE embeddings are instead learned from monolingual Wikipedia data (for its unsupervised version) and an additional 5,000-word bilingual lexicon (for its supervised version).

In Table 4, we report the top-1 and top-5 precision scores (P@1 and P@5, respectively) of the count-based methods and MUSE embeddings across twelve5 directed language pairs that were used to evaluate MUSE in its paper (Conneau et al., 2017): English-Spanish, English-French, German-English, English-Russian, English-Chinese (traditional), and English-Italian, all in both directions. For MUSE, we report its best reported performance (only top-1 precision is reported, except for en-it and it-en) among its supervised and unsupervised variants.

Our main finding is that the CPE method consistently and significantly outperforms the co-occurrence and PMI baselines at top-1 precision score. We also find that CPE outperforms MUSE on most of the reported language pairs, especially when the number of sentence pairs is comparatively small (e.g., 13-21% improvement between English and Chinese, for which there are about 6% as many sentence pairs as those between English and Spanish). In terms of the top-5 precision score, the CPE method performs comparatively well with the PMI method, which performs better on some of the selected language pairs. Compared to the CPE method, we suspect that the PMI method overly favors rare words because it directly penalizes word counts, so that the most likely correspondence (which isn't necessarily the least common) is pushed back to later ranks. More examples can be found in Appendix A

3.1.5. Evaluation on Non-European Languages

Next, we compare the performance of co-occurrence, PMI, and CPE methods on language pairs between English and some of the major non-European languages: Arabic, simplified Chinese, Japanese, Korean, Thai, and Vietnamese. As we detail in Section 3.2., these languages commonly require special word segmentation techniques. Also, they

⁵The MUSE paper also presents the results on English-Esperanto and Esperanto-English, but the ground-truth dictionary is no longer available online. See https://github.com/ facebookresearch/MUSE/issues/34.

⁴https://github.com/facebookresearch/MUSE

Metric (%)	Method	en-ar	ar-en	en-zh	zh-en	en-ja	ja-en	en-ko	ko-en	en-th	th-en	en-vi	vi-en	
# Sentence Pairs		29.8M		11.2M		2.1	2.1M		1.4M		3.3M		3.5M	
	Co-occurrence	23.3	1.1	2.1	0.4	5.0	0.3	22.9	0.4	0.6	0.5	4.0	2.1	
P@1	PMI	13.3	20.7	8.5	20.6	33.5	16.7	14.0	14.9	18.3	13.4	20.5	16.5	
	CPE	30.3	27.9	48.3	34.3	49.3	40.4	39.1	38.1	48.1	31.0	30.0	37.7	
	Co-occurrence	46.9	35.2	50.5	27.1	30.7	29.1	36.6	26.9	55.6	24.4	39.3	28.3	
P@5	PMI	57.0	61.6	78.7	65.3	64.0	60.5	48.8	57.7	64.5	52.7	50.1	60.4	
	CPE	58.1	50.5	80.9	60.1	66.8	66.4	54.9	60.0	69.3	53.1	48.9	62.2	

Table 5: Precision (%) on 2,000 word translations between six *non-European* languages and English (source words randomly sampled from OpenSubtitles2018; gold labels taken from Google Translate). P@1 and P@5 denote the precision of top-1 and top-5 predictions, respectively. The ISO 639-1 language codes are used (ar: Arabic, zh: simplified Chinese, ja: Japanese, ko: Korean, th: Thai, vi: Vietnamese).

Language	Python Tokenizer Module	Reference
Arabic	pyarabic.araby	(Zerrouki, 2010)
Chinese (Simplified)	Mykytea	(Neubig et al., 2011)
Chinese (Traditional)	jieba	n/a
Japanese	Mykytea	(Neubig et al., 2011)
Korean	konlpy.tag.Mecab	(Park and Cho, 2014)
Thai	pythainlp	n/a
Vietnamese	pyvi	n/a
Others	nltk.tokenize.TokTokTokenizer	(Bird et al., 2009; Dehdari, 2014)

Table 6: List of Python tokenizer modules used for each language.

typically have relatively smaller amounts of sentences paired with English, making it more challenging for the models to achieve high precision.

Unfortunately, we learned in our early experiments that the MUSE test set translations are far from being perfect for these non-European languages. For example, in English-Vietnamese, we found that 80% of the 1,500 word pairs in the test set had the same word twice as a pair (e.g. crimsoncrimson, Suzuki-Suzuki, Randall-Randall). Thus, for the non-European languages, we instead evaluate on translations using Google Translate⁶, a proprietary⁷ web software for machine translation. To construct this test set, we first sample 2,000 words from the monolingual word distribution of that language pair's OpenSubtitles2018 parallel corpus. We use temperature-based smoothing (T = 1.25) for the distribution to include more low-frequency words in the test set and also filter out words that include characters not from its alphabet (e.g., Charles in Korean). Then, for each of the 2,000 sampled words, we retrieve "common" and "uncommon" translations⁸ from Google Translate and treat them as ground truth labels.

The results are summarized in Table 5. Here, we see more evidence that the CPE method performs significantly better than both the co-occurrence and the PMI methods in top1 precision as well as top-5 precision. The performance gap tends to be larger both when the language's words are not whitespace-separated (e.g., Chinese and Japanese) and when there are a relatively small number of paired sentences (e.g., Korean and Thai). Based on the results from Tables 4 and 5, we employ the CPE method to produce the *word2word* dataset.

3.2. Word Segmentation

Since many of the 62 languages we consider are sensitive to word segmentation, we use language-specific tokenization tools when necessary. Specifically, we use publicly available tokenization packages for morphologically complex languages, i.e., Arabic (Attia, 2007) and Korean, and languages in which words are not separated by spaces, i.e., Chinese, Japanese, Thai, and Vietnamese⁹. For all other languages, we use the tok-tok tokenizer (Dehdari, 2014) implemented in NLTK (Bird et al., 2009). Table 6 summarizes the tokenization packages we used in the *word2word* dataset and their references.

4. The word2word Python Interface

As part of releasing the dataset and making it easily accessible and reproducible, we also introduce the *word2word* Python package. The open-source package provides an easy-to-use interface for both downloading and accessing bilingual lexicons for any of the 3,564 language pairs and building a custom bilingual lexicon on other language pairs for which there is a parallel corpus. Our source code is available on PyPi as https://pypi.org/project/word2word/.

⁶https://translate.google.com/

⁷We note that, because Google Translate is proprietary and not open-source, its results may change depending on the time of access. Our evaluations use Google Translate results accessed on July 19, 2019.

⁸For word translations, Google Translate categorizes its translations to three categories: common, uncommon, and rare translations.

⁹Spaces in Vietnamese delimit syllables.

4.1. Implementation

The word2word package is built entirely using Python 3. The package includes scripts for downloading and preprocessing parallel corpora from OpenSubtitles2018, including word segmentation, and for computing the CPE scores for all available word tokens within each parallel corpus. After processing, the package stores the bilingual lexicon as a Python pickle file, typically sized a few megabytes per language pair. The pickle file contains a Python dictionary that maps each source word to a list of top-10 word correspondences in O(1) time. This allows bilingual lexicons to be portable and accessible.

4.2. Usage

The Python interface provides a simple API to download and access the *word2word* dataset. As demonstrated in Figure 2, word translations for any query word can be retrieved as a list with a few lines of Python code.

```
from word2word import Word2word
en2fr = Word2word('en', 'fr')
print(en2fr('apple'))
# ['pomme', 'pommes', 'pommier',
# 'tartes', 'fleurs']
```

Figure 2: The *word2word* Python interface for retrieving word translations.

4.3. Building a Custom Bilingual Lexicon

The *word2word* package also allows training a custom bilingual lexicon using a different parallel corpus. This can be useful in cases where there are larger and/or higherquality parallel corpora available for the language pair of interest or when utilizing word translations for a particular domain (e.g., government, law, and medical). This process can also be done using a few lines of Python code, as demonstrated in Figure 3. For an OpenSubtitles2018 corpus of a million parallel sentences, building a bilingual lexicon takes approximately 10 minutes using 8 CPUs.

```
from word2word import Word2word
```

Figure 3: The *word2word* Python interface for building a custom bilingual lexicon. Once built, the lexicon can be accessed in the same way as done in Figure 2.

5. Conclusion

In this paper, we present the *word2word* dataset, a publicly available collection of bilingual lexicons for 3,564 language pairs that are extracted from OpenSubtitles2018. The bilingual lexicons have high coverage (up to hundreds of thousands words) for many language pairs and provide word translations of similar or better quality compared to those from a state-of-the-art embedding model. We also release the *word2word* Python package, with which the user can easily access the dataset or build a custom lexicon for different parallel corpora. We hope that the dataset and its Python interface can facilitate research on improving cross-lingual models, including machine translation models (Ramesh and Sankaranarayanan, 2018; Gū et al., 2019) and cross-lingual word embeddings (Conneau et al., 2017; Ruder et al., 2017).

6. Bibliographical References

- Artetxe, M., Labaka, G., and Agirre, E. (2018). A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. In *Proceedings of the* 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 789– 798, Melbourne, Australia, July. Association for Computational Linguistics.
- Artetxe, M., Labaka, G., and Agirre, E. (2019). Bilingual lexicon induction through unsupervised machine translation. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 5002– 5007, Florence, Italy, July. Association for Computational Linguistics.
- Attia, M. A. (2007). Arabic tokenization system. In Proceedings of the 2007 workshop on computational approaches to semitic languages: Common issues and resources, pages 65–72. Association for Computational Linguistics.
- Bird, S., Klein, E., and Loper, E. (2009). *Natural language* processing with Python: analyzing text with the natural language toolkit. "O'Reilly Media, Inc.".
- Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. (1993). The mathematics of statistical machine translation: Parameter estimation. *Computational linguistics*, 19(2):263–311.
- Conneau, A., Lample, G., Ranzato, M., Denoyer, L., and Jégou, H. (2017). Word translation without parallel data. *arXiv preprint arXiv:1710.04087*.
- Dehdari, J. (2014). A Neurophysiologically-Inspired Statistical Language Model. Ph.D. thesis, The Ohio State University.
- Fung, P. (1998). A statistical view on bilingual lexicon extraction: from parallel corpora to non-parallel corpora. *Machine Translation and the Information Soup*, pages 1– 17.
- Glavaš, G., Litschko, R., Ruder, S., and Vulić, I. (2019). How to (properly) evaluate cross-lingual word embeddings: On strong baselines, comparative analyses, and some misconceptions. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 710–721, Florence, Italy, July. Association for Computational Linguistics.
- Gouws, S., Bengio, Y., and Corrado, G. (2015). Bilbowa: Fast bilingual distributed representations without word alignments. In Francis Bach et al., editors, *Proceedings*

of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 748–756, Lille, France, 07–09 Jul. PMLR.

- Gū, J., Shavarani, H. S., and Sarkar, A. (2019). Pointerbased fusion of bilingual lexicons into neural machine translation. *arXiv preprint arXiv:1909.07907*.
- Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., et al. (2007). Moses: Open source toolkit for statistical machine translation. In *Proceedings of the 45th annual meeting of the ACL on interactive poster and demonstration sessions*, pages 177–180. Association for Computational Linguistics.
- Levy, O. and Goldberg, Y. (2014). Neural word embedding as implicit matrix factorization. In *Advances in Neural Information Processing Systems*, pages 2177–2185.
- Levy, O., Søgaard, A., and Goldberg, Y. (2017). A strong baseline for learning cross-lingual word embeddings from sentence alignments. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, volume 1, pages 765–774.
- Lison, P., Tiedemann, J., and Kouylekov, M. (2018). Opensubtitles2018: Statistical rescoring of sentence alignments in large, noisy parallel corpora. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018).
- Liu, X., Duh, K., and Matsumoto, Y. (2013). Topic models + word alignment = a flexible framework for extracting bilingual dictionary from comparable corpus. In *Proceedings of the Seventeenth Conference on Computational Natural Language Learning*, pages 212–221, Sofia, Bulgaria, August. Association for Computational Linguistics.
- Mikolov, T., Le, Q. V., and Sutskever, I. (2013a). Exploiting similarities among languages for machine translation. *arXiv preprint arXiv:1309.4168*.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. In *Advances in neural information processing systems*, pages 3111– 3119.
- Neubig, G., Nakata, Y., and Mori, S. (2011). Pointwise prediction for robust, adaptable japanese morphological analysis. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short papers-Volume 2*, pages 529–533. Association for Computational Linguistics.
- Park, E. L. and Cho, S. (2014). Konlpy: Korean natural language processing in python. In *Proceedings of the* 26th Annual Conference on Human & Cognitive Language Technology, Chuncheon, Korea, October.
- Ramesh, S. H. and Sankaranarayanan, K. P. (2018). Neural machine translation for low resource languages using bilingual lexicon induced from comparable corpora. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, pages 112–119, New Orleans, Louisiana, USA, June. Association for

Computational Linguistics.

- Ruder, S., Vulić, I., and Søgaard, A. (2017). A survey of cross-lingual embedding models. *arXiv preprint arXiv:1706.04902*.
- Somers, H. (2001). Bilingual parallel corpora and language engineering. In *Proc. Anglo-Indian Workshop*" *Language Engineering for South-Asian languages*.
- Vogel, S., Ney, H., and Tillmann, C. (1996). Hmm-based word alignment in statistical translation. In *Proceed*ings of the 16th conference on Computational linguistics-Volume 2, pages 836–841. Association for Computational Linguistics.
- Vulić, I. and Moens, M.-F. (2013). Cross-lingual semantic similarity of words as the similarity of their semantic word responses. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 106–116, Atlanta, Georgia, June. Association for Computational Linguistics.
- Zerrouki, T. (2010). pyarabic, an arabic language library for python.

A Sample Translations from Different Extraction Methods

In Table 7, we compare the BLE methods described in Section 3.1. from illustrative examples of their extracted bilingual lexicons for English to Spanish and English to Simplified Chinese. These examples show that the CPE approach provides the correct correspondence as its top-1 translation in both languages, while the PMI approach seems to excessively favor rarer words among the co-occurrences. As illustrated in the English-Chinese example, this can be particularly problematic with languages such as Chinese, where word segmentation is highly nontrivial. The cooccurrence method prefers stop words that are frequent over the entire document, rather than the corresponding words.

A1. Co-occurrences

The baseline co-occurrence model performs poorly in both experiments (Tables 4 and 5). As exemplified in Table 7, we find that the top-5 predictions in many cases are primarily stop words, such as *la* (the), *de* (of), and *que* (that) in Spanish and 的 (of), 你 (you), and 我 (I, me) in Chinese, because they frequently occur in any sentence, regardless of context.

A2. Comparing PMI and CPE

Comparing translations using PMI and CPE, we find in Table 7 that PMI favors less frequent words excessively. This results in two kinds of error cases: (a) when PMI overemphasizes rare words in the target vocabulary, e.g. *solarización* for *library* in en-es, and (b) when PMI misses correct words in the target language that are relatively frequently used, e.g. *bien* for *good* in en-es. Another consequence is that PMI prefers less common variants of the same word, in particular conjugations and past/future tenses as well as typos, when two forms of the same word have comparable counts (e.g. *obligados* preferred over *obligado* in Spanish for the English *obliged*).

Because of the second reason, we also find that *word2word* tends to be more robust to tokenization issues, which are common in non-whitespace-separated languages like Chinese. For example, since the tokenizer failed to separate \Re \Re ^{$rmatheraref{m}$} (open mouth), which in general occurs far less frequently than \Re (mouth), PMI favors \Re \Re \Re over the more frequent \Re as its first choice.

B Full Dataset Statistics

In Table 8, we list the sizes of all 3,564 bilingual lexicons in the *word2word* dataset. By size, we refer to the number of source words for which translations exist. For each source word, we extract up to 10 (9+ on average) most likely translations according to the CPE method described in 3.1.3.

English	Methods	Т	op-5 Transl	ations in S	panish	Top-5 Tr	anslatio	ns in Sim	plified C	Chinese	
	Co-occurrence	de	la	que	el	У	的	它	了	是	我
its	PMI	propia	sus	su	tierra	poder	它	政府	国家	失去	由
	CPE	su	sus	propia	tierra	cada	它	将	自己	国家	中
	Co-occurrence	que	de	no	bien	es	好	的	你	我	很
good	PMI	buenas	noches	buenos	buena	buen	祝你好运	晚安	好消息	早上好	早安
	CPE	bien	buena	buenas	buen	bueno	好	很	不错	晚安	早上好
	Co-occurrence	la	boca	de	que	no	的	你	我	嘴	了
mouth	PMI	boca	cerrada	pico	mantén	abre	张开嘴	嘴里	大嘴巴	张嘴	嘴巴
	CPE	boca	cerrada	abre	palabras	labios	嘴	嘴里	嘴巴	闭上	闭嘴
	Co-occurrence	la	biblioteca	de	en	que	图书馆	的	我	在	你
library	PMI	solarización	biblioteca	soltándola	library	librería	英	图书馆	圖書館	藏书室	书房
	CPE	biblioteca	la	librería	pública	tarjetas	图书馆	书房	里	圖書館	去

Table 7: Selected *word2word* translations of English words into Spanish and simplified Chinese. Top-5 predictions are listed in the decreasing order of the model's scores. Boldfaced target words indicate correct translations.

An. cm An. cm An. cm 6K 3K 78K 6i K 6K 0 278K 253K 278K 255K 278K 255K 278K 265K 265K 265K 275K 265K 275K 265K 275K 265K 275K 265K 275K 265K 26	8K 2K 10K 305K 60K 114K 11K 9K 07K 104K 07K 43K 0 176K 91K 0
Re.ent Re.r.th Re.r.th 134 1888 10K 10K 111 10 0 0 0 128 134K 1884 11K 10K 128 134K 134K 134K 134K 1155 1155 1155 1155 1155 1156 1154 1255 124 1255 1155 1154 1254 124 1255 1154 1154 1254 124 1255 1154 1154 1254 1294 1274 1155 1356 1295 1295 1295 1295 1155 1356 1264 2256 2295 2265 2745 2745 2745 1111 1111 1111 1006 174 275 266 2785 266 2785 2785 2785 2785 2785 2785 2785 2785 2785 2785 2785 2785	0 0 0 279K 306K 3 30K 28K 1 37K 36K 1 0 0 116K 0 855K 0 107K 201K 1 97K 1
Image: block Image: block<	 (0) 7K (27K) 294K (3K) 119K (3K) 0 (47K) 0 (45K) (17K) (17K) 217K (13K) 198K
	0 12K 2K 19K 0 2491 3K 291K 0 14K 3K 91K 6K 97K 36K 0 141K 36K 0 111K 12K 0 111K 12K 17K 216K 105K 22K 202K 59K
th 2K 327K 327K 327K 254K 40K 254K 151K 171K 151K 161K	0 8K 20K 295K 0 98K 6K 82K 982 31K 982 31K 13K 223K 7K 151K
st st 6/K 331 kK 331 kK 331 kK 8/K 351 kK 8/K 50 kK 8/K 50 kK 9/K 17 kK 19/K 17 kK 11/K 17 kK 20/K 223 kK 12/K 120 kK 13/K 120 kK 13/K 120 kK 13/K 14 kK 13/K 13/K 13/K 11/K 13/K 11/K 11/K 11/K 11/K 11/K	TK TK TK 0 291K 315K 22K 22K 275K 315K 0 0 14K 13K 0 0 11K 13K 0 0 131K 0 0 0 14K 13K 0 0 101 105K 7K 0 87K 90K 22K 22K 218K 219K 15K 205K 203K 205K 15K
	TK 6K TK 302K 287K 291 302K 287K 291 13K 7K 141 13K 75K 101 86K 23K 837 208K 216K 218 208K 216K 218 198K 163K 163K
sk sk 43K (2094K) 441K 171K 171K 171K 255K 255K 255K 255K 255K 255K 155K 255K 155K 255K 155K 255K 2	4K 2K 2K 190K 308K 308K 31 25K 133K 21 308K 31 4K 8K 1 31 31 31 39K 100K 100K 100K 10 10 9K 43K 8 43K 8 31 35 95K 216K 216K 216K 10
ro ru 16K 10K 10K 10K 104K 10K 10K 10K 104K 207K 20K 20K 101K 21K 24K 24K 252K 24K 24K 24K 257K 24K 24K 24K 257K 24K 24K 24K 255K 24K 24K 24K 255K 24K 24K 24K 255K 24K 24K 24K 255K 24K 24K 24K 26K 27K 24K 24K 26K 27K 24K 24K 26K 27K 24K 24K 26K 27K 28K 7K 274K 28K 7K 27K 210K 216K 214K 214K 215K 215K 215K 214K 216K 215K 225K 214K <t< td=""><td>9K 11K 290K 306K 1 297K 263K 14K 11K 99K 103K 90K 103K 118K 60K 118K 208K 207K 207K</td></t<>	9K 11K 290K 306K 1 297K 263K 14K 11K 99K 103K 90K 103K 118K 60K 118K 208K 207K 207K
	10K 11K 294K 295K 266K 306K 213K 14K 101K 100K 107K 123K 973K 1M 215K 216K 202K 205K
no no 72K 35K 35K 35K 72K 210K 210K 231K 25K 231K 231K 25K 26K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	9k 4k 8k 306k 304k 298k 277k 161k 225k 14k 13k 12k 14k 12k 103k 103k 103k 115 58k 132k 115 58k 132k 132k 202k 206k 204k 202k 206k
ms 15/15/15/15/15/15/15/15/15/15/15/15/15/1	4k 7k 9k !ssk 280k 306k !ssk 280k 305k !ssk 71k 11k !st 11k 11k 22k 90k 103k 22k 91k 115k 73k 21k 115k 76k 217k 255k 60k 159k 204k
Imk Ink 8 34K 8 257K 1 1K 1 1 1	0 5K · 192K 296K 1.1 36K 114K 1 2K 7K 7K 2K 7K 2K 2K 7K 2K 40K 95K 23K 9K 23K 120K 9KK 225K 7 7KK 174K 6
Mo It 300 307 307 301 305 307 305 305 41K 305 15K 205K 305 21K 23K 21K 23K 23K 21K 23K 23K 21K 3KK 3KK 300 36K 36K 31K 36K 23K 300 300K 32K 301K 35K 111K 301K 33K 111K 31K 33K 111K 31K 33K 111K 31K 33K 110K 33K 115K 40K 33K 115K 40K 33K 115K 14K 33K 115K 14K </td <td>2k 2k 297k 287k 51k 67k 6k 4k 56k 66k 15k 14k 15k 14k 58k 50k 58k 50k 152k 195k 108k 137k</td>	2k 2k 297k 287k 51k 67k 6k 4k 56k 66k 15k 14k 15k 14k 58k 50k 58k 50k 152k 195k 108k 137k
kan jan 0 0 102K 8K 8K 8K 8K 6K 65K 65K 65K 65K 65K 65K 65K 65K 65K 65K 73K 45K 73K 94K 94K 94K 11K 11K 14K 11K 16K 116K 16K 116K 16K 116K 16K 116K 110K 116K 112K 115K 112K 115K 112K 115K 115K 15K 115K 15K 115K 15K 115K 15K 118K 95K 55K 56K 56K 56K 56K 56K 56K 56K 56K 56K 5	10K 2K 0 299K 105K 4K 103K 15K 2K 8K 3K 0 81K 19K 19K 1 129K 2K 2 0 129K 42K 1 1 155K 25K 0 0 155K 25K 2 0
H H 77K 205K 77K 205K 77K 205K 270K 270K 866K 270K 270K 270K 866K 270K 270K 270K 866K 270K 270K 270K 866K 222K 231K 232K 157K 212K 16K 4K 95K 212K 19K 111K 131K 111K 131K 111K 131K 111K 131K 111K 131K 111K 131K 111K 111K 111K	11K 299K 270K 12K 102K 91K 543K 543K 218K 228K
Im Im<	10K 0 7K 293K 8K 297K 293K 8 297K 13K 0 158K 13K 0 158K 100K 0 102K 103K 0 366K 881K 0 366K 201K 3K 213K 201K 3K 192K
gt ht ht< ht< ht< ht< ht< <t< td=""><td>846 8K 1(50K 292K 292K 29 8K 267K 28 1: 1: 2K 13K 1:3K 1: 1: 13K 100K 10 1: 1: 2K 92K 10K 10 870 1: 3K7 789K 88 34K 217K 217K</td></t<>	846 8K 1(50K 292K 292K 29 8K 267K 28 1: 1: 2K 13K 1:3K 1: 1: 13K 100K 10 1: 1: 2K 92K 10K 10 870 1: 3K7 789K 88 34K 217K
or or<	K 0 8K 846 K 98K 308K 50K K 12K 25K 8K K 12K 25K 13K K 12K 12K 13K K 12K 12K 13K K 3 7K 7K K 3 7K 7K K 12K 12K 13K K 3 7K 7K K 3 7K 7K K 3 7K 2K K 3 7K 2K K 3 7K 2K K 2 10K 2K K 2 10K 2K K 2 10K 2K K 2 10K 2K
eta eta eta fta fta <td>3K 8K 7K 11K 252K 304K 31K 01K 325 148K 204K 268K 3K 11K 13K 13K 13K 3K 11K 13K 13K 13K 38K 105K 101K 101K 11K 37K 95K 101K 11K 37K 205K 77K 115K 211K 216K 221K</td>	3K 8K 7K 11K 252K 304K 31K 01K 325 148K 204K 268K 3K 11K 13K 13K 13K 3K 11K 13K 13K 13K 38K 105K 101K 101K 11K 37K 95K 101K 11K 37K 205K 77K 115K 211K 216K 221K
et et fa 35K 0.4K 1K 35K 24K 72K 35K 24K 75K 35K 24K 75K 25K 12K 25K 26K 12K 25K 12K 12K 25K 12K 12K 25K 12K 12K 12K 13RK 12K 12K 13RK 75K 12K 13RK 75K 12K 23KK 12K 12K </td <td>3K 3K 3K 3K 296K 252K 304K 200K 42K 148K 13K 3K 11K 105K 38K 105K 64K 11K 37K 204K 15K 211K 204K 15K 211K 198K 96K 115K 198K 96K 136K</td>	3K 3K 3K 3K 296K 252K 304K 200K 42K 148K 13K 3K 11K 105K 38K 105K 64K 11K 37K 204K 15K 211K 204K 15K 211K 198K 96K 115K 198K 96K 136K
ef en es es es es es 155 195 155 155 155 155 155 155 155 155 155 155 155 155 165 155 155 155 155 155 155 155 165 155	10K 13K 3K 11K 3K 200K 380K 41K 202K 204K 306K 28K 316K 7K 310K 200Z 200K 28K 316K 7K 310K 310K 30K 315K 101K 97K 3K 100K 105K 36K 36K<
m m	3K 11K 10K 13K 3K 11K 3K 3K 7K 11K 0 8K 846 8K 10K 30Y 59K 20K 20K 20K 21K 34K 34K 34K 34K 30K 90K 20Y 25K 12K 21K 21K 21K 7K 10K 7K 14K 24K 34K 24K 24K 24K 24K 24K 24K 24K 24K 24K 12K 12K 12K 12K 12K 12K 12K 12K 12K 12
0 1 1 0 1	0 8k 3k 11k 10k 13k 3k 11k 3k 3k 1k 3k 3k 3k 7k 11k 0 8k 846 3k 10k 0 7k 1828 29k 307k 296k 207k 296k 207k 296k 37k 34k 12k 205k 296k 207k 296k 27k 34k 3k 267k 266k 258k 34k 207k 296k 207k 201k 201k 201k 201k 201k 201k 201k 201
Image Image <th< td=""><td>2K 0 3K 1K 10K 13K 3K 11K 3K 11K 3K 11K 3K 11K 10K 0 3K 3K 2K 11K 10K 0 3K 2K 3K 3K 11K 10K 0 3K 2K 2K 2K 2K 2K 11K 3UI 3UK 2K 2WK 2KK 2WK 2KK 2KK</td></th<>	2K 0 3K 1K 10K 13K 3K 11K 3K 11K 3K 11K 3K 11K 10K 0 3K 3K 2K 11K 10K 0 3K 2K 3K 3K 11K 10K 0 3K 2K 2K 2K 2K 2K 11K 3UI 3UK 2K 2WK 2KK 2WK 2KK 2KK
m m m m m m m 2111 21 3 5 4 3 21 3 5 5 0 4 5 2111 20 3 5 5 5 5 1 2111 3 3 0 3 5 1 5 2164 364 114 5 3 3 5 3 2164 364 34 5 0 3	8K 2K 0 3K 0 300K 147K 250K 250K 818.3K 28K 3K 3K 28K 92.4K 10.1K 6K 3K 197.4K 105.K 75K 8K 0 75K 165.K 105.K 75K 8K 0 75K 165.K 105.K 165.K 935K 795.K 752.SK 575.K 165.K 135.K 165.K 935K 776.K 0 2305.K 47K.2 2005.K 47K.2
af ar bg bn bn 184 0 84 114 258 956 184 0 84 0 956 956 205 804 0 956 0 956 0 184 0 914 158 2563 2564 2564 2564 2564 2564 2564 256 157 716 956 156 157 716 956 156	8K 303K 271K 14K 104K 90K 90K 206K 196K
All All ar 10 205 ar 10 205 br 205 205 br 205 205 br 205 205 cs 215 215 cs 215 21 br 14 14 br 14 17 br 14 14 br 14 17 br 14 14	fl 0 tr 28K uk 5K ur 0 ur 0 vi 3K zeen 2K zh-un 0 1 zeen 2K zeen 2K zh-un 4K 2K 2K

Table 8: Bilingual lexicon counts for the entire word2word dataset. Each (row, column) entry is the number of words in the (row \rightarrow column) bilingual lexicon. See http: //opus.nlpl.eu/OpenSubtitles2018.php for language codes and original data sizes.